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This study aims to enhance the performance of an injection moulding process at PT. 

XYZ, an Indonesian manufacturing firm, using the Define, Measure, Analyze, Improve, 

Control (DMAIC) methodology. The main issue identified was low Overall Equipment 

Effectiveness (OEE), averaging 66.47%, below the company’s target of 85%. Through 

systematic application of DMAIC tools such as Supplier, Input, Process, Output, and 

Customer (SIPOC), Fishbone Diagram, Failure Mode and Effects Analysis (FMEA), 

and Root Cause Analysis, critical losses were identified, particularly in idle time and 

downtime. Targeted improvements, including preventive maintenance and process 

standardization, led to a significant performance increase. Post-implementation results 

showed that the OEE improved from 59.61% to 87.63%. These improvements also 

reduced idle time by 100% in December and stabilized run time. The study 

demonstrates how structured problem-solving frameworks like DMAIC can yield 

measurable operational benefits when consistently applied. 
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1. INTRODUCTION

Achieving high productivity without compromising product 

quality is a central objective for modern manufacturing 

industries [1, 2]. This objective compels companies to improve 

process efficiency in order to remain competitive, while 

simultaneously reducing reliance on imported equipment and 

components. In Indonesia, the injection moulding sector is 

experiencing increased demand, particularly for the 

production of medical devices. 

Despite this growth, manufacturers often face significant 

operational challenges that hinder their ability to meet 

production targets. One such case is PT. XYZ, a local 

manufacturing company specializing in medical equipment 

using injection moulding technology. Based on internal 

production data, the company's average Overall Equipment 

Effectiveness (OEE) over the past year stands at 81.72%, 

which falls short of the company’s performance target of 85%. 

Preliminary analysis conducted at PT. XYZ revealed 

several key issues contributing to this suboptimal 

performance. The production data indicated that low OEE was 

primarily caused by high machine downtime, prolonged setup 

durations, and extended sample collection time. Frequent 

machine breakdowns occurred due to a lack of preventive 

maintenance and delayed corrective actions. Setup activities 

lacked standardization, leading to inconsistencies between 

operators and frequent delays in production start-up. 

Similarly, inefficient sample collection processes resulted in 

bottlenecks that delayed quality verification and disrupted 

production continuity. These inefficiencies not only reduced 

equipment utilization but also negatively impacted scheduling, 

throughput, and overall productivity. In addition, the lack of 

procedural standardization and poor documentation further 

contributed to inconsistencies in product quality. This 

situation highlights the need for a systematic, data-driven 

approach to process improvement. 

To address these challenges, this research adopts the Define, 

Measure, Analyze, Improve, Control (DMAIC) 

methodology—an established framework within the Six 

Sigma approach [3]. DMAIC offers a structured and scientific 

process for identifying root causes, formulating corrective 

actions, and sustaining improvements over time [4, 5]. The 

primary objective of this research is to enhance the operational 

performance of the injection moulding process at PT. XYZ 

through the systematic application of DMAIC. The study aims 

to identify the root causes of low OEE, particularly those 

related to downtime, setup duration, and sample collection 

inefficiencies [6-10]. By utilizing analytical tools such as 

Supplier, Input, Process, Output, and Customer (SIPOC), 

Fishbone Diagram, Failure Mode and Effects Analysis 

(FMEA), and the 5-WHYs method, the research seeks to 

analyze process bottlenecks and implement corrective actions. 

Furthermore, it evaluates the impact of these interventions on 

performance indicators, with a focus on increasing OEE to 

meet or surpass the company's 85% target. Ultimately, this 

research demonstrates how data-driven continuous 

improvement methodologies can be effectively applied in real-

world industrial environments to improve productivity and 

process reliability [3, 5, 11].  

While DMAIC is a well-established methodology, the 
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novelty of this study lies in its contextual application within an 

Indonesian injection moulding company that faces resource 

limitations and high production demands. The findings are 

expected to provide not only actionable insights for 

practitioners but also empirical evidence to support the use of 

structured improvement methodologies in similar 

manufacturing environments. This paper is organized to 

present the step-by-step application of DMAIC, supported by 

operational data and performance metrics, in order to 

demonstrate the practical value and effectiveness of 

continuous improvement initiatives in industrial settings. 

 

 

2. LITERATURE REVIEW 

 

This section reviews the literature on DMAIC approach, 

SIPOC, FMEA, 5WHY, Fishbone and gap analysis in the 

relevant literature. This literature review aims to provide a 

thorough understanding of recent advancements about 

research opportunities and trend of method. 

 

2.1 DMAIC 

 

DMAIC is a structured, data-driven methodology widely 

applied within the Six Sigma framework to drive process 

improvements and reduce variability. While originally 

developed for general quality management, DMAIC has found 

successful application across various manufacturing sectors, 

including automotive, electronics, and increasingly, injection 

moulding. Several studies have demonstrated the effectiveness 

of DMAIC in identifying inefficiencies, minimizing waste, 

and improving product quality in highly controlled 

manufacturing environments.  

For instance, Mittal et al. [3] applied DMAIC to improve 

machining precision in a manufacturing firm, reporting a 27% 

increase in production yield and a reduction in defect rates by 

over 40% [3]. Similarly, Bhargava and Gaur [5] implemented 

DMAIC in a bearing production line, significantly reducing 

setup time and increasing OEE. More specifically to the 

injection moulding context, Maryani et al. [12] utilized 

DMAIC to improve aluminum casting operations and 

observed a measurable improvement in process capability. 

These studies affirm the adaptability of DMAIC to complex, 

repeatable, and quality-sensitive processes such as moulding 

operations. 

However, while DMAIC has been widely used, most prior 

studies focused on general efficiency gains without detailed 

integration into OEE metrics or combining it with tools like 

FMEA and SIPOC in a comprehensive manner. There is still 

limited research that applies DMAIC holistically to injection 

moulding operations with a focus on quantifiable 

improvements in all components of OEE—Availability, 

Performance, and Quality/Yield. This gap presents an 

opportunity for research to explore how each phase of DMAIC 

can be linked to specific operational inefficiencies such as 

prolonged downtime, ineffective setup processes, and high 

defect rates, which are commonly encountered in moulding 

industries. 

DMAIC's strength lies in its structured methodology [13]: 

 

1. The Define phase helps clarify objectives and scope. 

2. Measure focuses on quantifying current performance, 

often using metrics like Defects Per Million Opportunities 

(DPMO), calculated with the formula: 

𝐷𝑃𝑀𝑂 = 100000 ×

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑓𝑒𝑐𝑡𝑠
 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒

𝑑𝑒𝑓𝑒𝑐𝑡 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒
 

(1) 

 

3. The Analyze phase uses tools like Fishbone Diagrams 

and Pareto analysis to identify root causes. 

4. Improve recommends and implements targeted solutions. 

5. Control ensures long-term sustainability of 

improvements. 

 

2.2 SIPOC 

 

The concept of SIPOC is a visual representation used in 

process improvement methodologies. This approach is used to 

make easily identified the resources involved in the company 

(Refer). 

 

2.3 FMEA 
 

FMEA is widely recognized as a proactive risk assessment 

tool used to identify potential failure modes within a process 

and prioritize them based on three factors: Severity (S), 

Occurrence (O), and Detection (D). These factors are 

combined into a Risk Priority Number (RPN = S × O × D) to 

determine which failure modes demand immediate attention. 

In moulding industries, failure modes such as incorrect 

material loading, mold misalignment, or parameter deviation 

can cause defects or machine downtime. Prior studies [14] 

have demonstrated how FMEA significantly reduced 

downtime and enhanced safety in automated manufacturing 

environments. 

In this study, FMEA is deployed not only as a scoring tool 

but as a bridge between the Analyze and Improve phases of 

DMAIC [15]. By evaluating failure modes tied to OEE loss 

(such as improper mold setup or drying errors), the research 

ensures that improvement efforts are not generic but 

prioritized based on operational impact. Moreover, this study 

applies corrective controls mapped from FMEA outputs to 

directly inform maintenance scheduling and operator 

instructions—closing the loop between diagnosis and 

implementation. 
 

2.4 5-WHYs method 
 

The 5-WHYs technique is one of the most preferred 

approaches to minimize or possibly eliminate the quality loss 

category of OEE [16]. This method was implemented 

successfully to eliminate loss [17]. 

In this study, DPMO and OEE are both used to measure 

performance and assess the impact of changes. OEE itself 

integrates Availability (operating time vs planned time), 

Performance (actual speed vs ideal speed), and Quality (good 

units vs total units produced), making it a comprehensive 

metric that aligns well with the DMAIC structure. 

While methodologies such as Lean, Total Productive 

Maintenance (TPM), and Value Stream Mapping (VSM) are 

also effective in manufacturing improvement, DMAIC was 

chosen in this study due to its strong emphasis on data 

measurement and control, which are critical in high-precision 

environments like injection moulding. Additionally, DMAIC's 

integration with FMEA, SIPOC, and Root Cause Analysis 

tools allows for a more systematic identification and 

elimination of process inefficiencies. 
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3. METHODOLOGY 
 

This study employs a case study approach within the 

framework of the DMAIC methodology. The case was 

conducted at PT. XYZ, an Indonesian injection moulding 

company that manufactures health devices. The purpose of this 

methodology is to identify process inefficiencies and 

implement targeted improvements to increase OEE [18, 19]. 

The implementation of each DMAIC phase is described as 

follows and is shown in Figure 1. 

 

 
 

Figure 1. Research methodology flowchart 

 

3.1 Define phase 

 

The problem definition phase involved preliminary 

discussions with managers and engineers to identify the core 

performance issue. The main problem was defined as: “OEE 

levels consistently below the company’s 85% target, 

averaging only 81.72%.” To scope the problem, a SIPOC 

diagram was constructed to map the high-level process flow 

from suppliers to customers and to clarify inputs, outputs, and 

key stakeholders. 

A Pareto analysis of historical rejection and downtime data 

was conducted to identify the most critical contributors to 

performance loss. Interviews and direct observations were 

used to refine the problem statement into measurable goals for 

the study. 

 

3.2 Measure phase 

 

In this phase, primary and secondary data were collected to 

establish baseline performance. Key performance indicators 

measured included Availability, Performance, Quality, and 

OEE for three different injection moulding machines (Fanuc, 

Arburg, Engel), using formulas derived from TPM literature. 

Data sources included: 

a. Monthly production reports (Jan–Dec), 

b. Machine downtime logs, 

c. Setup and cleaning records, 

d. Sampling and inspection timelines. 

Start

Literature Review

Case Study on Moulding Company

Data Processing

Analyze the cause of defect and root cause 

and determine the RPN

Identification of defective product in the 

moulding company, Identification process flow

DPMO calculation value, FMEA, Determine 

the RPN

 Analyse the cause of defect and root cause 

Improving the plans, experiment and reduce 

the defect 

Monitoring the improvement result 

Conclusion

Finished

DEFINE

CTQ, Pareto, SIPOC Diagram

MEASURE

Calculation DPMO, OEE

ANALYSIS Fishbone

IMPROVE

5-WHYS, Corrective action proposal with FMEA

CONTROL

KPI, Check Sheet for monitoring
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Each OEE component was calculated according to the 

standard formula: 

 

𝑂𝐸𝐸 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 × 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 

 

The Six Big Losses were categorized and quantified per 

machine. Data validation was conducted by triangulating 

logbook entries with supervisor interviews and visual 

observation of shop floor activities. 

 

3.3 Analyze phase 

 

The collected data were analyzed to identify root causes of 

low OEE. The Main tools used in this phase included: 

a. Fishbone Diagram (to group causes into man, machine, 

method, and material), 

b. 5-WHYs analysis (to drill down into the root of recurring 

issues), 

c. FMEA (to prioritize failure modes using risk priority 

numbers). 

The FMEA was applied to ten critical process steps, with 

validation sessions conducted through focus group discussions 

involving supervisors, maintenance teams, and QA personnel. 

Failure modes with RPN ≥ 48 were selected for intervention. 

 

3.4 Improve phase 

 

Improvement strategies were designed based on the 

findings from the Analyze phase. Interventions included: 

a. Standardization of machine setup procedures, 

b. Preventive maintenance scheduling (daily, weekly, and 

monthly), 

c. Implementation of autonomous maintenance, 

d. Operator training on drying temperature, mold 

verification, and product limit checks. 

To validate these improvements, pilot tests were carried out 

over a 3-month period (Oct.–Dec.). Performance metrics 

before and after improvements were compared to assess 

effectiveness. Special focus was given to: 

a. Changes in OEE across machines, 

b. Reduction in idle and setup time, 

c. Improvement in yield and reduction in defect rates. 

 

3.5 Control phase 

 

To sustain the improvements, Control Plans were 

developed, including: 

a. Daily check sheets for critical parameters, 

b. Weekly review of OEE trends, and 

c. Audit checklists to monitor adherence to new standard 

operating procedures (SOPs). 

Visual management tools such as performance dashboards 

and machine tagging systems were introduced. A Control chart 

(p-chart) was applied to monitor product quality stability over 

time. Feedback loops were created through monthly 

performance review meetings with operations staff. 

The detailed flow diagram of the research methodology for 

this paper is shown in Figure 1. 

 

 

4. CASE STUDY ON DMAIC IMPLEMENTATION 

 

In the injection area, production disruptions caused by 

damage, shutdowns, and failures of the injection molding 

machine eventually happened, thus causing production to run 

inefficiently. There is too long downtime, machine setup time, 

sampling too long, and exceeding the targeted time. The 

amount of downtime resulted in missed production output. 

Other effects of downtime on the Injection Molding machine 

will increase the number of off-spec parts. The impact of this 

issues certainly makes the company can reach the determined 

target namely 85%. In this case study, the DMAIC 

methodology is categorized into the following five basic 

phases namely: Define, Measure, Analysis, Improve and 

Control.  

Table 1 provides an analysis of the performance data for 

three different injection moulding machines: Fanuc, Arburg, 

and Engel (Figure 2). The analysis focuses on five key metrics: 

Availability, Performance, OEE, Utilization, and Yield. Table 

1 presents trends in machine performance and suggest areas 

for improvement. 

 

Table 1. The average of moulding performance 

 
Moulding Availability (%) Performance (%) OEE (%) Utilization (%) Yield (%) 

Injection Moulding Fanuc 85.37% 93.82% 66.47% 23.01% 82.98% 

Injection Moulding Arburg 88.30% 91.16% 74.56% 63.71% 92.63% 

Injection Moulding Engel 84.07% 86.96% 59.61% 64.85% 81.54% 

 

 
 

Figure 2. Product display 

 

Availability (%) 

Availability measures the percentage of time the machine 

was available for production. The Arburg machine had the 

highest availability at 88.30%, followed by Fanuc with 

85.37%, and Engel had the lowest availability at 84.07%. 

Although the differences are not vast, this metric is crucial 

because higher availability leads to more potential production 

time. 

Performance (%) 

Performance reflects the actual production speed compared 

to the ideal or expected speed. Fanuc had the highest 

performance at 93.82%, followed by Arburg with 91.16%, and 

Engel with 86.96%. High performance indicates that the 

machines are running efficiently during production time. 
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OEE (%) 

OEE is a combination of Availability, Performance, and 

Yield. It measures the overall effectiveness of the equipment. 

Arburg had the highest OEE at 74.56%, indicating superior 

overall efficiency, while Fanuc and Engel had OEE scores of 

66.47% and 59.61%, respectively. This metric shows that the 

Arburg machine operates more effectively than the others. 

Utilization (%) 

Utilization measures how often the machine is being used 

during the available time. Engel and Arburg had much higher 

utilization rates at 64.85% and 63.71%, respectively, 

compared to Fanuc, which had a very low utilization rate of 

23.01%. This indicates that Fanuc is significantly 

underutilized compared to the other machines, suggesting an 

opportunity for increased production time or scheduling 

optimization. 

Yield (%) 

Yield refers to the percentage of products that met quality 

standards on the first pass. Arburg had the highest yield at 

92.63%, indicating fewer defects, followed by Fanuc with 

82.98%, and Engel with 81.54%. Yield is an important metric 

because higher yield means less rework and waste. 
 

 

5. DATA COLLECTION AND CALCULATION 

 

5.1 Data collection 

 

Before starting the DMAIC stage, it is essential to have a 

thorough understanding of the injection moulding production 

process flow being implemented. Figure 3 below illustrates the 

stages of the injection moulding process. 

The DMAIC approach used is presented in this section.  

(1) Define Phase 

The define phase starting from identification of the problem 

and classification of objective.  

a) Problem: the OEE rate and performance of moulding 

company lower than 85%. 

b) Objective: The objective of the project was to increase 

rate of the moulding machine to minimum 85% by eliminating 

the critical factors resulting loss. The objective to ensures the 

quality and effectiveness of the company’s products, as well 

as customer’s satisfaction. In order to identified the process of 

moulding production, visualization in the form of SIPOC. The 

SIPOC for this case is presented in Table 2 below. 

 

Table 2. SIPOC 

 
Supplier Input Process Output Customers 

Company A LCD Testing Smartphones 5” Distributors A 

Company B Battery Assembly Smartphones 5” Distributor B 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Company Z Case Moulding Smartphones 5” Distributor Z 

 

(2) Measure Phase 

The OEE is a very established key performance indicator 

that reflects the performance of a production machine in 

comprehensive manner. Figure 4 below is the OEE process 

and formula that illustrates how OEE is calculated, by 

multiplying the three main components [20].

 

 
 

Figure 3. Process injection molding 
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EQUIPMENT SIX BIG LOSSES COMPUTATION OF OEE

Loading time

Operating 

time

Net Operating 

time

Valuable 

operating time

Downtime 

losses

Speed 

losses

Defect 

losses

Equipment 

failure

Setup and 

adjusment

Idling and minor 

stoppage

Reduced speed

Defect in process

Reduced yield

Availability efficiency =  
Operating Time

Loading Time
 

Performance efficiency =  
Net Operating Time

Operating Time
 

Quality efficiency =  
Valuabe Operating Time

Net operating Time
 

OEE = Availability× Performance×Quality

 
 

Figure 4. Modified OEE process and formula 
 

Table 3. Six big losses for injection moulding Fanuc 

 
Month Run Time Sample Setup/Cleaning Time Down Time Idle Time OEE (%) 

Jan. 16.295 35 1.035 2.625 13.130 80.16% 

Feb. 5.045 10 420 765 22.080 64.72% 

Mar. 7.520 20 510 1.470 25.500 59.15% 

Apr. 17.490 110 1.760 185 13.595 89.49% 

May 9.795 20 290 45 19.610 94.50% 

Jun. 14.515 55 840 910 17.280 30.26% 

Jul. 11.410 490 120 850 17.370 83.61% 

Aug. 11.830 490 30 860 18.470 74.93% 

Sep. 11.560 910 240 1.750 17.700 74.77% 

Oct. 5.380 420 1.080 540 23.300 66.90% 

Nov. 16.955 650 1.740 305 12.900 80.69% 

Dec. 22.225 540 630 2.955 5.760 70.29% 

Total 150.020 3.750 8.695 13.260 206.695 66.47% 

 

Table 4. Six big losses mesin injection moulding Arburg 
 

Month Run Time Sample Setup/Cleaning Time Down Time Idle Time OEE (%) 

Jan. 0 0 0 0 28.800 0% 

Feb. 0 0 0 0 29.280 0% 

Mar. 8.420 575 420 3.155 22.470 59.69% 

Apr. 4.540 20 60 1.730 24.850 71.50% 

May 6.935 405 600 640 22.120 78.38% 

Jun. 19.000 310 1.320 1.080 12.818 62.17% 

Jul. 3.750 20 60 40 14.073 88.90% 

Aug. 3.170 0 450 220 27.840 79.91% 

Sep. 0 0 0 0 31.680 0% 

Oct. 3.900 90 140 0 26.110 80.12% 

Nov. 11.980 330 450 2.120 17.760 71.04% 

Dec. 31.030 60 600 1.430 0 87.47% 

Total 92.725 1.810 4.100 10.415 257.801 74.19% 

 

Table 3 provides performance data for a machine, broken 

down by month, with various metrics that assess machine 

efficiency and usage. Overall, the machine’s OEE over the 

entire year is 66.47%, which is moderate but leaves room for 

improvement. The machine was idle for 206.695 hours, 

representing significant unused capacity, particularly in 

months like February, March, and October. A focus on 

reducing idle time and optimizing production scheduling 

could improve both run time and OEE in the future. The lowest 

OEE is in June with the percentage 30.26% and the highest is 

May 94.50%. 
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Table 5. Six big losses mesin injection moulding Engel 

 
Month Run Time  Sample  Setup/Cleaning Time  Down Time  Idle Time  OEE (%) 

Jan. 0 0 0 0 31.680 0% 

Feb. 0 0 0 0 28.800 0% 

Mar. 0 0 0 0 33.120 0% 

Apr. 0 0 0 0 30.240 0% 

May 0 0 0 0 31.680 0% 

Jun. 0 0 0 0 31.680 0% 

Jul. 21.940 0 300 6.240 5.700 42.30% 

Aug. 29.905 0 480 4.185 960 56.22% 

Sep. 10.875 0 720 2.235 19.680 22.67% 

Oct. 20.245 540 960 4.670 8.525 55.08% 

Nov. 27.850 30 810 4.430 480 73.55% 

Dec. 32.120 0 480 1.000 0 87.63% 

Total 142.935 570 3.750 22.760 222.545 59.61% 

 

Table 6. RPN calculation 

 

No. 
Process 

Description 

Potential 

Failure 

Potential 

Effect 

Severity 

(S) 

Potential Root 

Causes 

Occurrence 

(O) 
Current Process Control 

Detection 

(D) 
RPN 

1 

Moulding 

Wrong 

material 

usage 

Delay or stop 

production 

6 

No identification 

on raw material 

container 

2 
Attach material 

identification on container 
4 48 

2 6 2 

Refill material when 

container empty & update 

the material identification 

tag 

4 48 

3 
Different 

color 

Part 

discoloration 
6 

Contamination 

from supplier 
1 Use material batch by batch 4 23 

4 

Incorrect 

mold/tools 

preparation 

Delay 

production 
6 

Technician 

overlook when 

collect mold 

2 
Identification in mold and 

verify with mold folder 
4 48 

5 

Reject part 
Increase 

reject rate 

6 
Insufficient 

drying material 
1 

Verify drying temperature 

& time with mold folder 
4 24 

6 6 
Incorrect mold 

setting parameter 
2 

Verify mold setting 

parameter with mold folder 
4 48 

7 6 
Broken tool or 

mold 
2 

Keep the first shot and last 

shot part 
4 48 

8 6 Erroneous 

dimension 

checking method 

2 
Alignment of measurement 

method with customer 
4 48 

9 6 2 
Provide training for 

relevant personnel 
4 48 

10 6 
Unclear product 

limit specification 
2 

Correspondence with BU 

manager for specification 

verification and brief to 

relevant personnel 

4 48 

11 
Injection 

molding 

machine 

Increase in 

machine 

6 

Unclear 

specifications of 

broken machine 

2 
leakage in the injection 

machine 
4 48 

12 6 

Check the 

injection machine 

daily 

2 Verify daily check sheet 4 48 

 
Table 4 tracks the six big losses that impact the Arburg 

injection molding machine’s OEE throughout the year. The six 

big losses include: setup and cleaning time, downtime, idle 

time, and run time, among other factors. These losses are 

crucial for identifying inefficiencies and bottlenecks that affect 

productivity.  

a. Idle Time as the Major Contributor to Losses: Throughout 

the year, idle time was the largest source of inefficiency, 

with 257.801 hours of idle time. Addressing this could 

drastically improve productivity. 

b. Significant Operational Gaps: The machine was 

completely idle in January, February, and September, and 

this contributed to major production losses. Production 

planning and scheduling should be re-evaluated to avoid 

long periods of inactivity. 

c. Opportunities to Reduce Setup and Cleaning Time: With 

4.100 hours spent on setup and cleaning, there is room for 

optimizing these processes to maximize run time. 

d. Strong Efficiency in Productive Months: July and 

December demonstrated high OEE and efficient machine 

use. These months could serve as benchmarks for 

improving other months where OEE and run time were 

lower. 

Table 5 outlines the six big losses for the Eagle machine, 

detailing run time, setup/cleaning time, downtime, idle time, 

and OEE for each month of the year. From January to June, 

the machine was completely idle, with 0 hours of run time and 

an OEE of 0%, leading to substantial idle time. Starting in 

July, the machine saw significant operation, with a run time of 

21.940 hours and an OEE of 42.30%, though downtime was 

still high at 6.240 hours. 

The run time peaked in December with 32.120 hours and 

1245



 

the highest OEE of the year at 87.63%, showing optimal 

machine usage. Throughout the year, setup and cleaning time 

remained moderate, with a total of 3.750 hours, while 

downtime accumulated to 22.760 hours. Idle time, the largest 

contributor to losses, reached a total of 222.545 hours. The 

overall OEE for the year was 59.61%, showing room for 

improvement in machine efficiency and reduction of idle 

periods. 

From the Table 6, one of the potential failures found is the 

use of the wrong material, which can cause delays or stoppages 

in production. The main cause of this problem is the lack of 

identification on the raw material container, with a severity 

level (S) of 6, a probability of occurrence (O) of 2, and a 

detection (D) of 4, resulting in an RPN value of 48. To reduce 

this risk, a control has been implemented in the form of 

providing identification labels on the material container. 

In addition, there is a failure in the form of a difference in 

color in the product that can be caused by contamination from 

the supplier. Although it has the same severity level (S = 6), 

the probability of occurrence (O = 1) is lower, and the 

detection is quite good (D = 4), resulting in an RPN of 23. The 

preventive efforts made are to use materials in a batch system 

to avoid contamination. 

Another failure analyzed is the preparation of the wrong 

mold or tool, which can cause production delays. This is 

generally caused by the technician's negligence in collecting 

the appropriate mold, with an RPN of 48. To overcome this, 

the mold identification and verification steps are implemented 

with the mold folder before use. 

From this analysis, it can be concluded that risks with high 

RPN (≥48) such as the use of wrong materials and wrong mold 

preparation should be the top priority in process improvement. 

Improvement efforts can be made by ensuring a better 

identification system, improving technician training, and 

tightening raw material control. Meanwhile, risks with lower 

RPN, such as product color differences, must still be 

monitored even though they are not the top priority. With this 

approach, the effectiveness of the production process can be 

improved, and potential failures can be minimized. 

(3) Analysis Phase 

In this phase, the data collected has been analyzed using 

cause and effect diagram to identify major defects and their 

causes for addressing them in order to improve the process. 

Here’s a Fishbone (Ishikawa) diagram breakdown for the 

problem, highlighting the key causes in different categories as 

shown in Figure 5. 

1. Man (People): 

a. Lack of proper training for operators, leading to 

inefficiencies in production. 

2. Material: 

a. Poor quality of raw materials affecting product 

consistency. 

b. Slug weight variation causing defects in the final 

product. 

3. Machine: 

a. Improper maintenance of machinery, leading to 

frequent breakdowns. 

b. Mold cleaning not done regularly, impacting product 

quality and cycle time. 

4. Method: 

a. High speed of injection, causing defects due to 

insufficient control. 

b. No proper cycle time established, resulting in 

inconsistent product output. 

These issues contribute to inefficiencies and quality 

problems in the production process. 

(4) Improve Phase 

In this phase, the primary objective is to develop, test, and 

implement solutions to address the root causes identified 

during the Analyze phase. In this phase, the main objective is 

to develop, test, and implement solutions to address the root 

causes identified during the Analysis phase. 

Recommendations for addressing the issues are presented in 

Table 7. 

 

 
 

Figure 5. Fishbone Diagram 
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Table 7. Improvement recommendations 

 
Type of 

loss 

Failure 

Mode 
Failure Cause Current Control Recommended Action 

Reduce 

Speed Loss 
 

Wear 

Replacing worn-

out machine 

components and 

performing 

machine 

maintenance by 

overhauling the 

machine once a 

month. 

Create a schedule for the replacement of each machine component and routinely 

replace components based on the established replacement intervals, make sure 

high quality components are used to extend the service life. 

Old machine 

Implementing autonomous maintenance aimed at enhancing operators' sensitivity 

to the condition of injection molding machines and improving their ability to 

perform self-maintenance, thereby maintaining the machines' performance.  

Not optimal 

maintenance 

Implement preventive maintenance by enforcing a daily maintenance system 

(such as oil filling, checking oil temperature, inspecting nozzles for leaks, 

checking mold pressure, checking cooling circulation of the mold, checking 

hydraulic pump pressure, checking high-pressure clamp pressure, and checking 

the condition of the mold), weekly maintenance (such as changing oil, cleaning 

the oil tank, cleaning the clamping cylinder, and tightening hose bolts), and 

monthly maintenance (dismantling the barrel and nozzle to check the condition of 

parts and components, performing an overhaul, cleaning the cooling system, 

cleaning the chiller, and cleaning the heat exchanger) so that the machine can 

maintain stable performance. 

Breakdown 

Loss 

Damage 

in Mold 

Lack of 

maintenance 
Performing check 

mold every three 

months and 

repairing mold if 

there is a reject. 

Do not use tools that can damage the mold, such as screwdrivers or hammers; it 

is recommended to use soft tools like pliers made of plastic, copper, or brass to 

avoid damaging the mold. Using clean water for cooling water. Avoid excessive 

clamp pressure and high injection pressure, as well as overproduction. Lubricate 

necessary components, and ensure the cleanliness of the work area and mold 

storage to prevent contamination. Routine checks of the mold should be 

conducted every month, and if necessary, repairs should be made as soon as there 

is minor damage to the mold, rather than waiting for the damage to worsen.  

Mistakes in the 

production 

process 

Mistakes in 

installation 

 

5.2 Control 

 

The objective of the control phase is to ensure the 

sustainability of the improved and modified system, making it 

more resilient and well-maintained to keep the process stable. 

It has been observed that without the implementation of 

restrictions, the system may become uncontrollable. 

 

 

6. RESULT AND DISCUSSION 

 

6.1 Results 

 

The results presented in this case study offer an in-depth 

analysis of the moulding manufacturing operation's 

performance over a 12-month period. The evaluation focuses 

on key performance metrics, including run time, 

setup/cleaning time, downtime, idle time, and OEE. These 

metrics provide insights into the efficiency and effectiveness 

of the production process and highlight areas for improvement. 

During the initial months, the plant faced operational 

challenges that resulted in no production output. However, 

starting in July, the application of the DMAIC methodology, 

along with continuous process improvements, led to gradual 

enhancements in equipment utilization and production 

efficiency. The significant increase in OEE towards the latter 

half of the year reflects the effectiveness of these 

improvements. 

(1) Initial 6 Months (January - June): 

a. OEE Performance: The OEE for the first six months 

(January to June) was consistently 0%, indicating no 

production activity during this period. This could be due to 

various factors such as downtime related to machine 

installation, preparation, or significant operational disruptions. 

b. Idle Time: The operation showed significant idle time 

during these months, averaging around 31,000 hours per 

month, reinforcing the fact that production was not 

operational. 

(2) Second Half of the Year (July - December): 

a. OEE Improvement: Starting in July, production activities 

resumed, and the OEE began to increase, peaking at 87.63% 

in December. This indicates that significant improvements 

were made to both equipment and process utilization over the 

latter half of the year. 

b. July: OEE began at 42.30%, with 21.94 hours of run time 

and 6.24 hours of downtime. The introduction of production 

activities and the gradual reduction of idle time demonstrate 

efforts to restart operations. 

c. August: A further improvement in OEE to 56.22% was 

achieved, with a longer run time of 29.91 hours and less 

downtime, showing better utilization of equipment. However, 

idle time still accounted for 960 hours, which indicates room 

for further optimization. 

d. September: OEE dropped to 22.67%, largely due to a 

sharp increase in idle time (19,680 hours), indicating that 

equipment was not being used effectively. This suggests 

potential issues with production planning, maintenance, or 

external disruptions. 

e. October - December: These months marked a recovery, 

with OEE steadily rising: 

f. October: OEE was 55.08%, with 20.25 hours of run time 

but higher setup and cleaning time (540 hours). 

g. November: OEE improved significantly to 73.55%, with 

27.85 hours of run time, and a substantial reduction in both 

downtime and idle time, highlighting improved operational 

stability. 

h. December: Achieved the highest OEE at 87.63%, with 

minimal downtime and no idle time. The plant was running 

efficiently, and production processes had stabilized. 

Analysis of Key Factors Influencing OEE: 

(1) Run Time: 

a. The run time started from 0 hours in the first half of the 

year to 32.12 hours in December. The gradual increase in run 

time reflects the ramping up of production, showing improved 

equipment reliability and operational consistency. 

(2) Setup and Cleaning Time: 
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a. Setup and cleaning time fluctuated, peaking in October at 

960 hours, which might have been due to a major changeover, 

cleaning, or preparation for a new product run. However, these 

times were well managed in other months, especially in 

November and December, where minimal setup and cleaning 

were needed, reflecting more streamlined processes. 

(3) Downtime: 

a. Downtime was a significant challenge early on, especially 

in July and October, but was effectively reduced to only 1,000 

hours in December. The improvement in downtime 

management, especially through preventive maintenance and 

efficient planning, had a direct positive impact on OEE. 

(4) Idle Time: 

a. Idle time was extremely high in September (19,680 

hours), indicating significant underutilization of machines. 

However, by December, idle time was reduced to 0, 

showcasing the successful optimization of resource utilization 

and capacity planning. 

 

6.2 Discussion 

 

The results from the DMAIC implementation demonstrate 

a significant improvement in OEE—rising from an initial 

59.61% to 87.63%. This exceeds the company’s target of 85% 

and aligns with the benchmarks suggested in Six Sigma 

literature [2, 4]. Similar studies, such as by Mittal et al. [3], 

reported a 27% yield increase using DMAIC, which supports 

the effectiveness of structured problem-solving approaches in 

complex manufacturing environments. 

 

6.3 Impact of preventive maintenance and SOPs 

 

The data indicates that preventive maintenance schedules 

and standardized operating procedures contributed most 

significantly to reducing downtime and idle time. This echoes 

findings from Bhargava and Gaur [5] who emphasized setup 

standardization as a key driver of OEE gains. The success of 

these interventions highlights the value of aligning FMEA 

insights with actionable improvements. For example, molds 

with high RPN values were prioritized, and corrective actions 

such as mold tagging and technician training directly targeted 

the root causes identified. 

 

6.4 The role of contextual constraints 

 

Interestingly, the improvement occurred despite constraints 

such as outdated machinery and limited automation. This 

supports DMAIC’s flexibility and adaptability to low-resource 

environments—a point not deeply explored in prior literature. 

 

6.5 Unexpected outcomes 

 

One notable observation is the dramatic idle time reduction 

in December, which dropped to zero. While this is a positive 

outcome, the sudden nature of this change may reflect short-

term efforts or over-scheduling, raising questions about long-

term sustainability. Future studies should assess whether such 

gains are maintained. 

 

6.6 Linking DMAIC phases to performance gains 

 

Each DMAIC phase played a critical role: 

a. Define & Measure clarified which losses were most 

severe. 

b. Analyze—using Fishbone and 5-WHYs—prioritized man, 

method, and machine issues. 

c. Improve translated these into clear action. 

d. Control ensured routine monitoring and quick feedback 

loops. 

 

6.7 Broader implications 

 

These findings provide empirical evidence that structured 

continuous improvement strategies can transform operational 

performance even in environments with legacy systems. They 

also reinforce the importance of frontline involvement, as 

operator training and feedback loops were integral to success. 

 

 

7. CONCLUSION 

 

This study aims to address the issue of suboptimal 

performance in injection molding operations at PT. XYZ by 

applying the DMAIC methodology. The primary objective is 

to improve OEE by identifying and reducing the root causes 

of performance loss—especially those related to downtime, 

long setup times, and sampling inefficiencies. 

Through a structured application of DMAIC, supported by 

various tools such as SIPOC, FMEA, Fishbone Diagram, and 

5-WHYs, this study successfully identified the most critical 

failure modes affecting productivity. Targeted interventions, 

including the implementation of preventive maintenance, 

standardization of setup procedures, and enhanced operator 

training, resulted in a substantial increase in OEE to 87.63%, 

exceeding the company’s performance targets. 

These findings have significant practical implications for 

manufacturing companies operating in similar environments. 

This study demonstrates that a data-driven continuous 

improvement framework, when applied systematically and 

supported by cross-functional collaboration, can produce 

measurable performance improvements even in resource-

constrained situations. 

However, this study also encountered certain limitations. 

The scope of implementation was limited to a single plant and 

focused on three machines. Factors such as organizational 

culture, supplier variability, and human resource constraints 

were not explored in depth. These aspects may affect the 

scalability of the improvement strategy. 

For future research, it is recommended to: 

Expand the application of DMAIC across multiple facilities 

or product lines to test scalability and consistency, integrate 

advanced data analytics or IoT-based monitoring for real-time 

performance tracking, Investigate the long-term sustainability 

of various control measures through longitudinal studies, and 

explore the role of human factors, such as the effectiveness of 

training, motivation, and interdepartmental communication, in 

the success of operational improvements. 

In conclusion, this study contributes to academic 

understanding and industry practice by demonstrating how a 

structured methodology such as DMAIC can deliver practical 

improvements in manufacturing performance. It also provides 

a replicable framework for other organizations seeking to 

improve efficiency and quality in complex production 

environments. 
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