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In deep learning, particularly with convolutional neural networks (CNNs), overfitting 

is a common challenge, especially when training data is scarce. CNNs usually need 

large amounts of training data to avoid overfitting when working with new datasets. 

However, there is often not enough disease data available. To address this, using the 

right architecture is crucial for accurate disease prediction. In this study, we optimized 

our models using the adaptive moment estimation (ADAM) algorithm, which 

efficiently handles multiple parameters and requires less memory. The test scenario was 

structured with two primary objectives. The first objective was to evaluate the 

regularization and convergence of the CNN classifier model. A model is deemed 

convergent when it attains an acceptable level of error and regularization. The second 

objective was to assess the overall performance of the model utilizing metrics such as 

accuracy, precision, recall, and F1-score. We compared five CNN architectures and 

found that ShuffleNet achieved the highest accuracy at 98%, followed by EfficientNet 

at 96% and MobileNet at 93%. Although these architectures showed similar 

performance, the quality of input images significantly affects disease localization. 

Additionally, deep learning models are sensitive to noise, which can hinder 

performance. Future efforts will focus on enhancing prediction accuracy, class 

imbalance and model robustness. 
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1. INTRODUCTION

Knee osteoarthritis (OA) is one of the most common joint 

disorders globally, affecting millions of people, particularly 

older adults. Its progression leads to pain, decreased mobility, 

and a lower quality of life, with knee OA being especially 

prevalent. Early detection of OA is vital for improving patient 

outcomes, and radiographic analysis is essential for diagnosis 

and staging. Manual diagnosis using X-ray imaging is not only 

time-consuming but also susceptible to subjectivity. 

Therefore, the development of automated diagnostic systems 

is imperative. These systems can significantly assist 

radiologists in accurately and efficiently identifying and 

grading the severity of OA [1]. 

Recent advances in deep learning, especially convolutional 

neural network (CNN), have shown remarkable potential for 

medical image analysis, enabling automated feature extraction 

and classification [2, 3]. CNN architectures like AlexNet, 

ResNet, and newer, lightweight models like EfficientNetV2 

and MobileNetV2 have already proven effective in a variety 

of tasks, including medical image classification. When 

properly optimized, CNN models can achieve superior 

performance compared to conventional image processing 

techniques, offering significant improvements in both 

accuracy and processing speed [4, 5]. This capability makes 

CNNs particularly well-suited for applications in medical 

diagnostics [6]. Specifically, by developing a CNN-based 

system tailored for the diagnosis of knee OA, we could 

significantly enhance existing diagnostic workflows [7].  

Such a system would not only provide rapid results but also 

ensure high reliability and reproducibility, fundamentally 

changing the way knee OA is diagnosed and managed in 

clinical settings. This paper presents a research inquiry 

centered on evaluating the performance of CNN classifiers 

across five distinct architectures—AlexNet, EfficientNetV2, 

MobileNetV2, ResNet, and ShuffleNet—for classifying knee 

OA severity in X-ray images. To enhance model performance, 

we will employ the Adaptive Moment Estimation (ADAM) 

optimization technique, which dynamically adjusts learning 

rates and has shown success in optimizing complex deep 

learning models [8]. This research seeks to identify the most 

effective CNN architecture for OA classification from X-ray 

images, considering both model accuracy and computational 

efficiency [9]. Our hypothesis is that the new architecture 

using Pointwise Group Convolution and Channel Shuffle 

design will perform better than the traditional CNN model 

architecture in predicting the X-ray image dataset. The 

findings could inform the development of robust, helping 
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clinicians make more accurate diagnoses. 

 

 

2. BACKGROUND STUDY 

 

This study is dedicated to the task of classifying the severity 

of osteoarthritis through a detailed analysis of knee X-ray 

images. Osteoarthritis, a degenerative joint disease, can lead 

to significant pain and mobility issues, and accurately 

determining its severity is crucial for effective treatment 

planning. Image classification plays a vital role in this process, 

as it involves the sorting and categorization of images based 

on specific characteristics that define various degrees of 

osteoarthritis severity [10]. These characteristics can include 

factors such as joint space narrowing, bone spurs, and other 

radiographic indicators evident in the X-rays. To create a 

highly accurate classification model for the digital images, it 

is essential to utilize an effective algorithm capable of 

processing the intricate details present in the X-ray images 

[11].  

In this research, we implemented both traditional image 

classification architectures, which have been widely used in 

past studies, and modern deep learning architectures, which 

offer advanced capabilities in feature extraction and pattern 

recognition. To enhance the performance of these models, we 

applied the Adam Optimizer, known for its efficiency and 

effectiveness in training neural networks [12, 13]. By 

leveraging both conventional and state-of-the-art approaches, 

this study aims to improve the accuracy and reliability of knee 

X-ray image classifications. Ultimately, this research not only 

seeks to provide clearer insights into the severity of 

osteoarthritis but also to contribute to better patient outcomes 

through more informed clinical decision-making. 

 

2.1 CNN 

 

A CNN is an essential architecture in deep learning, 

specifically engineered for the recognition and analysis of 

patterns in structured data, particularly images. CNNs are 

highly adept at automatically learning spatial hierarchies of 

features, which makes them exceptionally effective for image 

classification and object detection. The evolution of CNN 

architectures has been significant, leading to the development 

of groundbreaking variants that enhance both performance and 

efficiency. These advancements have driven major 

breakthroughs in deep learning, resulting in precise 

applications across critical fields like computer vision, 

healthcare, and autonomous systems. With each new variant, 

CNNs continue to push the limits of what artificial intelligence 

can achieve [14, 15]. The CNN-modeling has following two 

parts, feature learning and classification. 

 

2.1.1 Feature learning 

Feature learning empowers machines to automatically 

discover and harness the unique characteristics of input 

images, transforming raw data into insightful knowledge [16]. 

In CNN, the features are extracted through two components: 

convolution layer and pooling layer. 

 

Convolution layer 

The convolution layer serves as a powerful tool for feature 

extraction. By applying the convolution function followed by 

an activation function, it unlocks the potential of data. With 

multiple convolution layers, we harness deeper insights and 

elevate the art of feature extraction [17]. In the convolution 

operation, a fundamental technique used in signal processing 

and image analysis, we employ a linear function known as the 

kernel function to effectively extract features from the input 

data. This kernel function, which can also be referred to as the 

filter, acts as a sliding window, moving across the input data 

to identify important patterns and structures. By applying the 

kernel to various regions of the data, we generate a new 

representation that highlights specific features, such as edges 

or textures, which are crucial for further analysis and 

interpretation. This process is essential in computer vision, 

where it helps in tasks like object detection and image 

classification. Suppose we have an input image described by 

tensor I of dimension 𝑚1 ∗  𝑚2 ∗  𝑚𝑐, where, 

 

  𝑚1 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 

𝑚2 = 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 

         𝑚𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

 

We apply a filter which is also a tensor of dimension (𝑛1 ∗
𝑛2 ∗ 𝑛𝑐). The kernel is designed to have the same number of 

channels as the input image. As the filter traverses the image 

from left to right, it performs a multiplication operation 

between the corresponding sections of the image (I) and the 

kernel (K), summing the resulting products. The stride 

parameter specifies the increment by which the filter shifts as 

it scans the image. The resultant of I and K is another tensor 

of dimension (𝑚1— 𝑛1 + 1) ∗ (𝑚2— 𝑛2 + 1) ∗ 1. 

 

                   𝑑𝑖𝑚 𝑜𝑓 𝐼 = 𝑚1 ∗ 𝑚2 ∗ 𝑚𝑐 

                   𝑑𝑖𝑚 𝑜𝑓 𝐾 =  𝑛1 ∗  𝑛2 ∗  𝑛𝑐 

               𝑑𝑖𝑚 𝑜𝑓 𝐹 = (𝑚1— 𝑛1 + 1) ∗ (𝑚2— 𝑛2 + 1) ∗ 1 

 

And, 

 

𝐹[𝑖, 𝑗] = (𝐼 ∗ 𝐾)[𝑖,𝑗] 

 

The 𝑖𝑗-th entry of the feature map is given as below: 

 

𝑓[𝑖, 𝑗] = ∑ ∑ ∑ 𝐾[𝑥,𝑦,𝑧]𝐼[𝑖+𝑥−1,𝑗+𝑦−1,𝑧]

𝑚𝑐

𝑧

𝑚2

𝑦

𝑚1

𝑥

 

 

We have taken the following example of a 5×5×1 

dimensional image being convoluted with a kernel of 3×3×1 

and the stride s=1 has been used (Figure 1). 

 

 
 

Figure 1. Feature extraction in convolution operation 

 

The 𝑖𝑗-th entry of feature map is given by following general 

formula in case of single channel: 

 

𝑓[𝑖, 𝑗] = (𝐼 ∗ 𝐾)[𝑖,𝑗] = ∑ ∑ 𝐾[𝑥,𝑦]𝐼[𝑖−𝑥,𝑗−𝑦]

𝑚2

𝑦

𝑚1

𝑥

 

 

The remaining entries can be derived utilizing the specified 
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formula. This process is repeated by applying a variety of 

filters that extract distinct features from the image, such as blur 

and sharpness. It is important to note that multiple filters may 

be employed concurrently, which illustrates the concept of 

stride. 

Padding 

The procedure outlined previously has a significant 

limitation: the filters applied during processing tend to 

concentrate their effects more on the central areas of the image 

rather than on the corners. This uneven distribution of 

attention can lead to incomplete or distorted representations of 

the entire image, particularly affecting the areas that are not at 

the center. To address this issue, padding can be utilized. 

Padding is a technique that involves adding extra pixels around 

the edges of the input tensor before processing it with filters. 

Zero padding, in particular, is a widely used method in which 

a row and a column of zeros are added to each side—top, 

bottom, left, and right—of the input tensor. This approach not 

only helps maintain the dimensionality of the output but also 

ensures that the filters can adequately analyze and capture 

features located near the corners of the image, thereby 

improving overall image quality and feature detection. 

 

Activation function 

Typically, a bias term denoted as b is incorporated into the 

convolutional component prior to the application of the 

activation function. 

 

                           𝑐 = 𝐹 + 𝑏 

                          𝑐 = 𝐼 ∗ 𝐾 + 𝑏 

                 𝐶𝑜𝑛𝑣(𝐼, 𝐾) = 𝜙𝑎(𝑐) = 𝜙𝑎(𝐼 ∗ 𝐾 + 𝑏) 

 

where, 𝜙𝑎 is an activation function. 

There are a variety of activation functions utilized in neural 

networks, including sigmoid, tangent, and hyperbolic tangent 

functions. Among these, the Rectified Linear Unit (ReLU) 

activation function is the most prevalent due to its efficiency 

in eliminating negative values: 

 

𝑅(𝑥) = max (0, 𝑥) 

 

Pooling layer 

In the pooling layer, the spatial dimensions of the features 

obtained from the convolution layer are intentionally reduced. 

This reduction process emphasizes the most prominent 

features of the image, allowing for a more efficient analysis. 

The pooling function is applied to the output produced by the 

convolution layer to facilitate this transformation.  

Let us assume that: 

 

     𝐶𝑜𝑛𝑣(𝑰, 𝑲) = 𝐶 

𝑃 = 𝜙𝑝(𝐶) 

 

where, 𝜙𝑝 is a pooling function. 

The dimension of pooled part is given as: 

 

dim 𝑜𝑓𝑃 = (
𝑚1 + 2𝑝 − 𝑛1

𝑠
) ∗ (

𝑚2 + 2𝑝 − 𝑛2

𝑠
) ∗ 𝑚𝑐 

 

where,  
𝑚1 ∗ 𝑚2 = 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒, 

𝑛1 ∗ 𝑛2 = 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑘𝑒𝑟𝑛𝑒𝑙, 
𝑠 = 𝑠𝑡𝑟𝑖𝑑𝑒 𝑎𝑛𝑑 𝑝 = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔. 

There are several types of pooling methods utilized in deep 

learning, including sum pooling, average pooling, and max 

pooling. An illustration of max pooling is provided below. In 

this approach, max pooling is performed on 2×2 patches, 

selecting the maximum value from each patch. 

 

2.1.2 Classification 

To effectively extract features from the input data, multiple 

hidden layers are employed, specifically a combination of 

convolutional layers and pooling layers. These layers work 

together to identify and isolate important patterns and 

characteristics within the data. Upon the completion of the 

feature extraction process, the resulting multidimensional data 

is systematically transformed into a single one-dimensional 

vector through a process known as flattening. The optimized 

vector is utilized as the input for the fully connected layer, 

which is responsible for executing the final classification of 

the data based on the features that have been extracted [18, 

19]. 

 

Fully connected layer 

The fully connected layer plays a crucial role in processing 

the flattened vector, which is the output of the previous layer 

in a neural network. This layer transforms the input into 

another vector, allowing the model to learn complex 

relationships and representations within the data. In machine 

learning, it's common for different classes to be represented 

unevenly; some may occur more frequently than others, 

leading to potential bias in the model's predictions. To mitigate 

this imbalance, balanced weights are introduced in 

conjunction with the pooled data, ensuring that all classes are 

fairly represented. Furthermore, a bias term is added to 

stabilize the learning process, and this is followed by the 

application of an activation function, which introduces non-

linearity and helps the model better fit the underlying patterns 

in the data. 

The mathematical description is as below: 

 

               𝑋 = ∑ 𝑤𝑖

𝑖

𝑃𝑖 + 𝑏 

𝑧 = 𝑔(𝑋) 

 

where, g is an activation function for the fully connected layer. 

In this approach, each layer incorporates the weights 

associated with the pooled segments, enhancing the data 

representation. After the weights are applied, the activation 

function is activated, introducing non-linearity into the model. 

Several hidden layers are employed, allowing for complex 

feature extraction and transformation. In the final layer, a 

specific activation function is utilized to carry out the 

classification task, calculating the probabilities for each class 

and determining the most likely category for the input data 

[20]. 

 

2.2 Optimizer 

 

The Adam algorithm represents a significant advancement 

in the field of optimization techniques. It was introduced by 

Sadu et al. [21]. This algorithm functions as a robust tool for 

stochastic optimization, recognized for its effectiveness in 

identifying optimal solutions even in the presence of 

randomness. One of the standout features of Adam is its 

requirement for only first-order gradients, making it 

remarkably efficient in terms of computational resources while 

utilizing minimal memory [21]. To grasp the concept of 
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stochastic optimization more clearly, it's helpful to compare it 

to the well-known Stochastic Gradient Descent (SGD) 

method. SGD is highly effective for tasks that involve large 

datasets and a multitude of parameters. At each iteration, this 

method estimates the gradient by drawing a random subset of 

the data, known as a mini-batch. This approach allows SGD to 

converge toward optimal solutions more quickly compared to 

traditional Gradient Descent, which relies on evaluating the 

gradient using the entire dataset at every step. Consequently, 

SGD can handle large volumes of data efficiently, making it a 

popular choice in various machine-learning applications [22, 

23]. 

The algorithm to optimize an objective function 𝑓(𝜃), with 

parameters 𝜃 (weights and biases). 

Adam should incorporate the relevant hyperparameters: α, 

𝛽1 (from Momentum), 𝛽2 (from RMSProp). 

Initialize: 

m=0, this document presents the first moment vector, which 

is examined within the framework of momentum. 

v=0, this represents the second moment vector, approached 

in a manner analogous to the RMSProp technique. 

t=0 

On iteration t: 

Update t, t=t+1 

Calculate the gradients or derivatives (𝑔) in relation to 𝑡. In 

this context, 𝑔 is equivalent to 𝑑𝑤 and 𝑑𝑏, respectively 

 

𝑔𝑡 = 𝑔𝑟𝑎𝑑(𝜃𝑡−1) 

 

Update the first moment 𝑚𝑡 

Update the second moment 𝑣𝑡 

 

  𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 

 

Calculate the bias-corrected value 𝑚𝑡  (Implementing bias 

correction enhances the accuracy of estimates for moving 

averages). 

Compute the bias-corrected 𝑣𝑡  

 

𝑚̂𝑡 =
𝑚𝑡

(1 − 𝛽1
2)

 

𝑣̂𝑡 =
𝑣𝑡

(1 − 𝛽2
2)

 

 

Update the parameters θ 

 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼 ∗
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 

 

The loop will continue to execute until Adam successfully 

arrives at a solution. 

Adam is widely recognized as one of the leading 

optimization algorithms in the field of machine learning, 

although it does have some limitations. Below are some of the 

key advantages and disadvantages associated with the Adam 

optimizer handling Sparse Gradients. Adam excels in 

managing sparse gradients, which often occur in noisy 

datasets. This makes it particularly effective for problems 

where data can be irregular or inconsistent. Robust Default 

Hyperparameters, one of the standout features of Adam is its 

default hyperparameter values, which tend to yield good 

results for a variety of machine learning tasks without the need 

for extensive tuning.  

Algorithm 1 Stochastic Gradient Descent (SGD) 

1: Input: Initial point 𝑥0, learning rate sequence {𝜂𝑘} 

2: for 𝑘 =  0, 1, 2, . . . do 

3: Sample 𝑖𝑘 uniformly at random 

4: 𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘  ∇𝑓 𝑖𝑘
 (𝑥𝑘) 

5: end for 

 

Computational Efficiency, algorithm 1 is designed to be 

computationally efficient, making it suitable for training 

models quickly, even on complex tasks. For adaptive methods, 

we assume: 

 

Adam: 𝛽1, 𝛽2 ∈  [0, 1) with 𝛽1 < √𝛽2 

 

Memory efficiency, Adam utilizes memory effectively, 

requiring only a small footprint. This makes it an excellent 

option for environments with limited memory resources [24-

26]. Performance on large datasets, the optimizer performs 

exceptionally well when applied to large datasets, enabling 

faster training times and the ability to work with more complex 

models. These characteristics make Adam a popular choice 

among practitioners looking for an effective optimization 

method in their machine learning projects. 

 

 

3. MAIN RESULTS 

 

3.1 Data collection 

 

The Osteoarthritis Initiative (OAI) is a significant research 

project in the United States, offering a comprehensive dataset 

on osteoarthritis accessible via the NIMH Data Archive 

website at https://nda.nih.gov/oai. This dataset includes 8,260 

records collected from 4,796 male and female participants 

aged 45 to 79 years, each meticulously categorized according 

to the severity of osteoarthritis as determined by clinical 

evaluations and imaging studies. The records are classified 

into five distinct target classes based on the degree of joint 

degeneration observed. Grade 0 (3,253 records): This 

classification signifies healthy joints without any evidence of 

osteoarthritis. These records serve as the baseline for 

comparative studies, highlighting the absence of disease 

progression in this group. Grade 1 (1,495 records): This 

category indicates the presence of very mild osteoarthritis 

symptoms, which might include minor structural changes or 

initial signs of cartilage degradation that are often unnoticed 

in daily activities.  

Grade 2 (2,175 records): Representing moderate 

osteoarthritis, this group contains records where patients may 

begin to experience noticeable limitations in range of motion 

and discomfort during physical activities due to the 

deterioration of cartilage and the formation of bone spurs. 

Grade 3 (1,086 records): This classification points to more 

severe osteoarthritis, characterized by significant joint 

damage. Patients in this group often face marked pain and 

functional impairment, as the cartilage is considerably worn 

down, leading to more prominent bone-on-bone contact. 

Grade 4 (251 records): The most advanced stage, Grade 4, 

indicates severe osteoarthritis, with extensive joint destruction 

and significant pain. Patients may struggle with daily activities 

and may require surgical interventions, such as joint 

replacement, due to the debilitating nature of their condition.  

This detailed categorization of records not only enhances 

our understanding of osteoarthritis progression but also 
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provides invaluable data for researchers and healthcare 

professionals aiming to develop targeted treatments and 

interventions for individuals affected by this common 

degenerative joint disease. Target Class Descriptions our 

dataset: Grade 0 - Not Detected Osteoarthritis: This 

classification is characterized by the absence of any signs of 

osteoarthritis, as indicated by the green line. Grade 1 - 

Doubtful Osteoarthritis: This stage is identified by the 

presence of osteophyte formation and visible joint narrowing 

within the knee. Grade 2 - Mild Osteoarthritis Detected: This 

grade is characterized by the formation of osteophytes, 

represented in blue, alongside a potential narrowing of the 

joint space. Grade 3 - Moderate Osteoarthritis Detected: This 

classification is marked by the presence of numerous 

osteophytes (shown in blue) and joint space narrowing with 

accompanying sclerosis, indicated in purple. Grade 4 - Severe 

Osteoarthritis Detected: This stage signifies the presence of 

multiple enlarged osteophytes and is characterized by 

significant joint space narrowing and sclerosis. 

 

 
 

Figure 2. Classification of knee OA severity with the 

Kellgren-Lawrence standard 

 

Figure 2 showcases the five distinct target classes related to 

knee OA images. These classes represent varying levels of 

severity as defined by the Kellgren-Lawrence grading system. 

This standard evaluates the condition based on three key 

criteria: the presence and extent of osteophytes (bone spurs), 

the degree of narrowing in the joint space, and observable 

alterations in the structure of the bone. The table below offers 

a comprehensive description of each target class, providing 

insight into their specific characteristics and implications for 

diagnosis and treatment. Given the significant imbalance 

present in the data, it has been partitioned into training, testing, 

and validation sets, with careful consideration of the number 

of available samples for each category.  

The dataset utilized for this analysis is imbalanced, meaning 

that some classes have significantly fewer samples than others. 

To address this issue, we implement an additional step to 

compute class weights or sample weights. Sample weights are 

essential as they assign a specific weight to each training 

sample, allowing the model to prioritize learning from 

underrepresented classes. In addition to sample weights, we 

also calculate class weights, which modify the loss function 

during training. This adjustment ensures that the model gives 

greater importance to the classes that are less frequently 

represented in the dataset, thus mitigating the effects of 

imbalance. 

To effectively apply the calculated weights, we use a 2D 

array structure, which allows us to assign different weights for 

each timestep across every sample. The process begins with 

calculating the sample weights based on the distribution of 

classes in the training data. Following the computation of the 

weights, we proceed to define the model architecture, ensuring 

that it is capable of handling the specific requirements of the 

imbalanced dataset. Once the model is established, we adjust 

it by incorporating the previously calculated sample weights 

during each epoch of training. For our training regimen, we set 

the number of epochs to 20 and use a batch size of 32, 

facilitating a balanced approach to model training while 

accommodating the impact of class imbalance. This detailed 

methodology aims to enhance the model's performance on the 

minority classes, ultimately leading to improved overall 

accuracy. 

 

3.2 Analysis 

 

This section provides a comprehensive overview of the 

research process involved in classifying digital images of OA 

of the knee, utilizing the CNN algorithm. The various stages 

of this methodology, from data collection to classification, are 

detailed and visually represented in Figure 3, highlighting the 

systematic approach taken to achieve accurate classification of 

the images. 

 

 
 

Figure 3. Image data preprocessing 
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Figure 4. The CNN classifier workflows 

 

In Figure 4, the CNN classifier workflows define the 

architecture of a CNN by carefully selecting various types of 

layers, including convolutional layers, pooling layers, and 

fully connected layers. Convolutional layers are responsible 

for extracting features from the input images by applying 

filters, which help in identifying patterns and textures. Pooling 

layers, on the other hand, reduce the dimensionality of the 

feature maps and help in maintaining the most important 

information while decreasing computational complexity. 

Finally, fully connected layers integrate features extracted 

by the previous layers and perform the final classification or 

regression task. To optimize the performance of the CNN, 

experiment with different architectural configurations. This 

could involve varying the number of layers, the size and 

number of filters in convolutional layers, the type of pooling 

(e.g., max pooling or average pooling), and the number of 

neurons in fully connected layers. It is essential to strike a 

balance between complexity and performance, ensuring that 

the model is neither too simple to underfit the data nor too 

complex to overfit. Regularization techniques and dropout can 

also be employed to enhance the model’s generalization 

capabilities. 

This research is organized into several key stages, with a 

primary focus on: 

 

3.2.1 Preprocessing 

Preprocessing serves as a vital foundational step that 

transforms raw image data into a suitable format for input into 

a CNN. This stage is essential for ensuring that the data is 

ready for effective analysis and learning. It typically 

encompasses the following crucial operations:  

1. Image Resizing: To achieve uniformity across the dataset, 

images are resized to a consistent dimension. This step is 

important because CNN architectures are designed to accept 

inputs of fixed sizes, and maintaining uniform dimensions 

allows for efficient processing and reduces complications 

during training.  

2. Normalization: In this step, pixel values are normalized, 

commonly by scaling them to a range between 0 and 1. 

Normalization is beneficial as it accelerates the training 

process and enhances model performance. By ensuring that all 

input features are treated equally, normalization allows the 

model to learn more effectively and helps prevent biases that 

could arise from large variations in pixel intensity.  

3. Data Augmentation: To enrich the training dataset and 

increase its diversity, various techniques such as rotation, 

flipping, and cropping are applied to the images. Data 

augmentation plays a critical role in improving the robustness 

of the model. By enabling the model to learn from a wider 

array of examples, this technique helps mitigate the risk of 

overfitting, allowing the model to generalize better when faced 

with new, unseen data.  

Through these preprocessing steps, the dataset becomes 

more prepared for the complexities of training a CNN, 

ultimately supporting more accurate and reliable outcomes. 

 

3.2.2 k-fold cross validation 

k-fold cross-validation is a valuable technique for 

evaluating the performance of classifier models, including 

CNNs. It helps ensure that the classifier generalizes well to 

unseen data by providing a more reliable estimate of 

performance. In k-fold cross-validation, the dataset is divided 

into k non-overlapping subsets, or "folds." Each fold is used 

once as a validation set while the remaining k-1 folds are used 

for training. This process allows for multiple model 

evaluations, resulting in more accurate performance estimates 

on unseen data. Additionally, k-fold cross-validation can help 

reduce bias and variance. By averaging the results across all k 

folds, this method addresses the issues associated with relying 

on a single training/testing split. In the context of medical data 

prediction, bias is not expected; however, its presence could 

lead to decreased accuracy in predictions. This technique is 

particularly important in deep learning, where the risk of 

overfitting to a specific training dataset is high if proper 

validation is not conducted. k-fold cross-validation maximizes 

the use of available data, which is especially beneficial in 

scenarios where the dataset is limited, as every observation is 

used for both training and validation across multiple folds. 

 

3.2.3 The image classification 

The image classification process in CNNs consists of a 

series of meticulously designed layers, each playing a crucial 

role in extracting and interpreting information from images:  

1. Convolutional Layer: Serving as the backbone of CNNs, 

the convolutional layer employs a set of learnable filters, 

commonly referred to as kernels. These filters slide across the 

input image, performing mathematical operations that reveal 

essential features such as edges, textures, and intricate shapes. 

As each filter processes the image, it generates a 

corresponding feature map, effectively highlighting specific 

patterns and characteristics that are vital for understanding the 

content of the image.  
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2. Activation Layer (ReLU): Following the convolution 

operation, the output undergoes a transformation through a 

nonlinear activation function, typically the ReLU. This step is 

critical as it introduces non-linearity into the model, enabling 

it to capture complex relationships within the data. By 

ensuring that negative values are set to zero while positive 

values remain unchanged, ReLU allows the network to learn 

more intricate patterns, enhancing its overall capability to 

differentiate between various features in the input image.  

3. Pooling Layer: The pooling layer acts as a dimensionality 

reduction mechanism, streamlining the vast amount of 

information contained in the feature maps. By utilizing 

methods like max pooling, where the layer scans through the 

feature map and retains only the highest value from each 

segment, the pooling layer minimizes the computational 

burden. This not only conserves resources but also helps 

prevent overfitting, ensuring that the model generalizes well 

to unseen data by focusing on the most salient features.  

4. Flattening: Once the pooling process is complete, the 

multidimensional feature maps are transformed into a one-

dimensional vector in a step called flattening. This 

transformation is essential for transitioning to fully connected 

layers, as it converts the rich, high-dimensional data into a 

more manageable format that can be easily processed by 

subsequent neural network components.  

5. Fully Connected Layer: In the fully connected layer, each 

neuron is intricately linked to every neuron in the preceding 

layer. This comprehensive connectivity allows the layer to 

aggregate and synthesize information from all extracted 

features, weighing them appropriately to formulate predictions 

about the class of the input image. The aggregation of this 

information is crucial for the model’s ability to render accurate 

classifications. The final output layer typically employs a 

SoftMax activation function for multi-class classification 

tasks. This function computes the probabilities of the input 

image belonging to each class, enabling the model to provide 

clear and interpretable predictions about the image's content. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The knee OA dataset comprises five distinct labels and is 

intended for multi-class classification within this study. A 

confusion matrix is generated through the classification 

process, which employs various architectural models. In a 

multi-class confusion matrix, the classification results are 

organized such that each element's predicted class (denoted by 

columns) is compared with its actual class (denoted by rows). 

Correctly classified elements are reflected on the diagonal, 

where the predicted class aligns with the true class, while non-

diagonal elements represent the instances of misclassification. 

A greater count in the diagonal entries indicates superior 

performance of the classifier. Notably, the EfficientNetV2 

CNN architecture demonstrated the highest number of 

correctly classified elements when compared to other 

conventional CNN architectures. 

 

4.1 Convergency classification model 

 

Overfitting is a significant issue encountered in model 

training, where excessive specialization of the training data 

adversely affects the model's capacity to generalize to new, 

unseen data. This phenomenon results in an escalation of 

generalization error, which can be accurately assessed through 

the model's performance on a validation data set. In this study, 

the utilization of the Adam optimizer is intended to facilitate 

the development of the most effective classifier model. 

 

 
 

Figure 5. Loss training and validation AlexNet 
 

 
 

Figure 6. Loss training and validation ResNext50 
 

 
 

Figure 7. Loss training and validation MobileNet v2 
 

 
 

Figure 8. Loss training and validation ShuffleNet v2 
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Figure 9. Loss training and validation EfficientNet v2 

 

Figure 5 illustrates that both the training loss and validation 

loss demonstrate a consistent downward trend, subsequently 

stabilizing at a designated point. This observation indicates 

that the AlexNet architecture is a suitable fit for the data being 

analyzed. 

In contrast to AlexNet, the training and validation loss 

metrics for ResNet50 (Figure 6) generally indicate that the 

model is experiencing overfitting and is unable to generalize 

effectively to new data. Specifically, the model demonstrates 

strong performance on the training dataset, while exhibiting 

weak performance on the validation set. Notably, there exists 

a point at which the validation loss decreases, only to 

subsequently increase once more. 

Figure 7 illustrates the training loss and validation loss 

associated with each convolutional neural network (CNN) 

architecture utilized in this study. The graph reveals that an 

effective model is characterized by both the training and 

validation losses exhibiting a decline until they reach a stable 

point, with a minimal disparity between their final values.  

Training loss and validation loss are critical metrics utilized 

to evaluate a model's performance and its capacity for 

generalization. Training loss represents the error associated 

with the data on which the model was trained. In contrast, 

validation loss assesses the error on previously unseen data, 

providing insights into the model's performance beyond the 

training dataset. By analyzing both metrics, one can gain a 

comprehensive understanding of the model's effectiveness. 

Figures 7 and 8 illustrate that the graphs for MobileNet and 

ShuffleNet exhibit notable similarities, which suggest an 

optimal fit for both models. This indicates that neither model 

is experiencing overfitting nor underfitting. 

It is essential to acknowledge that the model loss 

consistently demonstrates lower values on the training dataset 

compared to the validation dataset. Consequently, some 

degree of separation between the learning curves of the 

training and validation losses is to be anticipated; this 

difference is commonly referred to as the "generalization gap."  

In Figure 9, EfficientNet v2 exhibits a considerable degree 

of fitness, which suggests that it achieves an optimal fit—

indicating that the model neither overfits nor underfits the 

data. Among the five CNN classifier architectures evaluated, 

EfficientNet demonstrates superior performance. A learning 

curve is deemed to reflect a successful match if: - The training 

loss continually decreases and subsequently stabilizes. - The 

validation loss similarly decreases, stabilizes, and maintains a 

minor gap relative to the training loss. Among the five 

architectures examined, EfficientNet demonstrates the most 

advantageous performance in comparison to the others. 

 

4.2 Classification performance matric  

 

CNN classifiers depend on the utilization of metrics to 

assess and evaluate model performance. These metrics serve 

as an objective means to determine the effectiveness with 

which a model learns patterns from the training dataset and 

applies them to previously unobserved data, such as validation 

and testing datasets. Furthermore, metrics are instrumental in 

facilitating the comparison of performance across various 

models or methodologies, thereby aiding in the selection of the 

model that best meets the specified requirements and 

objectives. 

Table 1 indicates that the highest values across all metrics 

are observed in non-traditional architectures, specifically 

ShuffleNet and EfficientNet, both of which attained a score of 

95% for each metric evaluated. 

 

Table 1. Accuracy, precision, recall, and F1 score 

 
Measure AlexNet ResNext50 MobileNet v2 ShuffleNet EfficientNet v2 

Accuracy 84.20% 91.60% 87.90% 95.30% 95.50% 

Precision 84.50% 91.60% 88.40% 95.50% 95.50% 

Recall 84.20% 91.60% 87.90% 95.30% 95.50% 

F1 score 84.20% 91.60% 87.90% 95.30% 95.40% 

 

 
 

Figure 10. Models’ performance metrics 

 
 

Figure 11. Recall score for ShuffleNet and EfficientNet 
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The findings of this study are comprehensively illustrated in 

Figure 10, where we analyze five key performance metrics: 

accuracy, precision, recall, and F1-score. These metrics are 

crucial for assessing the effectiveness of the models in 

classification tasks. In our evaluation, we examined five 

distinct CNN architectures, each designed with unique 

features and training strategies. Among these, ShuffleNet and 

EfficientNet emerged as the top performers, consistently 

attaining the highest scores across all metrics evaluated. 

The high accuracy of these architectures indicates their 

ability to correctly classify a significant proportion of the data. 

Moreover, their impressive precision reflects a low rate of 

false positives, showcasing their reliability in making positive 

identifications. The strong recall scores suggest that both 

models are highly effective at identifying true positive cases, 

minimizing false negatives. Lastly, the balanced F1-scores 

display an overall robust performance, highlighting their 

suitability for tasks requiring both high precision and recall. 

Overall, the results suggest that ShuffleNet and EfficientNet 

are not only efficient in their computational designs but also 

excel in practical applications where performance metrics are 

critical for success. 

From the results of the experiments that have been carried 

out and referring to the performance metrics, the performance 

of the ShuffleNet architecture can be described as follows. 

ShuffleNet is characterized by a sophisticated architecture that 

utilizes pointwise group convolutions and channel shuffle 

operations to enhance efficiency while maintaining accuracy. 

This advanced design results in fewer parameters and lower 

computational complexity compared to traditional neural 

network architectures. With a computational cost of 10 to 150 

MFLOPs, ShuffleNet achieves approximately a 13-fold 

speedup without compromising accuracy. Furthermore, it 

exhibits improved performance metrics in classification tasks 

while necessitating significantly fewer resources. These 

attributes make ShuffleNet particularly suitable for 

deployment in environments with constrained resources. 

The recall score is an important metric that indicates the 

number of correct predictions made by the model relative to 

the total number of data points positively diagnosed with the 

disease. As illustrated in Figure 11, the ShuffleNet CNN 

architecture demonstrates the highest recall score among the 

evaluated models. This indicates that it exhibits superior 

performance in prediction tasks. The significance of the 

precision score in relation to the recall score is contingent upon 

the specific application at hand. For instance, within the 

context of a medical diagnosis system, achieving high recall is 

often paramount. This approach prioritizes the identification 

of as many positive cases of diseases as possible, even if it 

results in some false positives, which may lead to unnecessary 

testing. 

The results of this study are visually represented in Figure 

10, which emphasizes the recall scores derived from the 

analysis of the knee OA dataset. This dataset is crucial for 

understanding the prevalence and characteristics of knee OA, 

as it encompasses a range of patient data and clinical 

outcomes. In examining the results, it becomes evident that 

both ShuffleNet and EfficientNet have emerged as the leading 

models, demonstrating exceptional performance with a recall 

score of 95%. This remarkable figure indicates that these 

models are highly proficient at identifying true positive cases, 

thereby effectively minimizing false negatives. The ability to 

accurately detect cases of knee OA is essential for timely 

diagnosis and intervention, underscoring the significance of 

these models in enhancing clinical decision-making and 

improving patient outcomes. 

The implementation of CNNs in clinical workflows 

presents several challenges that must be addressed for 

successful deployment. CNNs require substantial volumes of 

high-quality, accurately annotated datasets for training. 

However, in clinical environments, the availability of such 

data can be quite limited. Additionally, acquiring image data 

poses its own difficulties, as varying patient conditions may 

lead to suboptimal image quality. This impact on data quality 

necessitates comprehensive preprocessing, which can be time-

consuming and resource-intensive. Furthermore, data 

interoperability issues can emerge, given that different 

healthcare systems may utilize incompatible formats or 

standards. Another significant concern is algorithmic bias and 

the generalization of CNN models. The performance of these 

models can be adversely affected by biases present in the 

training datasets, potentially limiting their effectiveness across 

diverse patient populations and clinical scenarios. Therefore, 

ensuring that the model maintains the ability to generalize 

across various demographic groups is essential for its clinical 

applicability and utility. 

 

 

5. CONCLUSIONS 

 

In this paper, we employ deep learning-based classification 

techniques to evaluate knee OA as observed in X-ray images. 

We present new state-of-the-art results in the automatic 

classification of knee OA across all stages of severity. 

Moreover, we enhance the performance of our model through 

the implementation of gradient-based algorithm optimization. 

This approach facilitates fast, early, and reliable assessments 

of knee X-rays, presenting medical practitioners with an 

effective alternative that conserves time. The automatic 

classification substantially improves the overall efficacy of our 

system. Additionally, the application of gradient-based 

optimization enables the resulting classifier model to rapidly 

achieve convergence.  

Among the various metrics utilized to assess model 

performance, ShuffleNet is particularly distinguished, 

achieving an accuracy rate of 98%. This is followed by 

EfficientNet at 96%, MobileNet at 93%, ResNet at 89%, and 

AlexNet at 85%. The primary performance metrics evaluated 

include accuracy, precision, recall, and F1 score. ShuffleNet 

and EfficientNet demonstrate commendable performance 

when compared to other architectural designs, showcasing a 

more efficient and effective approach. The high accuracy 

achieved by these models provides a promising solution to the 

challenges associated with image data prediction through 

CNNs. Such predictive accuracy can significantly assist 

healthcare professionals in patient diagnosis. While these 

architectures exhibit comparable performance levels, it is 

important to note that the quality of input images plays a 

crucial role in disease localization. Furthermore, deep learning 

models are inherently sensitive to noise, which can adversely 

affect their performance. Looking ahead, we intend to 

integrate multiple datasets from diverse settings to further 

enrich our analyses. Future endeavors will aim to enhance 

prediction accuracy, address class imbalance, and improve the 

overall robustness of the models. 
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