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Sliding mode controllers (SMC) are among the most durable and nonlinear regulators. 

Its methodical design process gives a simple answer for the control signal. The main 

disadvantage is that a traditional SMC suffers from chatter, which creates an unwanted 

zigzag stir over the sliding face. numerous approaches were developed and applied to 

palliate the downsides of this traditional methodology. The purpose of this paper is to 

reduce the settling time and magnitude of chatter as small as possible by designing 

several regulators; a classical sliding mode controller (CSMC) with a saturation 

function (SF), a CSMC with a barrier function (BF), an adaptive sliding mode controller 

(ASMC) with a saturation function, a conventional sliding mode fuzzy controller 

(CSMFC) with a saturation function and an adaptive sliding mode fuzzy controller 

(ASMFC) with a saturation function. The issues of the simulations can be attained using 

MATLAB 2018a/Simulink. The modeling shows that the results of ASMFC and 

CSMFC are better than the results of ASMC with achromatism function, and CSMC 

with achromatism function and with barricade function because the magnitude of 

chatter in the control action has been important reduced to roughly zero value and they 

take small settling time in comparison with others. 
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1. INTRODUCTION

Robotics breakthroughs have had a substantial impact on 

the productivity and effectiveness of robotization activities. 

Robots are used in diligence to do various duties, like cutting, 

welding, putting together, selecting, and placing [1]. Nonlinear 

factors are the most important considerations. Unmodeled 

uncertainty in mechanical systems can also make system 

control delicate. likewise, the selector may have uncertainty or 

faults, with blights naturally regarded as a kind of query. The 

enterprises above, videlicet nonlinearity, query, and 

disturbances, hamper the regulator design system. Because not 

all control systems can give stability, robust control styles are 

needed to limit the impacts of uncertainty and disturbances [2]. 

SMC is deemed the absolute most trustworthy nonlinear 

controller. The systematic design creates a simple arrangement 

for the control signals. Since the SMC's lack of care for 

parameter query (pu) and external disturbances (ed) until the 

late 1970s, it got estimable consideration from the control 

interrogate about the community [3]. The SMC plan is divided 

into two central forms: recognizing a sliding surface (ss.) and 

providing a spastic control run the show, this causes the 

system's state way to arrive at the ss. at a particular moment 

and stay there from then on. Due to the nonlinear inflow and 

coupling associations, exact and vigorous control is 

worrisome. As a result, erecting a regulator using normal 

control strategies grounded on the inflow of the mechanical 

frame may be an errand, particularly when exercising the 

normal control setup [4]. As a result, it's critical to make a 

regulator with high performance, adaptability, stability, and a 

simpler approach for resolving the problem in the presence of 

external disturbances and parameter changes [5]. SMC is the 

most effective robust control technology for mollifying goods. 

It's an important fine fashion that yields a nonlinear robust 

regulator with respectable performance [6]. In fact, in SMC, 

the SF sat (s, φ) function can be used rather than the signum 

function sign (s) to drop the chatter. To reduce chatter, a BF 

function is used rather than the sign (s) or SF. The BF can 

guarantee that the affair variable converges to a near-zero 

value [7]. numerous approaches are proposed, and in this 

work, ASMFC, SMFC, ASMC, and in addition to CSMC are 

designed to tune the regulators' gain and exclude the chatter 

problem. These regulators can render the system 

asymptotically stable by driving the line to a point near zero. 

likewise, ASMC and ASMFC could reduce the size of chatter 

as well as the control trouble without the demand to establish 

the system's upper set originally [8]. To achieve a stable 

system with minimum chatter while taking a short settling 

time, an SMFC approach with an achromatism function was 

presented to pretend an SMC's nonlinear input/ affair chart 

using a fuzzy conclusion approach applied to a language rule 

base [9]. In this study, a CSMC with SF and BF, as well as an 

ASMC with SF and BF, were developed and evaluated using 

a 2-link robot. To reduce the chatter in CSMC and ASMC, an 

achromatism function is used rather than a signum function in 

the spastic control section. Where, to exclude the drooling 
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miracle in CSMC a BF is used rather than a spastic control 

part. Also, CSMFC and ASMFC can exclude the drooling 

miracle with a lower settling time in comparison with CSMC 

with BF. Also, using ultramodern styles, SMFC with 

achromatism function and ASMFC with achromatism function 

have been designed to exclude the chatter problem and reduce 

settling time. What comes next is how this work is organized. 

The second segment describes a detailed model of a two-link 

robot manipulator. The third segment focuses on the 

construction of multiple controllers with two separate types of 

functions. The fourth segments show the outcomes of the 

controller adjustment. The fifth segment ends with some 

findings. 
 

 

2. MATHEMATICAL MODEL OF 2-LINK ROBOT 

MANIPULATOR 

 

A robotic rigger can carry out a variety of tasks in a variety 

of domains. Robotic systems can be used in dangerous 

environments for security and in industrial settings to 

construct machines and automation [10, 11]. Figure 1 depicts 

the 2-link robot in more detail. 

 

 
 

Figure 1. 2-link robot arm 

 

Lagrange dynamics [12] can be used to obtain the 

manipulator's dynamics. Refer to Appendix A for manipulator 

dynamics, which are described in standard form [11]: 

 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇) + 𝐺(𝜃) = 𝜏 (1) 

 

where, 𝜃, 𝜃,̇  𝜃̈  indicate joint angular position, velocity, and 

acceleration vectors have dimension 2×1; τ represents a torque 

vector with dimensions of 2×1; M(θ) indicates a 2×2 inertia 

matrix; 𝐶(𝜃, 𝜃̇) the diagram depicts Carioles central force (Ca.) 

forces in a 2×2 grid; G(θ) It is a 2×1 indicates a gravitational 

vector. 
The variables in Eq. (1) are clarified as follows: 

 

𝑀(𝜃) = [
𝑀11 𝑀12

𝑀21 𝑀22
] 

 

where,  

𝑀11 = (𝑚1 +𝑚2)𝑙1
2 +𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2 cos(𝜃2);  
𝑀12 = 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2cos⁡(𝜃2);  
𝑀12 = 𝑀21; 

𝑀22 = 𝑚2𝑙2
2. 

C indicates the Ca. and centrifugal matrix which is given by: 

𝐶 = [
𝐶1
𝐶2
],  

𝐶1 = 𝑚2𝑙1𝑙2sin⁡(𝜃2)𝜃̇2
2 − 2𝑚2𝑙1𝑙2sin⁡(𝜃2) 𝜃̇1𝜃̇2;  

𝐶2=𝑚2𝑙1𝑙2sin⁡(𝜃2) 𝜃̇2
2. 

G represents the gravitational vector and represented by:  

𝐺 = [
𝐺1
𝐺2
];  

𝐺1= 𝑚2𝑙2𝑐𝑜𝑠⁡(𝜃1 + 𝜃2) +(𝑚1 +𝑚2)𝑙1𝑔𝑐𝑜𝑠⁡(𝜃1);  
𝐺2 = 𝑚2𝑙2𝑐𝑜𝑠⁡(𝜃1 + 𝜃2); 

𝜏=[
𝜏1
𝜏2
]. 

As stated in this research, an additional claim about the 

current status is: 

 

𝜃1=𝑥1+𝜃1𝑑; ⁡𝜃2=𝑥2+𝜃2𝑑 (2) 

 

where, θ1d and θ2d are the desirable angles for joint-1 and joint-

2, respectively. 

The Robot’s Model can be rewritten as follows: 

 

𝑥̇1 = 𝑥2 

𝑥̇2=−𝑀(𝜃)−1(𝐶(𝜃, 𝜃̇) + 𝐺(𝜃) + 𝜏+𝛿(𝑥,𝑢)) 
(3) 

 

Eq. (3) could be updated in the following format: 
 

𝑥̇1 = 𝑥2 

𝑥̇2=𝐹+𝑢+𝛿 
(4) 

 

The characters in Eq. (4) refer to the next equations: 

 

𝑥1 = [
𝑥1
𝑥2
], 𝑥2 = [

𝑥3
𝑥4
] (5) 

 

𝐹 = [
𝐹1
𝐹2
] = −𝑀(𝜃)−1(𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃)) (6) 

 

u=[
𝑢1
𝑢2
]=−𝑀(𝜃)−1𝜏 (7) 

 

𝛿=[
δ1
δ2
]=Δ𝐹+𝐹𝑐+𝐷(𝑡) (8) 

 

where, ΔF=10% F, is pu for variables F. 

In both joints, the friction coefficient of Coulomb (cf) is 

Fc=[
𝐹𝑐1
𝐹𝑐2
] and 𝐷(𝑡)= [

𝑑1(𝑡)
𝑑2(𝑡)

]indicates the ed. 

The system's behavior can be represented as: 

 

𝑥̇1 = 𝑥3 

𝑥̇2 = 𝑥4 

𝑥̇3=𝐹1+𝑢1+δ1 

𝑥̇4=𝐹2+𝑢2+δ2 

(9) 

 

The terms δ1 and δ2 denote joint 1 and 2 disturbances, 

respectively. Two minor problems occur with the CSMC's 

chatter and gain parameters for attitude control. As a result, 

while replacing the SF is an effective noise resolution 

technique, ASMC has been recognized as a great approach to 

reduce the gain component for optimal control. In a 

comparable manner, BF-based ASMC applies to both of the 

aforementioned entities. This study uses two definitions of BF 

[7, 13]. 

 

2.1 Barrier function  

 

Definition [7]: The BF is a nonstop function f: x∈ [−ε, 

ε]→lb(x)∈[b, ∞] that almost rises at (0, ε).  

·lim |x|→εlb(x)=+∞. 
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·lb(x) has an initial value of 0, and lb(0)=b≥0. 

There are two classifications of BF. 

1-Positive-definite BF (PBF): 

 

𝑙𝑝𝑏(𝑥)=
𝜀⁡𝐹

𝜀−|x|
, i.e., 𝑙𝑝𝑏(0)=F>0 (10) 

 

2-PositiveSemi-definite BF (PSBF): 

 

𝑙𝑝𝑠𝑏(𝑥)=
|x|

𝜀−|x|
, i.e.,⁡𝑙𝑝𝑠𝑏(0)=0 (11) 

 

The defined function in Eq. (10) and Eq. (11) gives adaptive 

and classical gains based on PBF and PSBF. Thus, when 𝜀→0, 

𝐾→0. Still, if the state is close to the origin. If 
|x|

𝜀
<1, then 𝐾≈

|x|

𝜀
, 

indicating that state x is converging to zero [13]. The PBF lpsb(x) 

chosen and will be utilized in this study to outcome the 2-link 

robot. 

 

 

3. THE DESIGNING OF THE SLIDING MODE 

CONTROLLER 

 

The SMC is an ideal controller designed to provide 

reliability in the face of an examination, but it is vulnerable to 

fluctuations of limit ability and amplitude known as the chatter 

issue, which is a renowned topic in SMC. Several techniques 

for avoiding chatter are offered, including ASMC and the 

boundary subcaste system [11]. The concept of SMC began in 

nineteenth-century structure and equilibrium studies before 

emerging as an engineering topic in the late 1950s [14]. 

 

3.1 The designing of CSMC 

 

Figure 2 displays the CSMC's two phases: the reaching 

phase (RP) and the sliding phase (SP). Control procedures can 

be separated into two types: nominally control (NC) and 

discontinuity control (DC). The DC informs the system's state 

line to follow the ss. till it arrives the beginning, whereas the 

SMC's NC directs the state line from the starting point to the 

ss.'s direction [15-17]. 

 

 
 

Figure 2. RP and SP of CSMC 

 

The sliding surface can be written as [11, 14, 15]: 

 

𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠) (12) 

 

𝑠 = 𝜆𝑒 + 𝑒̇ = 0 (13) 

 

here, lambda (λ) is the slope and it is>0. 

Let us assume that x1 is e and x2 is⁡𝑒̇, ss. re-written as: 

 

𝑠 = 𝜆𝑥1 + 𝑥2 = 0 (14) 

 

where, λ=1, the ss. is: 

 

𝑠 = 𝑥1 + 𝑥2=0 (15) 

 

The control law as follows: 

 

𝑢 = 𝑢𝑛 + 𝑢𝑑𝑖𝑠 (16) 

 

where, un is the NC, and the udis DC [12, 13].  

The DC is defined as below: 

 

𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑎𝑡(𝑠) (17) 

 

where, k(x) is a discontinuity gain that integrates all pu, ed, 

and cf, and sat(s) is an SF, as specified in Eq. (18): 

 

𝑠𝑎𝑡(𝑠, 𝜑) = {
𝑠𝑖𝑔𝑛(𝑠) 𝑖𝑓|𝑠| > 𝜑

𝑠

𝜑
𝑖𝑓|𝑠| ≤ 𝜑

 (18) 

 

where, phi (φ) is the width of SF as seen in Figure 3. 

 

 
 

Figure 3. The sat(s) function [18] 

 

where, 

 

𝑠𝑖𝑔𝑛(𝑠) = {
1 if⁡𝑠 > 0
−1 if⁡𝑠 < 0

∈ [−1.1] if⁡𝑠 = 0
 (19) 

 

 
 

Figure 4. The sign(s) function [18] 

 

Eq. (19) is also shown in Figure 4. As a consequence, the 

formula for the control action appears under [19]: 
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𝑢 = 𝑢𝑛 − 𝑘(𝑥). 𝑠𝑎𝑡(𝑠, 𝜑) (20) 

 

And replace DC in Eq. (15) with BF then: 

 

𝑢 = 𝑢𝑛 −
𝑠

|𝜂 − |𝑠||
 (21) 

 

The ss. can be stated as follows: 

 

𝑠1 = 𝜆𝑥1 + 𝑥3 (22) 

 

𝑠2 = 𝜆𝑥2 + 𝑥4 (23) 

 

where, x1 and x2 indicate errors of links 1 and 2, and x3 and x4 

indicate the derivative of error of links 1 and 2, respectively. 

Let λ=1, then, Eq. (22) and Eq. (23) are recast in a new 

manner: 

 

𝑠1 = 𝑥1 + 𝑥3 (24) 

 

𝑠2 = 𝑥2 + 𝑥4 (25) 

 

The gain 𝑘(𝑥) the value is determined by extrapolating a 

particular situation: 

 

𝑠̇<0 (26) 

 

where, 𝑠=[
𝑠1
𝑠2
]. 

By including Eq. (15) in Eq. (26): 

 

𝑥1 + 𝑥2< 0 

 

Using Eq. (4) and Eq. (8): 

 

𝑘(𝑥)>|𝛿| 

 

𝑘(𝑥)=𝑘𝑜 (Δ𝐹+𝐷)  (27) 

 

where, ko>0. 

 

𝑘(𝑥)=[
𝑘1(𝑥)
𝑘2(𝑥)

] (28) 

 

where, 𝑘1(𝑥) is the control action gain for link one, while k2(x) 

is the control action gain for link two. If the gain values of each 

link are discovered and entered into Eq. (16), torques can be 

calculated as follows: 

 

𝜏1=𝑀11 𝑢1+𝑀12 𝑢2 (29) 

 

𝜏2=𝑀21𝑢1+𝑀22 𝑢2 (30) 

 

3.2 Design of fuzzy logic controller (FLC) 

 

FLC eliminates the need for sophisticated mathematical 

models, resulting in considerably simpler and more robust 

control principles [18]. 

FLC directly handles input and output variable inaccuracy 

by describing them in terms of language using fuzzy integer 

numbers and fuzzy sets [19, 20]. 

Within systems, FLCs are implemented to infuse the 

controller with intelligence, integrating human decision-

making and expertise into the operational processes. The 

representation of relationships between input and output 

involves the utilization of sets of linguistic rules or relational 

expressions. In recent decades, researchers have shown 

considerable interest in FLC, employing it as a distinctive or 

competitive control strategy across diverse plant applications 

[21-23]. 

 

3.3 Membership function (MF) 

 

MF fuzzy class functions serve an important role in 

identifying how many items are part of a fuzzy set within 

colored variables. These functions describe the degree to 

which an element resembles a given fuzzy set. Class functions 

display colorful shapes such as triangular, etc., as described in 

references [24, 25]. The triangular class functions employed in 

this paper is highlighted by their elegant simplicity. Three 

parameters, a, b, and c, are used to characterize the class 

function μA(x) for each value x (see Figure 5). The values of 

these factors are derived from professional knowledge [26]. 

The c membership function μA(x) has been represented by: 

 

𝜇𝐴(𝑥) =

{
 
 

 
 

0 ⁡⁡⁡if ⁡𝑥 ≤ 𝑎⁡⁡⁡
𝑥 − 𝑎

𝑏 − 𝑎
if 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
if 𝑏 ≤ 𝑥 ≤ 𝑐

0 if 𝑥 ≥ 𝑐 }
 
 

 
 

 (31) 

 

 
 

Figure 5. The Gaussian membership function membership 

function [26] 

 

3.4 Structure of FLC 

 

The structure of the fuzzy controller, illustrated in Figure 6, 

consists of essential components, namely fuzzification, 

inference mechanism, rule basis, and defuzzification.  

 

 
 

Figure 6. The anatomy of the fuzzy controller [22, 24, 27] 

 

3.4.1 The fuzzification  

During this stage, input data is converted into verbal 

variables, whose values are decided by the input class 

functions.  

This metamorphosis allows for the effective activation and 

perpetration of rules in the conclusion process. 
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3.4.2 The rule-base  

An approach to decision-making that emulates mortal 

cognitive processes and includes a definition of fuzzy class 

functions for each control variable. This system also outlines 

the criteria for expressing control objects through verbal 

variables.  

 

3.4.3 The inference mechanism (Inference engine) 

The Inference Mechanism method generates fuzzy 

conclusions by applying the fuzzy rules in the rule base. The 

conclusion medium consists of two abecedarian tasks: (1) 

determining the amount to which each rule is appropriate for 

the current situation defined by inputs ui, where i=1, 2, and n; 

this assignment is commonly referred to as "identifying," and 

(2) getting a decision based on the current ui inputs and the 

knowledge embedded in the rule base; this task is referred to 

as "conclusion step."  
 

3.4.4 The defuzzification  

The verbal variables that are presumed are converted into 

numerical values. Defuzzification accepts as input the class 

(confidence) of inferred fuzzy sets derived from premise rules 

and returns a crisp integer. The three main defuzzification 

procedures used for estimating fuzzy sets are the Center of 

Gravity (COG), etc., (22, 24, 27). There are two types of fuzzy 

conclusion systems, the first of which is commonly used: 

Mamdani's fuzzy conclusion system. The Takagi-Sugeno-

Kang (T.S.K) fashion is an alternative. This system is also 

called the T.S.K system. The issue of fuzzy rules is the primary 

difference between the two systems. As a rule repercussions, 

T.S.K fuzzy systems make use of straight functions of input 

variables, whereas Mamdani fuzzy systems employ fuzzy sets 

[28]. 
 

3.5 Design of sliding mode fuzzy controller (SMFC) 

 

SMC has an unwanted noise behavior called chatter. As a 

result, the current study focuses on merging fuzzy 

understanding with conventional sliding mode controllers to 

create an innovative design known as the CSMFC, which has 

superior performance (short settling time, rapid reaction, and 

no oscillation). Our major goal is to create an effective control 

rule for the system’s activities that follows the reference 

circles depicted in Table 1. 

The CSMFC's organization is divided into two segments, as 

detailed below: 

1: The CSMC: This component takes error (e) as an input 

and outputs us [20]. 

2: The fuzzy controller: This component only has one input 

(s) and one output (ufuzzy). The input (s) is derived from the 

output of the sliding mode controller [20]. The fuzzy 

controller's membership functions are depicted in Figure 5 

below: 
 

Table 1. Table of fuzzy rules for Figure 7 and Figure 8 in 

CSMFC and ASMFC systems [20] 
 

S nb ns z ps pb 

Uf pb ps ze ns nb 

 

where, nb, ns, z, ps, and pb are antecedent fuzzy set linguistic 

concepts as presented in Figures 7 and 8. They stand for 

negative big, negative small, zero, positive small, and positive 

big, in that order. As demonstrated below, a generic form may 

be used to define the fuzzy rules [20]: 

If⁡𝑆⁡is⁡𝐴𝑖 , then⁡𝑈𝑓 ⁡is⁡𝐵𝑖 , 𝑖 = 1, … . ,5 (32) 

 

where, Ai represents the fuzzy triangle-shaped integer and Bi 

represents the fuzzy square-shaped number singleton [20]. 

 

 
 

Figure 7. The input membership [20] 

 

 
 

Figure 8. The output membership function [20] 

 

 
 

Figure 9. The membership function of the fuzzy controller 

[20] 

 

From Figure 6 and Figure 9, it can be concluded that for the 

SMFC: 

 

𝑢 = 𝑢̃ − 𝑘𝑓 . 𝑠𝑖𝑔(
𝑠

𝜑
) (33) 

 

𝑠𝑖𝑔(𝑎) = {
+1 if 𝑎 ≥ 1
𝑎 if −1 < 𝑎 < 1
−1 if 𝑎 ≤ −1

 (34) 

 

The control signals for the SMFC (Eq. (33)) and the ASMC 

(Eq. (20)) are similar. The membership function for the input 

and output of the fuzzy controller component of the SMFC 

design can be established via the modified SMC. To replace 

the fuzzy output center 𝑢̃  and gain kf in Eq. (33) for the 

CSMFC, use un and k from Eq. (20) for the modified SMC. As 

a result, the fuzzy controller component of the SMFC may be 

guaranteed to be completely stable and lasting. As a result, the 

SMFC's whole controller will be described as [20]: 

 

𝑢𝑡𝑜𝑡𝑎𝑙 = 𝑢𝑠𝑙𝑖𝑑𝑖𝑛𝑔 + 𝑢𝑓𝑢𝑧𝑧𝑦 (35) 

 

where, usliding is defined in Eq. (20). So, Eq. (35) can be re-

written as: 

 

𝑢𝑡𝑜𝑡𝑎𝑙=𝑢𝑛+k.sat(s/φ)+𝑢𝑓𝑢𝑧𝑧𝑦 (36) 
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3.6 The designing of ASMC 

 

The ASMC's architecture is as follows: 

 

𝑢(𝑠. 𝑡) = −𝑘(𝑡)⁡𝑠𝑖𝑔𝑛(𝑥. 𝑡) (37) 

 

where, k(t) represents the gain that varies with time, and it may 

be expressed as in reference [7]. 

As previously stated, the BF in Eq. (37) has been replaced 

with the SF to reduce chatter. 

 

𝑘̇(𝑡) = {
𝜌. |𝑠(𝑥. 𝑡)|. 𝑠𝑖𝑔𝑛(|𝑠(𝑥. 𝑡)|) − 𝜖), if⁡𝑘 > μ

𝜇, if⁡𝑘 ≤ 𝜇
}  (38) 

 

where, ρ>0, k(t) increases or decreases, μ and ϵ are positive 

constants to be selected. The guidelines (Eq. (38)) state that 

the amount of unpredictability (the higher and smaller bounds) 

is not included in the calculation of the minimally acceptable 

gain (adaptive gain), even though the uncertainty had to be 

computed in CSMC, as indicated in Eqs. (26)-(28). 

 

3.7 The designing of ASMFC 

 

This section presents an organized approach to building a 

stable ASMFC, in addition, the control rule and measuring 

adaption techniques guarantee that tracked error is exactly 

confined to any minor amount of the points around the origin. 

Also, every signal in the closed-loop system has been proven 

to be limited [19].  
The ASMFC's whole controller will be detailed as follows: 

Combine Eq. (35) and Eq. (36) with replacing sign function 

with SF. 

 

𝑢𝑡𝑜𝑡𝑎𝑙 = 𝑢𝑒𝑞+𝑘(𝑡).sat(s/ φ) +𝑢𝑓𝑢𝑧𝑧𝑦 (39) 

 

 

4. THE SIMULATION RESULTS 

 

In this work, CSMC and ASMC were designed depending 

on using a SF and a BF, also, SMFC and ASMFC were 

developed based on the use of a SF manipulator despite the 

effects of uncertainty, Coulomb friction, and disturbance on 

each link. These four methods were simulated with the 

Matlab2018a/Simulink program to show the activity of the 

proposed methods. The system variables are listed in Table 2. 

where, the initial conditions are 𝑥1(0) =
𝜋

8
(𝑟𝑎𝑑. ), 𝑥2(0) =

𝜋

16
(𝑟𝑎𝑑. ), x3(0)=0 (rad./sec.), and x4(0)=0 (rad./sec.). 

 

Table 2. The parameters of 2-link robot 

 
Parameter Description Value (unit) 

l1 The length of link 1 0.7 (m) 

l2 The length of link 2 0.3 (m) 

m1 The mass of link 1 0.2 (kg) 

m2 The mass of link 2 0.1 (kg) 

θ1 desired Theta desirable of link 1 
𝜋

3
(𝑟𝑎𝑑. ) 

θ2 desired Theta desirable of link 2 
𝜋

2
(𝑟𝑎𝑑. ) 

d1 Disturbance of link 1 0.1 (N.m.) 

d2 Disturbance of link 2 0.1 (N.m.) 

Fc1 Coulomb frictions of link 1 0.031 (N.m.) 

Fc1 Coulomb frictions of link 2 0.052 (N.m.) 

φ Width of boundary layer 0.9 

ε Eta for BF 0.09 

The values of the ASMC control law coefficients in Eq. (37) 

are given below: ρ1=20, ρ2=19, ϵ1=ϵ2=0.002, μ1=30, μ2=29, 

k1(0)=20, k2(0)=19. 

Figures 10 and 11 demonstrate the development of various 

states from their beginning positions: 𝑥1(0) =
𝜋

8
, 𝑥2(0) =

𝜋

16
, 

x3(0)=0 and x4(0)=0 for joints 1 and 2, till equilibrium is 

achieved. As a result, the system is expected to be 

asymptotically stable owing to the combination of too-close 

neighbors to zero (the intended location), as shown in Figures 

12 and 13. This indicates that the error and its derivative are 

zero or close to zero, resulting in the two-link robot's accurate 

following movement, as illustrated in Figures 14-17. 
 

 
 

Figure 10. The trajectory of joint-1 for different controllers 
 

 
 

Figure 11. The trajectory of joint-2 for different controllers 
 

 
 

Figure 12. The performance of tracking between θ1 and θd1 

for different controllers 
 

 
 

Figure 13. The performance of tracking between θ1 and θd2 

for different controllers 
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Figure 14. The x1 (rad.) for different controllers 

 

 
 

Figure 15. The x2 (rad.) for different controllers 

 

 
 

Figure 16. The x3 (rad./sec.) for different controllers 

 

 
 

Figure 17. The x4 (rad./sec.) for different controllers 

 

 
 

Figure 18. The k(t) and k(x) of joint-1 for different 

controllers 

 
 

Figure 19. The k(t) and k(x) of joint-2 for different 

controllers 

 

 
 

Figure 20. The τ1 (N.m.) for different controllers 

 

 
 

Figure 21. The τ2 (N.m.) for different controllers 
 

Figure 18 and Figure 19 demonstrate the gain controller of 

each joint for CSMC with SF and with BF, ASMC with SF, 

CSMFC with SF, and ASMFC with SF, respectively. CSMC 

with SF and with BF provides a high level, resulting in 

maximum effort torque action and chatter is reduced to near 

zero when using CSMC with a BF, despite CSMC suffering 

from chatter even when using boundary layer SF, as shown in 

Figure 20 and Figure 21. In ASMC with SF it delivers a low 

level, resulting in a minimal effort torque action and it suffers 

from chatter, as shown in Figure 20 and Figure 21. Where the 

chatter decreased approximately to zero in applying ASMFC 

and CSMFC with SF as shown in Figure 20 and Figure 21. 

Table 3 listed the settling time, the magnitude of chatter, and 

steady-state gain for joint-1 and joint-2 while applying the 

CSMC with SF and with BF, ASMC with SF, CSMFC with 

SF, and ASMFC with SF, respectively and it was discovered 

that the chatter was reduced to a lower acceptable level when 

using the CSMC with the BF and the ASMC was utilized with 

the SF the chatter dropped to a more bearable level, and the 

settling time was shortened. When using the ASMFC and 

CSMFC with SF, the noise lowered to a more manageable 

level, and the settling time was less when using the CSMFC 

with SF. 
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Table 3. The simulation results 

 

Content 

CSMC 

with 

BF 

CSMC 

with SF 

ASMC 

with SF 

CSMFC 

with SF 

ASMFC 

with SF 

ST 

(sec.) 
4.3 4 4 3.7 3.9 

MOC 

B-B 

(N. m) 

≈ 0 0.00019 0.00013 =0 =0 

SSOG 

J-1 
63.79 63.79 30.02 63.78 30.21 

SSOG 

J-2 
91.49 91.49 29.15 91.47 29.06 

RT 

(sec.) 
1.5 1.5 0.5 1.5 0.5 

 

Where ST represents settling time, MOC B-B represents the 

magnitude of chatter beak to beak, SSOG J-1 represents the 

steady state of gain for joint-1 and SSOG J-2 1 represents the 

steady state of gain for joint-2, RT represents rise time 

respectively.  

 

 

5. CONCLUSIONS 

 

Despite nonlinearity in the actuator, uncertainty in 

parameters, friction, and external disturbance, the fuzzy 

controller with SF approach is utilized to develop a robust 

sliding mode controller for a 2-link robot. CSMFC and 

ASMFC with SF are used to increase CSMC and ASMC 

performance by lowering the controller gain to a lower 

accessible level, resulting in a lower control input, as shown in 

Figures 16 and 17. Unlike CSMFC, which needs 

an understanding of the limits of unpredictability, ASMC does 

not, and in situations when the limit of unpredictability is 

unknown, the motion of the 2-link robot influences the 

computations of adaptive gain, causing it to follow the correct 

trajectory. The simulation results demonstrated the efficacy of 

our suggested strategy for reducing chatter, while as a result, 

asymptotic stability was attained as seen in Figure 10 and 

Figure 11. On the other hand, CSMFC with SF gives a lower 

settling time followed by ASMFC with SF which gives a small 

settling time as the worst one is CSMC with BF as shown in 

Figure 12, Figure 13, and Table 3. As seen in Figure 12, Figure 

13 and Table 3, firstly, ASMFC with SF guarantees zero 

magnitudes of chatter in comparison with CSMC and ASMC 

with SF which has a small magnitude of chatter. Secondly, 

CSMFC with SF has a zero magnitude of chatter. Finally, 

CSMC with BF also has a zero magnitude of chatter. On the 

other hand, CSMFC with SF has more stability and lower 

settling time. The efficiency of the proposed CSMFC and 

ASMFC were proved and confirmed using simulation results 

for different model parameters with low uncertainty in model 

parameters and with the presence of nonlinearity, frictions, 

and disturbances. The CSMFC reduces chattering and the 

effects of nonlinearities regardless of the presence of 

uncertainty, disturbance, and friction in the suggested systems. 

This is the main feature of the CSMFC, as established in 

Chapter Four. Also, it is demonstrated in simulation results, a 

comparison between CSMFC and CSMC as well as a 

comparison between ASMFC and ASMC.  
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APPENDIX A 

 

The derivation of the Lagrange equation for 2-LRRM 

 

The expressions describing the x- position and y-position of 

link 1 are provided by [23]: 

 

𝑥1 = 𝑙1⁡cos⁡(𝜃1) (A1) 

 

𝑦1 = 𝑙1⁡sin⁡(𝜃1) (A2) 

 

Likewise, the equations representing the x-position and y-

position of link 2 are provided by: 

 

𝑥2 = 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) (A3) 

 

𝑦2 = 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2) (A4) 

 

The differentiation of the x and y positions for link-1 and 

link-2 is expressed by the following equations: 

 

𝑥1̇ = −𝑙1⁡𝜃1̇sin⁡(𝜃1) (A5) 

 

𝑦1̇ = 𝑙1⁡𝜃1̇cos(𝜃1) (A6) 

 

𝑥2̇ = −𝑙1 𝜃1̇sin(𝜃1) − 𝑙2 sin(𝜃1 + 𝜃2)⁡ (A7) 

 

𝑦2̇ = 𝑙1 𝜃1̇cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) (𝜃1̇ + 𝜃2̇) (A8) 

 

The kinetic energy is defined as: 

 

𝐾𝐸 =
1

2
⁡𝑚1𝑣1

2 +
1

2
⁡𝑚2𝑣2

2 (A9) 

 

where, v1 and v2 are the velocities for 𝑚1 and 𝑚2 respectively 

and can be calculated as: 

 

𝑣1 = √𝑥1̇
2 + 𝑦1̇

2,𝑣2 = √𝑥2̇
2 + 𝑦2̇

2 (A10) 

 

So the kinetic energy will be 

 

𝐾𝐸 =
1

2
⁡𝑚1(𝑥1̇

2
+ 𝑦1̇

2) +
1

2
⁡𝑚2(𝑥2̇

2 + 𝑦2̇
2) (A11) 

 

𝐾𝐸 =
1

2
⁡𝑚1((−𝑙1𝜃1̇ sin(𝜃1))

2+(𝑙1⁡𝜃1̇cos(𝜃1))
2) 

+⁡
1

2
⁡𝑚2⁡((−𝑙1 𝜃1̇sin(𝜃1) −⁡ 𝑙2 sin(𝜃1 + 𝜃2) (𝜃1̇ +

𝜃2̇)⁡)
2 + (𝑙1 𝜃1̇cos(𝜃1) +⁡ 𝑙2 cos(𝜃1 + 𝜃2) (𝜃1̇ + 𝜃2̇))

2) 

(A12) 

 

𝐾𝐸 =
1

2
⁡𝑚1⁡𝑙1

2𝜃1̇
2
𝑠𝑖𝑛2(𝜃1) +

1

2
⁡𝑚1⁡𝑙1

2𝜃1̇
2
𝑐𝑜𝑠2(𝜃1) 

+
1

2
⁡𝑚2⁡𝑙1

2𝜃1̇
2
𝑠𝑖𝑛2(𝜃1) 

+⁡𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇ sin(𝜃1) sin(𝜃1 + 𝜃2)(𝜃1̇ + 𝜃2̇) 

+
1

2
⁡𝑚2⁡𝑙2

2𝑠𝑖𝑛2(𝜃1 + 𝜃2)(𝜃1̇ + 𝜃2̇)
2
+

1

2
⁡𝑚2⁡𝑙1

2𝜃1̇
2
𝑐𝑜𝑠2(𝜃1) + 𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇ cos(𝜃1) cos(𝜃1 +

𝜃2)(𝜃1̇ + 𝜃2̇) +
1

2
⁡𝑚2⁡𝑙2

2𝑐𝑜𝑠2(𝜃1 + 𝜃2)(𝜃1̇ + 𝜃2̇)
2 

(A13) 
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𝐾𝐸 =
1

2
⁡(𝑚1⁡ +𝑚2⁡)𝑙1

2𝜃1̇
2
+

𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇(sin(𝜃1) sin(𝜃1 + 𝜃2) +
cos(𝜃1) cos(𝜃1 +

𝜃2)) +𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇𝜃2̇(sin(𝜃1) sin(𝜃1 +

𝜃2) cos(𝜃1) cos(𝜃1 + 𝜃2) +
1

2
⁡𝑚2⁡𝑙2

2𝜃1̇
2
(𝑠𝑖𝑛2(𝜃1 +

𝜃2) + 𝑐𝑜𝑠
2(𝜃1 + 𝜃2)) + 𝑚2⁡𝑙2

2𝜃1̇
2
𝜃2̇

2
(𝑠𝑖𝑛2(𝜃1 +

𝜃2) + 𝑐𝑜𝑠
2(𝜃1 + 𝜃2)) +

1

2
⁡𝑚2⁡𝑙2

2𝜃2̇
2
(𝑠𝑖𝑛2(𝜃1 +

𝜃2) + 𝑐𝑜𝑠
2(𝜃1 + 𝜃2))  

(A14) 

 

𝐾𝐸 = (
1

2
⁡(𝑚1⁡ +𝑚2⁡)𝑙1

2 +

𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +
1

2
⁡𝑚2⁡𝑙2

2)𝜃1̇
2
+

(𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +
1

2
⁡𝑚2⁡𝑙2

2) 𝜃1̇
2
𝜃2̇

2
+

1

2
𝑚2⁡𝑙2

2𝜃2̇
2
 

(A15) 

 

And the potential energy can be written as: 

 

𝑃𝐸 =∑ 𝑚𝑖 ⁡𝑔ℎ𝑖
2

𝑖=1
(𝜃) (A16) 

 

𝑃𝐸 = 𝑚1⁡𝑔𝑙1 sin(𝜃1) + 𝑚2⁡𝑔(𝑙1 sin(𝜃1) +
𝑙2 sin(𝜃1 + 𝜃2)) 

(A17) 

 

𝑃𝐸 = (𝑚1 +𝑚2)⁡𝑔𝑙1 sin(𝜃1) 
+𝑚2⁡𝑔𝑙2 sin(𝜃1 + 𝜃2)  

(A18) 

 

Following the principles of Lagrange Dynamics, we 

construct the Lagrangian, defined as: 

 

𝐿 = 𝐾𝐸 − 𝑃𝐸 (A19) 

 

𝐿 = (
1

2
⁡(𝑚1 +𝑚2)𝑙1

2 + 

𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +
1

2
⁡𝑚2⁡𝑙2

2) 𝜃1̇
2
+

(𝑚2𝑙1𝑙2⁡ cos(𝜃2) +
1

2
⁡𝑚2⁡𝑙2

2) 𝜃1̇
2
𝜃2̇

2
+

1

2
𝑚2𝑙2

2 𝜃2̇
2
 

−(𝑚1 +𝑚2)⁡𝑔𝑙1 sin(𝜃1) − 𝑚2⁡𝑔𝑙2 sin(𝜃1 + 𝜃2) 

(A20) 

 

The Euler Lagrange Equation is given by:  

 

𝑑

𝑑𝑡
[
𝜕𝑙

𝜕𝜃𝑖̇
] −

𝜕𝐿

𝜕𝜃𝑖
= 𝐹𝜃𝑖 (A21) 

 

where, 𝐹𝜃𝑖 is the torque applied to the i’th link. 

 
𝜕𝐿

𝜕𝜃1̇
= ((𝑚1⁡ +𝑚2⁡)𝑙1

2 +

2𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2
2)𝜃1̇+ 

(𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2
2)𝜃2̇ 

(A22) 

𝑑

𝑑𝑡
(
𝜕𝑙

𝜕𝜃1̇
) = ((𝑚1⁡ +𝑚2⁡)𝑙1

2 +

2𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2
2)𝜃1̈ −

2𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇𝜃2̇ sin(𝜃2) +
(𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2

2)𝜃2̈ −

𝑚2⁡𝑙1⁡𝑙2⁡𝜃2̇
2
sin(𝜃2)  

(A23) 

 
𝜕𝐿

𝜕𝜃1
= −(𝑚1 +𝑚2)⁡𝑔𝑙1 cos(𝜃1) −

𝑚2⁡𝑔𝑙2 cos(𝜃1 + 𝜃2)  
(A24) 

 

𝑑

𝑑𝑡
(
𝜕𝑙

𝜕𝜃1̇
) −

𝜕𝐿

𝜕𝜃1
= 𝜏1 (A25) 

 

((𝑚1⁡ +𝑚2⁡)𝑙1
2 + 2𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2

2)𝜃1̈ −

2𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇𝜃2̇ sin(𝜃2) +
(𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2

2)𝜃2̈ −

𝑚2⁡𝑙1⁡𝑙2⁡𝜃2̇
2
sin(𝜃2) +(𝑚1 +𝑚2)⁡𝑔𝑙1 cos(𝜃1) +
𝑚2⁡𝑔𝑙2 cos(𝜃1 + 𝜃2) ⁡= 𝜏1  

(A26) 

 

 
𝜕𝐿

𝜕𝜃2̇
= (𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2

2)𝜃1̇ +𝑚2⁡𝑙2
2𝜃2̇ (A27) 

 
𝑑

𝑑𝑡
(
𝜕𝑙

𝜕𝜃2̇
) = (𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2

2)𝜃1̈ −

𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇𝜃2̇ sin(𝜃2) + 𝑚2⁡𝑙2
2𝜃2̈  

(A28) 

 
𝜕𝐿

𝜕𝜃2
= −𝑚2⁡𝑙1⁡𝑙2⁡ sin(𝜃2) 𝜃1̇

2
−

𝑚2⁡𝑙1⁡𝑙2⁡ sin(𝜃2)𝜃1̇𝜃2̇ −𝑚2⁡𝑔𝑙2 cos(𝜃1 + 𝜃2)  
(A29) 

 

𝑑

𝑑𝑡
(
𝜕𝑙

𝜕𝜃2̇
) −

𝜕𝐿

𝜕𝜃2
= 𝜏2 (A30) 

 

(𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2
2)𝜃1̈ −

𝑚2⁡𝑙1⁡𝑙2⁡𝜃1̇𝜃2̇ sin(𝜃2) +

𝑚2⁡𝑙2
2𝜃2̈+𝑚2⁡𝑙1⁡𝑙2⁡ sin(𝜃2) 𝜃1̇

2
+

𝑚2⁡𝑙1⁡𝑙2⁡ sin(𝜃2)𝜃1̇𝜃2̇ +𝑚2⁡𝑔𝑙2 cos(𝜃1 + 𝜃2)  

(A31) 

 

(𝑚2⁡𝑙1⁡𝑙2⁡ cos(𝜃2) +𝑚2⁡𝑙2
2)𝜃1̈ +

𝑚2⁡𝑙2
2𝜃2̈+𝑚2⁡𝑙1⁡𝑙2⁡ sin(𝜃2) 𝜃1̇

2
+𝑚2⁡𝑔𝑙2 cos(𝜃1 +

𝜃2) = 𝜏2  

(A32) 
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