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Lung cancer is one of the deadliest diseases in the world affecting nearly five million 

individuals per year. The accurate detection and classification of lung cancer are crucial 

for proper treatment planning and increasing survival rates. In recent years, the 

convolutional neural network (CNN) emerged as an effective approach in lung tumor 

identification. However, the CNN face challenges such as computational complexity, 

increased training time, and limited generalization. This study proposed an optimized 

version of CNN named Spider Wasp optimization CNN (SWoCNN) for precise 

classification of lung cancer from computed tomography (CT) images. The presented 

SWoCNN incorporates the fast exploration capacity of spider wasp optimization 

(SWO) into the CNN algorithm for enhanced lung cancer classification. The developed 

strategy begins with the collection of lung CT images from both normal and cancer 

patients and the images are preprocessed to increase their quality. Consequently, an 

attention neural network (ANN) is developed for capturing and extracting the relevant 

features from the preprocessed images. Further, feature selection was done using the 

waterwheel plant algorithm (WPA), which selects the most informative features crucial 

for distinguishing the patterns of lung cancer. Finally, the proposed SWoCNN was 

trained using the selected features to classify lung cancer types. The SWO leverages its 

searching capacity to optimize and fine-tune the CNN hyperparameters to its optimal 

value, leading to improved classification, reduced computational time and fast CNN 

training. The proposed strategy was modeled and implemented in the Python platform 

and experimental results highlighted that the designed methodology achieved an 

average performance such as accuracy of 0.96407, precision of 0.96396, specificity of 

0.96503, and false negative rate of 0.02963. Furthermore, a comparative assessment 

with existing models depicted that metrics such as accuracy, precision, recall, and 

specificity are enhanced by 1.23%, 1.24%, 1.19%, and 1.18%, respectively, depicting 

its reliability in classifying lung cancer. 
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1. INTRODUCTION

Lung cancer is one of the deadliest diseases that occur due 

to the abnormal growth of cells in the lungs, causing damage 

to healthy lung tissues [1]. The common cause of this cancer 

is tobacco usage and it accounts for nearly 80% of lung cancer 

deaths [2]. The study by the World Health Organization 

(WHO) on cancer reported that lung cancer has led to 

approximately 1.61 million deaths and it is more prominent 

among males than females. Early and precise identification of 

this disease is crucial for improving the patient's health and 

survival rate [3]. Currently, various imaging techniques 

including magnetic resonance imaging (MRI), Computed 

Tomography (CT), and X-ray are employed for lung cancer 

prediction [4]. Among these techniques, CT was widely used 

for lung cancer detection because of its effectiveness in 

capturing minute variations in the lung region [5]. 

Conventionally, the medical images are manually examined 

by healthcare professionals or radiotherapists to detect the 

presence of cancer [6]. However, this manual examination of 

cancer is time-consuming and it depends on the knowledge of 

the healthcare experts. Thus, researchers focused on 

developing an automatic framework leveraging advanced 

technologies such as artificial intelligence (AI), computer-

aided processing, big data analysis, etc. [7]. In this automatic 

mechanism, the system was trained using the data containing 

both healthy and cancer features to understand the variations 

between them [8].  

In recent times, AI approaches such as machine learning 

(ML) and deep learning (DL) have earned greater attention in

image processing tasks. The AI-based models analyze the

medical images and capture the features and hierarchical

relations to detect the presence of lung cancer [9, 10]. Initially,

the researchers utilized ML algorithms such as decision trees

(DT), random forest classifier (RF), logistic regression, and

support vector machine (SVM), for lung cancer detection [11,
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12]. They process the medical images and train using either 

supervised or unsupervised learning strategies for 

classification tasks. The studies on ML models concluded that 

they offered automatic classification with increased accuracy 

than the manual process. Despite its increased performances, 

it faces challenges such as large computational demands, 

algorithmic bias, lack of adaptability, reduced accuracy in test 

cases, data dependency, etc. [13-15]. On the other hand, the 

DL models including deep neural network (DNN), CNN, and 

feed-forward neural network (FFNN) have shown promising 

results in image classification [16].  

Among these neural networks, CNN is more suitable for 

medical image analysis because of its potential to capture 

features and relations within the images more effectively. 

Hence many researches are conducted on lung cancer 

classification using CNN models [17, 18]. The existing works 

developed techniques such as Fuzzy Particle Swarm 

Optimization with CNN [19], Deep CNN [20], 2-dimensional 

CNN [21], 3-dimensional CNN [22], autoencoder-based CNN 

[23], etc., for lung cancer detection. These strategies mainly 

focused on differentiating malignant and benign cells in the 

lung and achieved accuracy of around 86% to 95%. However, 

these frameworks face challenges such as computational 

complexity, minimum accuracy, instability, less 

generalization, and limited to binary classification. To address 

these issues, a novel optimized CNN was developed in this 

work for detecting and classifying lung cancer from CT 

images.  

The major contributions of the presented framework are 

described below: 

⚫ This study develops a hybrid classifier by integrating 

a convolutional neural network with spider wasp 

optimization for lung cancer identification and 

classification. 

⚫ The proposed framework employs an attention neural 

network for capturing the informative features from 

the pre-processed images. 

⚫ A meta-heuristic-based feature selector was designed 

using the Waterwheel Plant Algorithm to optimally 

select the most relevant attribute from the extracted 

feature sequences. 

⚫ The CNN in the developed algorithm learns the 

hierarchical and spatial feature representations and 

recognizes the lung cancer pattern, while the SWO 

optimizes CNN’s training by refining its parameters to 

optimal value.  

⚫ The presented technique was executed in Python 

software and its outcomes are validated with 

conventional classifier models using metrics like 

accuracy, precision, false positive rate (FPR), recall, f-

measure, specificity, FNR, and execution time.  
 

 

2. RELATED WORKS 
 

Identifying the cancerous nodules in lung CT images is 

crucial for diagnosing and classifying lung cancer. However, 

it is a complex and time-consuming process because of the 

varying size, texture, and shape of nodules. Asuntha and 

Srinivasan [19] presented an innovative solution for this 

problem using the DL model. This study designed a unique 

feature selector model by combining fuzzy function with 

particle swarm optimization (FPSO) and the selected features 

using FPSO to train CNN. This strategy was validated using 

the real-time CT image dataset gathered from Arthi Scan 

Hospital and the experimental outcomes demonstrated that the 

usage of FPSO reduces the computational complexity of the 

CNN. However, it faces complexity in validating the 

correctness and reliability of fuzzy variables, sets, and 

membership functions.   

Faruqui et al. [20] designed a hybrid classifier model named 

LungNet having 22 layers of CNN. This study aims to identify 

and categorize lung cancer from CT scans using a deep CNN 

algorithm. This study used the lung cancer dataset containing 

525,000 images. The results of the study illustrated that it 

achieved 94.81% accuracy and 3.35% false positive rate. 

However, the model's accuracy was reduced to 91.6% when 

classifying the different stages of lung cancer.  

Biradar et al. [21] proposed an automatic lung cancer 

classifier using the DL algorithm. This study intends to detect 

lung cancer nodules with improved speed and accuracy. A 2-

dimensional CNN was created to classify malignant and 

benign cells in the lungs and it was validated using the Kaggle 

CT scan dataset. The implementation results manifested that it 

achieved only 88.76% in detecting cancer nodules, which is 

not sufficient for real-world clinical scenarios.  

Bangare et al. [22] developed a computer-aided approach to 

categorize lung cancer from CT images. Its primary concern is 

to increase the probability of survival rate of lung cancer-

affected individuals through accurate and timely cancer 

detection. This work developed a 3-dimensional CNN with 

image pre-processor and segmentation to detect malignant and 

non-malignant cells in the lungs. The experimental results 

highlighted that this strategy achieved an accuracy of 86.42%, 

specificity of 86.72%, and recall of 86.11%. However, these 

performances are not sufficient for lung cancer classification 

in real healthcare institutions.  

The previous studies [23-27] developed an integrated 

framework for classifying lung cancer. This strategy combined 

the efficiency of the autoencoder and CNN for efficient feature 

learning. In addition, an Adam optimizer was deployed for 

optimizing the entire classifier model, and a multispace image 

reconstruction algorithm was used to minimize the error. The 

results of the work suggested that it earned 95.79% accuracy 

in lung cancer nodule detection. Also, it obtained less 

processing time of 15 seconds (s). However, this methodology 

is data-dependent and cancer detection from low pixel images 

lowers its accuracy.  

 

 

3. PROPOSED SWOCNN FOR LUNG CANCER 

CLASSIFICATION 

 

An optimized CNN was developed to classify lung cancer 

using lung CT images. The presented framework comprises 

five modules: image acquisition, image preprocessing, feature 

analysis, feature selection, and optimized model training and 

classification. In the data collection module, the CT images of 

healthy and lung cancer-affected individuals are gathered and 

imported into the system. The accumulated images are 

preprocessed following steps like noise filtering, image 

resizing, and background removal. Also, the U-Net algorithm 

was used for segmenting the region of interest (ROI) from the 

preprocessed images. In the feature extraction module, ANN 

was designed to capture the relevant attributes from the 

segmented images, which reduces the dimensionality of the 

data and improves training speed. Consequently, the WPA-

based feature selector was modeled to select the most 

informative and highly correlative features from the extracted 
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feature sets, enabling the classifier to concentrate on major 

features for tumor classification. Finally, an optimized CNN 

was developed by integrating the efficiency of SWO into it. 

The SWO continuously refines and optimizes the 

hyperparameters of CNN, enabling it /to adapt to evolving 

changes and enhancing its learning capacity. The architecture 

of the developed lung cancer classifier model is displayed in 

Figure 1. 
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Figure 1. Architecture of SWoCNN for lung cancer classification 

 

3.1 Image acquisition 

 

The first stage of the developed framework is the lung CT 

image acquisition from both healthy and cancer-affected 

persons as shown in Figure 2. The gathered images are labeled 

to train the classifier to recognize the patterns of lung cancer. 

The presented study used the publicly available Lung CT scan 

database from Kaggle site [27]. 

 

 
(a) 

 
(b) 

 

Figure 2. Dataset images of different classes: (a) Lung 

cancer; (b) Normal 

3.2 Image preprocessing 

 

Image preprocessing defines the data preparation phase, 

where the system converts the raw CT images into an 

appropriate format for further processing. This stage follows a 

sequence of processes such as noise filtering, image resizing, 

and contrast enhancement or background elimination. In the 

noise filtering step, a Gaussian filter was applied to the images 

to eliminate the noise or unwanted random variations within 

each image. The Gaussian filter removes the noise attributes 

and replaces them with the average value of nearby or 

surrounding attributes, which is estimated by Gaussian 

distribution. The mathematical formulation of the Gaussian 

filter is expressed in Eq. (1): 

 

( ) ( )
2 2

22
2

1
, ,

2

m n

imGs m n C m n e


+
−

= 


 (1) 

 

where, Gs(m, n) represents the Gaussian filter, Cim(m, n)
 

denotes the input CT image, (m, n) indicates the kernel 

coordinates, and ∂ refers to the standard deviation. 

Consequently, the filtered images are resized into a common 

size to boost the dataset consistency. Finally, background 

removal was done to discard the unwanted regions from the 

CT images. This process is done using image thresholding. 

This step helps the system to focus on useful regions in the 

images. In addition, data augmentation was performed to 

reduce the risk of overfitting. This step creates new training 
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samples by performing steps like rotation, random translation, 

scaling, image mixing, etc. Figure 3 displays the preprocessed 

images.  

 

 
 

Figure 3. Preprocessed images 

 

Further, image segmentation was done using the U-Net 

algorithm to isolate ROI from the preprocessed images [28]. 

This technique has the potential to segment the regions with 

training using less data. It consists of three main elements 

namely: encoder, bottleneck, and decoder. The encoder 

component down-samples the preprocessed images through 

convolution and pooling operations and maps the regions 

within each image. The bottleneck is placed between encoder 

and decoder and it maps the most informative regions while 

retaining spatial information. The encoder performs 

upsampling and reconstructs the image from the feature 

representation. The reconstructed image is the segmentation 

output. Figure 4 displays the segmentation outcomes.  

 

 
 

Figure 4. Segmentation images 

 

3.3 Feature extraction 

 

An attention model is a kind of DL approach, which tends 

to concentrate on significant parts of the input data. In the 

proposed work, it was used to capture the relevant features 

from the segmented results. Feature extraction is one of the 

crucial steps in cancer classification, which aims to minimize 

the data dimension and assists the classifier in quickly learning 

the feature representations [29]. The architecture of ANN is 

similar to the structure of the encoder-decoder and finds the 

relevant features through the calculation of attention weights. 

It includes three main components namely: encoder, attention, 

and decoder. The encoder accepts the segmented images as 

input and generates hidden states (features present in the 

segmented images). The attention module determines the 

relevance between the encoder’s hidden state and the target 

hidden state and produces similarity scores as outcomes, 

which are mathematically expressed in Eq. (2): 

 

( )( )tanhy y

xt e xt weSw w h b = + +  (2) 

 

where, 𝑆𝑤𝑥𝑡
𝑦

 represents the similarity score, ω denotes 

associated with ANN, tanh defines the activation function, 

ℎ𝑥𝑡
𝑦

 indicates the hidden state generated by the encoder, bwe 

denotes the bias vector associated with the attention 

component, we represent the weight vector of the attention 

module, and β indicates the bias vector of ANN. The resultant 

of the attention component is converted into attention weights 

using a Softmax function, as defined in Eq. (3): 

 

( )max y

t xtAw soft Sw=  (3) 

 

where, Awt denotes the attention weights, which represents the 

relevance of the extracted feature for lung cancer 

categorization. These weights are applied to the encoder's 

hidden state and all the relevant information is extracted based 

on their importance through a weighted sum function, as 

represented in Eq. (4): 

 

1

mT
y

st t xt

t

W Aw h
=

=  (4) 

 

where, Wst denotes the weighted sum and Ts indicates the 

maximum iteration. The decoder component receives the 

weighted sum and transforms it into a feature vector. This 

extracted feature vector contains all important information 

related to lung cancer classification. 

 

3.4 Feature selection 

 

Feature selection represents the process of selecting the 

most relevant attributes while eliminating the irrelevant ones. 

This step aims to enhance interpretability, reduce complexity, 

and increase accuracy. In the developed work, a novel feature 

selector was modeled using the meta-heuristic optimization 

algorithm named “Waterwheel plant algorithm [30].” The 

WPA is a bio-inspired approach modeled based on the natural 

characteristics of waterwheel plants to solve complex 

optimization problems. This algorithm is mathematically 

designed following the hunting expedition behavior of 

waterwheel plants. They use search agents to find the prey. 

Here, the concept of this algorithm is applied to select the most 

relevant and highly informative features for classifier training. 

The feature selection process begins with the initialization of 

extracted feature sets in the search space. In WPA, the 

extracted feature sets by ANN are expressed as a matrix using 

Eq. (5) and each feature is initialized in the search space using 

Eq. (6): 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1,1 1, 1,1

,1 , ,

,1 , ,
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eQ Q R e Q e Q j e Q R

f f fF

F F f f f

F f f f


  
  
  
  = =   
  
  
    

 (5) 

 

( ) ( ),,
.
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where, Fe indicates the extracted feature sets, Fei denotes the 

ith feature (candidate solution), fe(i,j) represents the jth problem 

variable, κi,j represents a random number (0, 1), Ubj and Lbj 

refers to the upper bound and lower bound. Further, the fitness 

value was determined for each feature based on their relevance 

to the tumor classification task, which is defined in Eq. (7): 

 

1e

v v ei

eQ Q R

F

F

F

 



 
 
 
 =
 
 
 
 

 (7) 

 

The candidate solution with a high fitness value indicates 

the best or optimal solution and the solution with the lowest 

value denotes the worst. After fitness evaluation, the next step 

is exploration, where the system explores the search space and 

updates its initial values. This exploration helps to find the 

optimal solution and mitigates the possibility of local optima. 

The exploration phase of WPA is modeled using Eqs. (8) and 

(9): 

 

( )( ). 2eA d f t 
→ →

= +  (8) 

 

( ) ( ) 11 . 2e ef t f t A d
→ → 

+ = + + 
 

 (9) 

 

where, 𝐴
→

 denotes the direction of moving in the search space, 

fe(t+1) indicates the updated solution, fe(t) defines the current 

solution, 𝑑1
→

𝑑
→

 refers to the random vector, and 𝜌 represents the 

optimization factor. Consequently, the system exploits the 

current solutions to estimate the optimal features. This 

exploitation phase follows the hunting and feeding 

characteristics of WPA and it is formulated in Eqs. (10) and 

(11): 

 

( ) ( )2 3. . e eA d f t d f t
→ → →  = + 

 
 (10) 

 

( ) ( )1 .e ef t f t A
→

+ = +  (11) 

 

where, 𝐴′
→

 denotes the direction of exploitation, 𝑑
→

2  and 𝑑
→

3 

indicates the random vector. Further, fitness value was 

determined for the updated solutions. Then, the feature with a 

fitness value greater than 0.5 is selected and this process 

continuous until reaching maximum iteration or maximum 

convergence rate. The selected features are fed into the 

classifier for training. 

 

3.5 Optimized CNN for lung cancer classification 

 

A meta-heuristic optimizer-based CNN was developed to 

accurately identify and categorize lung cancer by processing 

the CT images [31]. The developed algorithm incorporates the 

optimization and exploration characteristics of SWO into 

CNN, enabling the system to adapt to the evolving variations 

in the image features and to train the model with optimal 

values. The CNN is a popular DL model used for performing 

tasks such as object detection, speech recognition, video 

labeling, image classification, facial recognition, etc. It 

consists of five important layers namely: input, convolutional, 

pooling, and fully-connected (FC) layers. The input layer 

accepts the selected feature sets from the WPA module as 

classifier input and transforms them into a suitable format for 

feature learning. The convolutional layer is the building block 

of CNN, which is responsible for understanding the patterns 

within each image. It applies a sequence of kernel filters on the 

input data and creates a feature map, which represents the 

patterns influencing healthy and lung cancer-affected images. 

The feature map is mathematically expressed in Eq. (12): 

 

( ) ( ) ( )
11

0 0

, , ,
yx

map f

i j

F p q S x y K p x q y
−−

= =

=  − −  (12) 

 

where, Fmap(p, q) indicates the feature map at the position (p, 

q), and K(p-x, q-y) represents the kernel filter applied at the 

location (p-x, q-y). Each convolutional layer is followed by a 

Rectified Linear Unit (ReLU) activation function to introduce 

non-linearity in the system. After each convolution+ReLU 

combination, a pooling layer was placed to reduce the spatial 

dimension, while retaining the significant information. This 

layer aims to minimize the memory and helps prevent 

overfitting by performing pooling operations. The pooling 

operation defines the process of sliding a 2-D filter over each 

channel of the feature map. In the designed CNN, a max 

pooling layer was used, which chooses the maximum element 

from the feature map covered by the 2-D filter. After multiple 

convolutional and pooling layers, the resultant feature map 

was flattened into a one-dimensional vector. This learned 

feature vector contains the patterns and relations between 

them, enabling them to categorize the lung cancer classes. The 

FC layer accepts this feature and computes the lung cancer 

classification through a Softmax function. The Softmax 

function returns the possibility of the input image belonging to 

the class, as represented in Eqs. (13) and (14): 

 

( ) ( )Soft maxvl im fc leP C W f b=  +  (13) 

 

( )

( )

0 0.2 ,

0.3 ,

vl

cl

vl

if P normal
C

if P SCC

 
= 



 (14) 

 

where, Pvl indicates the probability value, Ccl denotes the 

classification function, Wfc defines the weight matrix of the FC 

layer, fle represents the flattened feature vector, and b' refers to 

the bias vector of the FC layer. Consequently, the loss or error 

was determined to estimate the efficiency of the classifier and 

it is formulated in Eq. (15): 

 

( )
1 1

1
.log

S C
j j

i i

i j

Loss Y Y
S = =

=   (15) 

 

where, 𝑌𝑖
𝑗
 denotes the ground truth outcome, S refers to the 

number of training samples, C indicates the number of classes, 

and 𝑌′𝑖
𝑗
 represents the predicted class. Reducing this loss is 
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significant for improving classification accuracy. Also, the 

CNN's performance depends on the value of its 

hyperparameters such as several filters, kernel size, hidden 

layer, learning rate, batch size, weights, and bias vectors. To 

optimally select the values of these parameters, the SWO was 

integrated into CNN. The SWO is a meta-heuristic 

optimization algorithm developed based on the searching, 

hunting, mating, and nesting characteristics of female wasps 

[32]. The female wasps usually do these processes by 

depositing solitary egg within each spider’s abdomen. In the 

beginning stage of optimization, the female wasps explore 

their surroundings for finding suitable spiders. Then, they 

immobilize and pull them to make nests. After identifying 

appropriate nests and finding prey, they intend to drag the prey 

into nests. Unlike conventional optimization models such as 

genetic algorithm (GA), particle swarm optimization (PSO), 

grey wolf optimization (GWO), etc., the SWO dynamically 

switches between exploration and exploitation phases, leading 

to faster convergence and prevents premature convergence. In 

addition, the SWO model is more robust and efficient in 

optimizing the complex and high-dimensional spaces. 

Moreover, it offers diversified search options, which avoids 

the local optima. Since the SWO was used for selecting the 

optimal values in the search range, only the hunting phase is 

used in the designed model. The mating and nesting phases are 

not considered as they don’t directly relate with parameter 

update task, they are intended to reproduction and settlement 

of wasps in the biological systems The proposed optimization 

involves four phases: (i) initialization, (ii) fitness evaluation, 

(iii) searching phase, and (iv) parameter selection and 

termination.  

 

i. Initialization 

The SWO algorithm commences with the initialization of 

the female wasps. Each female wasp represents the CNN 

parameter set and it is initialized with a random value in the 

search space. In the context of CNN parameter tuning, female 

wasp defines the hyperparameter population, and prey denotes 

their optimal value The wasp population and the random 

initialization process are defined in Eqs. (16) and (17): 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

Pr Pr Pr

Pr Pr Pr
Pr

Pr Pr Pr

d
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c c c d

 
 
 

=  
 
 
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 (16) 

 

Prt u uL r K L
→ → → → → 

= + − 
 

 (17) 

 

where, Pr indicates the parameter population, 𝐿
→

𝑢  𝐾
→

 denotes 

the lower and upper bound of the search space and 𝑟
→

 

represents the random initialization vector.  

 

ii. Fitness evaluation 

For each parameter set, fitness was calculated based on the 

predefined objective function. The objective function of the 

SWO is to reduce the loss incurred by CNN, and it is 

formulated in Eq. (18): 

 

( )
1 1

1
min .log

S C
j j

fun i i

i j

Obj Y Y
S = =

 
=  

 
  (18) 

 

The parameter set with high fitness indicates the optimal 

solution and vice versa. Then, the best candidate solution was 

estimated by sorting them as per their fitness value.  

 

iii. Searching phase 

This phase follows how female wasps search for the most 

suitable spiders for feeding their offspring. They use a constant 

step for searching for prey by randomly looking into the search 

space. Similarly, in the developed work, they look for the 

optimal value for the parameter set in the search range. In this 

searching phase, the values of the parameter set will be 

updated in two ways. The random exploration of search space 

and parameter update is formulated in Eq. (19): 

 

( ) ( ) ( ) ( )( )a bPr t +1 = Pr t + f. Pr t - Pr t  (19) 

 

where, Pr(t) denotes the current parameter set, Pr(t+1) 

denotes the updated parameter set, ϕ represents the constant 

motion, a and b indicates two randomly selected indices to 

choose the exploration direction. In some instances, the 

optimization process drops and selects the local optima. To 

prevent this, the SWO algorithm explores the surrounding 

search space with a small step size, as expressed in Eq. (20): 

 

( ) ( ) . u uPr t+1 = Pr t L r K L
→ → → → 

+ + − 
 

 (20) 

 

where, 𝑟 defines the random vector [0, 1]. In searching phase, 

the updated hyperparameters in the search space are 

determined using Eq. (21): 
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( ) ( ) ( )( )

( ) . ;

a b

u u

Pr t + f. Pr t - Pr t ;if c < g

Pr t +1 =
Pr t L r K L otherwise

→ → → →



  

+ + −  
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 (21) 

 

where, χ and γ defines the random number ranging [0, 1], 

representing the probability of obtaining local optima in the 

searching phase.  

 

( ) ( )

( ) ( )2 -e a b

Pr t +1 = Pr t

G r Pr t Pr t+   
 (22) 

 

where, G denotes the deviation between the current solution 

and the best solution, and re indicates the randomness in 

escaping in range [0, 1]. The formula for calculating G is 

expressed in Eq. (23): 

 

2 2e

m

t
G r

T

  
=  −    

  
 (23) 

 

where, t indicates the current iteration, and Tm denotes the 

maximum iteration. This stage is the beginning of the 

exploitation stage in SWO approach.  
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v. Hunting phase 

This phase follows how the female wasps move towards the 

region where the best spider (prey) can be found. The 

hyperparameter enters this stage only when its fitness is less 

than 0.3 (near optimal) and they are updated by exploiting 

locally. Instead of searching randomly, the algorithm adjusts 

current solutions by shifting them closer to the high-quality 

solutions, as formulated in Eq. (24): 

 

( ) ( )

( ) ( ) ( )( )
Pr t+1 = Pr t

cos 2pl Pr t Pr t




+  −

 (24) 

 

where, Pr(t)' defines the best available solution. After updating 

hyperparameters, the fitness value was determined for them 

for selection purpose. 

vi. Parameter selection and termination 

If the fitness of the updated sequence is greater than the old 

fitness, the updated sequence was selected for modeling CNN. 

If the new fitness is less than the old fitness, no changes in 

CNN design the parameter selection is formulated in Eq. (25): 

 

( ) ( )

( )

* , 1

,

t tif f f Pr t
Pr

else Pr t

  +
= 


 (25) 

 

where, 𝑓𝑡
∗ denotes the fitness of the updated hyperparameter, 

and ft indicates the fitness of the current solution. This process 

continues until it reaches maximum iteration. Algorithm 1 

presents the working of the developed classifier in pseudocode 

format. Figure 5 presents the flowchart of the SWO algorithm 

for CNN parameter update. 

 

Start

Random initialization of hyperparameter 

population and set SWO parameters

Calculate fitness and find best solution

Searching phase

( ) if

( )3.0tfif

Randomly update 

hyperparameter values

Explore the surrounding and 

update hyperparameter values

Escaping phase

Update the solution towards 

the best solution

Hunting phase

Shift the solution closer to the 

best solution

Calculate the fitness for updated 

solution

( )tt ffif *

Return updated parameters

Update current solution

End

( )mTtif 

No

Yes

Yes

Yes

Yes

No

No

No

 
 

Figure 5. The flowchart of the SWO algorithm for CNN parameter update 
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Algorithm: SWO-CNN 

Input: Maximum iteration Tm, learning rate, kernel size, hidden 

layer, batch size, weights and bias vector, CT images; 

Output: Lung cancer classification; 

Start { 

Design CNN with initial parameters (input, convolutional, 

pooling, and FC layers); 

Train the model using selected features using WPA; 

Estimate class probability; 

Perform classification using Eq. (14); 

Parameter optimization: 

Define and initialize SWO parameters like population size c and 

decision variable d; 

 Initialize the initial value of the parameter set Pr; 

 Randomly initialize parameter population pr using Eq. (17) 

 Fitness evaluation: 

 ( )minfunObj loss→  

 for t=1: Tm 

  Searching Phase: 

           if(x<y) 

  Update parameter set using Eq. (19); 

 
           Else  

                  Update parameter set Pr using Eq. (20); 

  End if; 

   Escaping stage: 

 
Update the parameters towards the best solution using Eq. 

(21); 

  Hunting Phase: 

  if (ft<0.7) 

 Update the parameter using Eq. (22); 

else 

Exist; // the parameter set will not be updated in this phase 

End if; 

Determine fitness 𝑓𝑡
∗ for the updated parameter set Pr(t+1); 

( )*

t tif f f  

Return Pr(t+1); 

else 

Return Pr(t); 

t++; 

end for; 

Return optimal parameter value; 

} End 

 

 

4. RESULTS AND DISCUSSION 

 

The developed classifier was modeled and executed in 

Python software version 3.12.6 running on Jupyter Notebook 

7.12, and supported by a Dell 11th Generation processor with 

8GB RAM. The presented framework was trained and tested 

using the publicly available “Lung cancer CT scan dataset” 

from the Kaggle site. 

 

4.1 Performance metrics  

 

The definition and formula of parameters used for 

estimating the performance of the developed classifier in lung 

cancer categorization are defined below. 

Accuracy: Accuracy defines the classifier’s effectiveness in 

categorizing both healthy and lung cancer and it quantifies the 

proportion of truly classified cases to the total instances. It 

measures the correctness of the system in classifying both 

normal and lung cancer images present in the dataset. It is 

represented in Eq. (26): 

 

p n

p n p n

t t
Accuracy

t t f f

+
=

+ + +
 (26) 

 

where, tp, tn, fp and fn represent TP, TN, FP, and FN, 

respectively.  

Precision: Precision measures the classifier’s efficiency in 

identifying true positive cases to the total true instances, and it 

is formulated in Eq. (27). This metric quantifies the 

effectiveness of the model in classifying lung cancer among 

the true samples (real normal and lung cancer samples). 

 

p

p n

t
Precision

t t
=

+
 (27) 

 

Sensitivity/recall: Recall determines the system’s 

proficiency to detect all relevant instances and it defines the 

fraction of real positive cases to the total positive cases, as 

defined in Eq. (28): 

 

p

p p

t
Recall

t f
=

+
 (28) 

 

F-measure: F1-score denotes the harmonic mean of 

sensitivity and precision. It determines the balanced 

performance of the classifier in categorizing lung cancer, as 

formulated in Eq. (29). This parameter enables to determine 

the efficiency of the model in classifying normal and lung 

cancer images considering the false positive and negatives.  

 

1 2
sensitivity precision

F score
sensitivity precision

 
− =  

+ 
 (29) 

 

Specificity: Specificity measures the model's effectiveness 

in detecting and classifying normal (true negative) instances. 

It is represented mathematically in Eq. (30): 

 

n

n p

t
Specificity

t f
=

+
 (30) 

 

False positive rate: FPR represents the ratio of actual 

negative cases that the system incorrectly categorizes as 

positive, as formulated in Eq. (31). It determines the incorrect 

lung cancer classification made by the system.  

 

p

n p

f
FPR

t f
=

+
 (31) 

 

False negative rate: FNR denotes the ratio of real positive 

cases incorrectly categorized as negative by the system. It is 

expressed in Eq. (32): 

 

n

p n

f
FNR

t f
=

+
 (32) 

 

Execution time: 

The execution time determines the overall time consumed 

1381



 

by the designed model for performing lung cancer 

identification and categorization. This measures the overall 

computational efficiency of the model in performing lung 

cancer classification. 

The investigation of these parameters allows us to estimate 

how the classifier performs lung cancer classification. 

 

Table 1. The hyperparameter and its optimized value 

 

Hyperparameter Range 
Optimized 

Value 

Number of filters for 

convolutional layer 1 
[16, 32, 64, 96] 64 

Kernel size for 

convolutional layer 1 
[3, 4, 5] 3 

Number of filters for 

convolutional layer 2 
[48, 64, 96, 128] 96 

Kernel size for 

convolutional layer 2 
[3, 4, 5] 3 

Number of filters for 

convolutional layer 3 
[64, 96, 128] 128 

Kernel size for 

convolutional layer 3 
[3, 4, 5] 3 

Batch size [5, 10, 20] 20 

Epoch [50, 100, 200] 200 

Hidden Layer (HL) 1 [75, 100, 125] 100 

HL 2 [75, 100, 125] 125 

Learning rate 
[0.001, 0.01, 0.1, 

0.2] 
0.01 

Activation - ReLU 

 

 

 

4.2 Train and test phases 

 

The presented framework was intensively trained with the 

Lung cancer CT scan dataset. Initially, the input dataset was 

split into the ratios of 80:20 for the train and test phases. The 

training phase begins with the initialization of CNN 

hyperparameters with initial value. The activation function of 

the CNN was ReLU, and the metrics like number of filters, 

kernel size, hidden layer range, learning rat, etc., are optimized 

by the SWO algorithm over the epoch (Table 1).  

The outcomes during training and testing are determined 

using accuracy and loss metrics. Accuracy quantifies the 

classifier's efficiency in learning the hierarchical feature 

representations and its generalization capacity against real-

world data. On the other hand, the loss measures the error 

made by the model during the training and test. Higher 

accuracy suggests that the model correctly classifies the lung 

cancer instances, while high loss indicates the model's 

inefficiency in categorizing the lung tumor cases.  

The analysis of accuracy and loss in train and test phases is 

presented in Figure 6. The improvement of accuracy over the 

epoch indicates that the designed SWoCNN has the greater 

potential of learning the features differentiating healthy and 

lung cancer images. Also, the proposed model obtained lower 

loss, which demonstrates that it correctly categorizes the tumor 

classes and generalizes well on unseen samples. Furthermore, 

it is noted that the presented model obtained higher accuracy 

irrespective of the datasplits, and the smooth training and 

testing curve highlights the model’s stability and its capacity 

to prevent overfitting issue.  

 

 
 

Figure 6. Accuracy and loss in train and test stages: 80/20 split and 70/30 split 
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Figure 7. Confusion matrix 

 

 
(a) 

 
(b) 

 

Figure 8. ROC curve (a) 80/20 datasplit (b) 70/30 datasplit 

 

4.2.1 Assessment of classification performances 

The designed model’s categorization efficiency was 

determined by estimating the confusion matrix. Figure 7 

displays the confusion matrix of the presented technique. It is 

a tabular representation of the classifier's efficiency in 

categorizing lung cancer by comparing the classified outcomes 

with the real class. It also allows us to estimate the model's 

classification results such as accuracy, precision, recall, etc., 

through four cells namely: true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN).  

 
 

Figure 9. Statistical significance analysis: (a) 80/20 data 

split, and (b) 70/30 data split 

 

GWO

Proposed SWO

GA

PSO

 
 

Figure 10. Comparison of convergence curve of different 

optimization models 

 

These cells evaluate the system's efficiency in correctly 

categorizing lung cancer and healthy instances from the 

images. TP indicates the case where it exactly classifies the 

lung cancer types, while TN defines the case where the system 

accurately detects and categorizes healthy images. In contrast, 

FP represents the case where the system incorrectly classifies 

the negative case as positive and FN denotes the case where it 

incorrectly categorizes the actual positive as negative.  

On the other hand, receiver operating characteristic (ROC) 

is the graphical illustration of the system’s classification 

results. It demonstrates how effectively the developed 

SWoCNN model categorizes lung cancer and healthy images 

across all possible thresholds. It is a plot of the TP rate against 

the FP rate, and it emphasizes the model's outcome by 

estimating the area under the curve (AUC). If AUC is close to 

1, it indicates higher accuracy and vice versa.  

Figure 8 displays the ROC curve of the presented model for 

80/20 datasplit and 70/30 datasplit. It is observed that for 80/20 

data split, the designed approach achieved AUC of 0.95, while 

for 70/30 data split it obtained AUC of 0.92. This higher AUC 

depicts that the designed framework precisely categorizes 

normal and lung cancer instances from the CT images.  

Furthermore, to validate the SWO optimization model, its 
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convergence rate was compared with other optimization 

algorithms such as GA, PSO, GWO, and firefly optimization 

algorithm (FOA). The convergence rate quantifies how 

quickly the optimization algorithm converges to the optimal 

solution set per generation in the decision space (Figure 9).  

Figure 10 presents the comparative assessment of 

convergence curve of different optimization algorithms. 

Compared to other meta-heuristic optimization models, the 
proposed SWO approach achieved faster and highly stable 

convergence by reaching the best fitness score (lower training 

loss). This illustrates that utilizing SWO for CNN parameter 

fine-tuning results offer effective exploration and exploitation 

of search space and finds best value for each parameter.  
 

4.3 Comparative assessment 

 

The performances achieved by the developed SWoCNN 

model were compared and evaluated with the conventional 

lung cancer classification algorithms such as Ant lion 

Optimized Multilayer Perception network (ALOMPN) [33], 

DenseNet [34], Attention-based CNN (AbCNN) [35], High 

ranking deep ensemble learning (HRDEL) [36] and Multilevel 

3D Deep CNN (M3D-DCNN) [37].  

The metrics used in comparative analysis include accuracy, 

precision, FPR, f1-score, FNR, recall, computational time, and 

specificity, and these metrics are determined under two cases: 

70/30 data split and 80/20 data split. Figures 11(a-d) present 

the comparative assessment of accuracy, precision, f1-score, 

and specificity. For 80/20 data split, the developed model and 

the existing techniques such as M3D-DCNN, HRDEL, 

AbCNN, DenseNet and ALOMPN obtained accuracy of 

0.97872, 0.95238, 0.95634, 0.96436, and 0.96436, 

respectively, while for 70/30 dataset, these techniques earned 

accuracy of 0.94942, 0.92157, 0.92781, 0.93285, and 0.93629. 

This comparative analysis manifests that the developed 

methodology achieved improved accuracy than the 

conventional models, highlighting its proficiency in 

categorizing lung cancer from CT images. Similarly, the 

precision metric was compared with the existing models. The 

conventional classifiers and the presented SWoCNN achieved 

a precision of 0.95198, 0.95597, 0.96, 0.96406, 0.96815, and 

0.97854, respectively for an 80/20 data split. On the other 

hand, they attained precision of 0.92153, 0.92773, 0.92930, 

0.93282, 0.93624, and 0.94937, respectively for a 70/30 data 

split. The improvement of precision in the designed 

framework highlights its proficiency in recognizing the pattern 

of different lung cancer categories.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 11. Performance comparison: (a) accuracy, (b) 

precision, (c) f1-score, and (d) specificity 

 

Consequently, the designed strategy and the traditional 

models including M3D-DCNN, HRDEL, AbCNN, DenseNet 

and ALOMPN achieved f1-score of 0.98024, 0.95568, 

0.95938, 0.96311, 0.96686, and 0.97065, respectively for 

80/20 data split, while they earned f1-score of 0.94973, 

0.92182, 0.92799, 0.92971, 0.93311, and 0.93682, 

respectively for 70/30 data split. The increased f1-score 

illustrates that the developed algorithm provides a balanced 

classification of healthy and lung cancer classes. The 

specificity of the model was also estimated and compared to 

the existing models to validate the efficiency of the designed 

SWoCNN model in recognizing the healthy image from tumor 

classes. The above-mentioned algorithm conventional models 
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and the proposed framework achieved specificity of 0.95594, 

0.95962, 0.96332, 0.96705, 0.97082, and 0.98035 for 80/20 

data split, while they earned specificity of 0.92175, 0.92795, 

0.92966, 0.93308, 0.93673, and 0.94971, respectively for 

70/30 data split as shown in Table 2 and Table 3. The 

specificity comparison demonstrates that the developed model 

obtained greater specificity than the existing algorithms, 

which highlights its robustness in identifying and classifying 

normal images from the lung cancer-affected images.  

 

Table 2. Comparative assessment of the developed model's performance with other techniques for an 80/20 ratio 

 
Parameters M3D-DCNN HRDEL AbCNN DenseNet ALOMPN Proposed 

Accuracy 0.95238 0.95634 0.96033 0.96436 0.96842 0.97872 

Precision 0.95198 0.95597 0.96 0.96406 0.96815 0.97854 

Fl-Score 0.95568 0.95938 0.96311 0.96686 0.97065 0.98024 

Specificity 0.95594 0.95962 0.96332 0.96705 0.97082 0.98035 

Sensitivity 0.95527 0.95900 0.96276 0.96655 0.97037 0.98005 

FPR 0.05772 0.05660 0.05172 0.04762 0.04412 0.04110 

FNR 0.03709 0.03614 0.03409 0.03226 0.03061 0.02913 

Computational Time 

(Sec) 
20 19 15 15 13 7 

 

Table 3. Comparative performance measures of the proposed model with other techniques 

 
Parameters M3D-DCNN HRDEL AbCNN DenseNet ALOMPN Proposed 

Accuracy 0.92157 0.92781 0.92934 0.93285 0.93629 0.94942 

Precision 0.92153 0.92773 0.92930 0.93282 0.93624 0.94937 

F1-Score 0.92182 0.92799 0.92971 0.93311 0.93682 0.94973 

Specificity 0.92175 0.92795 0.92966 0.93308 0.93673 0.94971 

Sensitivity 0.92172 0.92792 0.92963 0.93307 0.93669 0.94965 

FPR 0.05809 0.05749 0.05227 0.04846 0.04524 0.04312 

FNR 0.03824 0.03692 0.03690 0.03472 0.03160 0.03013 

Computational Time 

(Sec) 
23 23 20 17 17 12 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 12. Performance comparison: (a) sensitivity, (b) FPR, (c) FNR, and (d) computational time 
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The comparative assessment of metrics such as sensitivity, 

FPR, FNR, and computational time are graphically presented 

in Figure 12. The sensitivity is a crucial parameter that 

determines the classifier's effectiveness in recognizing all 

correct (lung cancer instances) from the lung cancer cases that 

occurred. The presented methodology and the above-stated 

conventional models obtained a sensitivity of 0.94965, 

0.92172, 0.92792, 0.92963, 0.3308, and 0.93673, respectively 

for 70/30 data split, while they achieved 0.98005, 0.95527, 

0.95900, 0.96276, 0.96655, and 0.97037, respectively for 

80/20 data split. The increased sensitivity in the designed 

model validates its effectiveness in identifying all lung cancer 

categories from both true and false positives. On the other 

hand, the FPR and FNR metrics are determined to estimate the 

error rate of the classifier. The designed strategy achieved 

lower FPR and FNR of 0.04312 and 0.03013 for the 70/30 data 

split, while it earned an FPR of 0.04110 and FNR of 0.02913 

for the 80/20 data split. Subsequently, the above-mentioned 

conventional models achieved FPR of 0.5809, 0.05749, 

0.05227, 0.04846 and 0.04524, and FNR of 0.03824, 0.03692, 

0.03690, 0.03472, and 0.03160, respectively, for 70/30 data 

split. Also, they earned FPR of 0.05772, 0.05660, 0.05172, 

0.04762, and 0.04412, and FNR of 0.03709, 0.03614, 0.03409, 

0.03226, and 0.03061, respectively for 80/20 data split. The 

lower FPR and FNR in the developed algorithm highlight that 

it correctly classifies the healthy and lung cancer classes 

compared to existing models. Finally, the execution time is 

also determined to manifest the computational efficiency of 

the model. The presented algorithm consumed a minimum 

computational time of 7s and 12s for 80/20 and 70/30 data 

splits, while the existing models have taken longer 

computational times of the 20s, 19s, 15s, 15s, and 13s, 

respectively for 80/20 data split and 23s, 23s, 20s, 17s, and 

17s, respectively for 70/30 data split. The reduced time 

consumption illustrates that the presented model quickly 

learns the feature representations and performs classification 

tasks. This also highlights that the parameter optimization by 

SWO minimizes the computational demands and training 

time. Tables 2 and 3 list the performance validation of the 

existing models with the presented approach for 80/20 and 

70/30 data split.  

 

4.4 Discussion 

 

A hybrid classification strategy was developed to detect and 

classify the types of lung cancer from the CT images. The 

proposed model incorporates the optimization efficiency of 

SWO into the CNN to boost its adaptability and training speed 

through optimal parameter value selection. The presented 

work used the "Lung cancer CT scan database" from the 

Kaggle site as input and the images are preprocessed through 

steps like noise removal, image resizing, and background 

elimination. Also, the U-Net algorithm was developed to 

segment the ROI from the preprocessed images and the 

relevant features are captured using ANN. Consequently, a 

WPA-based feature selector was proposed to select the most 

informative and highly relevant attributes, assisting the 

classifier to focus on major features influencing the patterns of 

lung cancers. Finally, an optimized CNN was designed to 

perform the classification task. The CNN performs feature 

learning and estimates the lung cancer patterns by extracting 

spatial and local features. The SWO integrated into CNN 

refines its parameters continuously in an iterative manner, 

enabling the classifier to adapt to the evolving variations in 

input images and boosting the training speed through optimal 

parameter selection.  

The robustness of the designed methodology was validated 

by determining the results in two cases: 80/20 and 70/30 data 

splits and the experimental results highlight that the designed 

methodology earned improved outcomes. Furthermore, a 

comparative assessment was performed with conventional 

classification models such as M3D-DCNN, HRDEL, AbCNN, 

DenseNet, and ALOMPN and it demonstrated that on average 

the performances such as accuracy, precision, recall, f1-score, 

and specificity are increased by 0.01172, 0.01176, 0.01132, 

0.01132, and 0.01126 in the designed model. On the other 

hand, the metrics such as FPR, FNR, and computational time 

are reduced by 0.00257, 0.00123, and 5.5s in the presented 

methodology. The comparative analysis highlighted that the 

designed strategy performs better lung cancer classification 

than the currently available classifier model, making it a 

reliable solution to the real-time medical industry for early and 

precise lung cancer classification. 

 

 

5. CONCLUSIONS 

 

A lung cancer classifier SWoCNN was designed by 

combining the advantages of SWO into the CNN. The major 

objective of the research is to categorize the various types of 

lung cancer from the CT images using optimized CNN. The 

CT images are gathered from healthy and lung cancer-affected 

persons and preprocessed to make them suitable for further 

processes. Consequently, image segmentation and feature 

extraction are done using U-Net and ANN to capture ROI and 

relevant features from the preprocessed CT scans. A feature 

selector was designed using WPA to optimally select the most 

relevant and informative attributes from the extracted 

sequences. Finally, the proposed SWoCNN classifier was 

trained using the selected features to classify healthy and lung 

cancer categories such as adenocarcinoma, LCC, and SCC. 

The implementation outcomes of the designed strategy 

demonstrate that it achieved an accuracy of 0.94942 and 

0.97872 for lung cancer classification on 70/30 and 80/20 data 

split. Furthermore, the developed approach earned a minimum 

execution time of 7s and 12s, demonstrating its computational 

efficiency. Finally, the comparative assessment with the 

existing techniques such as M3D-DCNN, HRDEL, AbCNN, 

DenseNet, and ALOMPN demonstrated that the designed 

framework achieved better outcomes than others.  

Although the designed model achieved improved results, it 

has several limitations. Firstly, the presented strategy is 

limited to binary classification; it doesn’t classify the sub 

classes or different grades of lung cancer. Secondly, the 

developed framework is not validated across diverse 

databases, which limits its scalability across different clinical 

scenarios. Thirdly, the study has not focused on predicting the 

survival rate of cancer-affected individuals, which is crucial 

for preparing treatment plans. Hence future work focus on 

testing the scalability of the model and extending it to classify 

different lung cancer grades and predicting the survival rate of 

the patients.  
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