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Predicting blood glucose is highly significant for patients with diabetes to manage their 

condition efficiently. Deep learning (DL) approaches have demonstrated great potential in 

blood glucose prediction modeling. By leveraging time-series data from continuous glucose 

monitoring (CGM) devices, this model can capture complicated temporal dependencies and 

patterns in glucose dynamics. DL based blood glucose prediction models learn from insulin 

dosages, past glucose readings, physical activity levels, meal intake, and other related 

features to forecast future blood glucose levels with maximum accuracy. Thus, this study 

presents an Optimal Attention-based Long Short-Term Memory for Blood Glucose Level 

Prediction (OALSTM BGLP) model. Firstly, it employs Min-Max scaling to normalize the 

input data, ensuring consistent and meaningful comparisons across different features. 

Additionally, the model generates time series data for multiple forecasting horizons, 

including 15, 30, 45, and 60-minute(m) intervals, enabling flexible and dynamic predictions 

to accommodate various planning and decision-making needs. Moreover, the OALSTM-

BGLP technique uses the ALSTM model, which incorporates an attention mechanism to 

selectively concentrate on relevant information within the input sequence while capturing 

long-term dependencies. This attention mechanism permits the method to effectively extract 

salient features from the input data, enhancing its predictive capabilities. Furthermore, the 

model is optimized using the RMSProp optimizer, which adjusts the rate of learning 

dependent on the magnitude of recent gradients, facilitating efficient training and 

convergence. The performance evaluation of the developed technique on the OhioT1DM 

dataset shows its promising performance over recent state-of-the-art methods. 
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1. INTRODUCTION

Diabetes mellitus is a metabolic disorder that disrupts the 

body’s ability to regulate blood glucose (BG) levels. Beta cells 

in the pancreas secrete insulin, an endocrine hormone that 

regulates glucose utilization [1]. Type 1 diabetes is 

characterized by the loss of these insulin-producing beta cells, 

leading to insulin deficiency [2]. As a result, individuals with 

diabetes must continuously monitor their blood glucose levels, 

regulate them through consistent insulin administration, and 

make informed decisions about their medical regimen (e.g., 

once daily or before each meal) to maintain normal blood 

sugar level [3]. The primary objective in diabetes management 

is to optimize insulin dosages to prevent hyper/ hypo glycemia 

[4]. This is difficult due to the multitude of factors, including 

lifestyle, mental state, stress, and physical exercise, that also 

affect insulin intake, nutrition, and glucose levels [4]. Despite 

various advancements in diabetes observation, continuous 

glucose monitoring (CGM) remains aggressive. CGM devices 

are capable of providing an individual's glycemic condition at 

an assumed time. A positive recognition could dramatically 

expand the everyday behavior of diabetes by the patients 

themselves [5].  

To simplify and accomplish the management of type 1 

diabetes, a continual growth in automated procedures is quite 

essential, despite the advancements obtained thus far. In this 

way, commerce-precise BG devices might be game-altering 

[6]. These devices can provide early warnings about potential 

glycemic actions, enabling the implementation of either 

automatic or non-automated preventive measures. Moreover, 

these mechanisms are a criterion for the arrival of a closed-

loop artificial pancreas as the present vision for the final 

automatic management of type 1 diabetes [7]. Hybrid 

modelling, data-driven techniques, and physical techniques 

are utilized for forecasting blood glucose levels. The data-

driven method explores the present and historical values of 

diabetes management-linked variables to plan prospective BG 

excursions [8].  

Generally, there are three primary categories of time-series 

prediction methods: classical time-series prediction, machine 

learning (ML), and deep learning (DL). The research reported 

various studies that used classical time series and ML based 

regression models, NNs, and DL methodologies for BG-level 

predictions. Eren-Oruklu et al. [9] designed an adaptive 

univariate autoregressive moving average (ARMA) model 

with fixed model orders solely based on CGM data. 

Meanwhile, Turksoy et al. [10] developed a multivariate 

ARMA with exogenous inputs (ARMAX) model, which used 
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exogenous variables such as glucose and insulin while 

excluding meal information. Given the time-varying non-

stationarity of CGM data, Yang et al. proposed an ARIMA 

model using an algorithm that adaptively determines model 

orders and simultaneously updates model parameters [4]. They 

found that their model outperformed the adaptive univariate 

and ARIMA models. As more research was done, Georga et 

al. [11] suggested SVR and SVR with feature selection using 

RF and RReliefF. Hamdi et al. [12] also proposed the DE-SVR 

for BG-level predictions. 

Researchers found that ML-based classical time series 

struggle to predict BG dynamics due to their assumption of 

linear data, sensitivity to non-stationary CGM data, difficulty 

in capturing complex patterns, susceptibility to noise and 

outliers, and inability to adapt to changing conditions. 

However, even though SVR and SVR with kernel functions 

can handle non-linearity, the limitation of machine learning 

methods is how the input data is represented, which has an 

effect on how well the predictions work. 

Motivated by the excellent modelling capabilities of 

artificial neural networks (ANNs) for nonlinear and non-

stationary phenomena, several studies have employed ANN 

strategies to forecast BG levels. DL differs from traditional 

ANNs in the number of hidden layers, their interconnections, 

and their ability to abstract inputs. These intricate models with 

increased complexity outperformed conventional shallow 

NNs. These advanced DL based algorithms can autonomously 

discern patterns from data. While feed-forward ANNs fared 

better at predicting BG levels, traditional RNNs have 

discovery constraints due to the vanishing/exploding gradient 

problem, which is a major drawback of using these networks. 

The incorporation of memory cells and forget gates into 

traditional RNNs has rectified this issue in Long Short-Term 

Memory (LSTM) networks. 

Recent studies examined RNNs and LSTMs for enhanced 

accuracy in BG level prediction. Fox et al. [13] employed a 

RNN with Gated Recurrent Unit (GRU) cells, whereas Sun et 

al. [14] implemented a Bi-LSTM based RNN for BG 

prediction. Nevertheless, the precision attained by cutting-

edge models for actual patient data is insufficient, rendering 

these methods potentially inapplicable for diabetes care. 

Conventional LSTMs sometimes forfeit essential information 

throughout extended sequences due to the restricted capacity 

of their memory cells to preserve data from distant time steps. 

The discovery of the attention mechanism allowed researchers 

to address long sequencing issues and concentrate on the most 

pertinent segments of the sequence. Traditional LSTM models 

may dilute sequential information over long time spans, 

potentially leading the model to overlook subtle yet influential 

glucose patterns. The attention method enables our model to 

concentrate on significant previous CGM readings that may 

more substantially impact future glucose levels. 

This study offers an Optimal Attention-Based Long Short-

Term Memory for BG Level Prediction (OALSTM-BGLP) 

Model. At first, it employs Min-Max Scaling to normalize the 

input data, certifying consistent and meaningful contrasts 

across dissimilar features. Furthermore, the OALSTM-BGLP 

approach utilizes the ALSTM technique, which includes an 

attention mechanism to selectively concentrate on related data 

within the input sequence while taking into account long-term 

dependencies. Besides, the method has been optimized by 

employing the RMSProp optimizer, which adjusts the rate of 

learning based on the magnitude of recent gradients, 

facilitating efficient training and convergence. The suggested 

methodology outperforms state-of-the-art methods in a 

performance evaluation conducted on the OhioT1DM dataset. 

 

 

2. LITERATURE REVIEW 

 

For the purpose of studying and detecting diabetes mellitus, 

Zhang et al. [15] proposed AHDHS-Stacking, an EL 

framework. The two components—a feature selector (FS) and 

an optimiser of basic learner groupings—utilize the harmony 

search (HS) approach. An adaptive hyperparameter technique 

was used to speed up the iterative process, and the average 

performance of each base learner was used as an aim of FS to 

create the full performance. Yang et al. [16] introduced a 

method for abnormal blood glucose detection using an 

autonomous neighborhood parameter selection strategy, 

which is based on Adaptive Density-Based Spatial Clustering 

of Applications with Noise. To make up for missing blood 

glucose values, Yang et al. [16] proposed a feature-engineered 

imputation technique. Lastly, global and local spatial-temporal 

properties are extracted from sequence data using a temporal 

multi-head attention model. In the study by Butt et al. [17], a 

multi-layer LSTM-based RNN is used to predict BG levels in 

people with type 1 diabetes. The BG level is being predicted 

within a forecast limit using the created model. 

Langarica et al. [18] suggested the Input and State Recurrent 

Kalman Network (ISRKN) as a new deep learning-based 

method for predicting glucose levels based on probabilities . 

In the latent space of a DNN, this network combines an input 

and a state Kalman filter. This lets secure calculations of later 

distributions and the distribution of uncertainty through 

Kalman calculations happen. Song et al. [19] studied a new 

combined ML technique termed Bagging-ABC-ELM. The 

artificial bee colony (ABC) system achieved the optimum 

input biases and weights of the ELM method. The bagging 

model was utilized to improve the constancy of the system and 

achieve greater performance than ELM. Ye et al. [20] 

suggested using an electric nose (E-Nose) device equipped 

with a metal oxide (MOX) gas sensor array as a new method 

to quantitatively recognize and study BG levels by 

determining breath biomarkers. Progressive ML algorithms 

have investigated and suggested exact predictions of the BG 

level based on the dimensions of 41 members over 10 days. 

Zhu et al. [21] designed an IoMT-enabled wearable device to 

implement the embedded model, a new DL based model that 

employs an attention-based evidential RNN. The device 

consists of a low-power, low-cost system on a chip that uses 

Bluetooth connectivity and edge computing to detect 

predictive hypoglycemia and make real-time BG predictions. 

Also created were desktop and cloud platforms for data storage 

and model fine-tuning, as well as an app for smartphones to 

display BG trajectories and forecasts. Lu and Song [22] 

suggested a new DL based hybrid technique to forecast levels 

of BG for 30 min of prediction horizon, that combined stacked 

Bi-GRU-based RNN, multi-layer perceptron, and Arora et al. 

[23] designed convolutional recurrent connection for 60 min 

aggregated CGM data for 60min prediction horizon and 

achieved 30.51 RMSE. 

 

 

3. THE PROPOSED MODEL 
 

In this study, we have presented a new OALSTM-BGLP 

methodology. The foremost intention of the OALSTM-BGLP 
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technique comprises different kinds of sub-processes involved 

in min-max normalization, ALSTM-based prediction process, 

and RMSProp optimizer-based parameter tuning. Figure 1 

illustrates the workflow of the OALSTM-BGLP methodology. 

 

 
 

Figure 1. Workflow of the proposed OALSTM-BGLP methodology 

 

3.1 Min-max normalization 

 

Firstly, the OALSTM-BGLP method employs Min-Max 

scaling to normalize the input. Min-Max normalization is a 

popular data conversion method to retain the sensitive features 

in the data [24]. By doing so, 8 weeks real time CGM data for 

six patients from OhioT1DM [25] is normalized by the use of 

min-max normalization based on consideration of maximum 

and minimum values in the data. This method carries out a 

linear conversion on the original data. It is especially suitable 

for the classification task and is used in several applications 

namely neural networks, artificial intelligence, clustering, 

nearest neighbor classification, and so on. 

The goal is to normalize the original data D into a preserved 

form of data D’ that fulfills the privacy requirement with a 

least possible loss with high privacy information. This 

technique focuses mainly on data conversion through the min-

max normalization to change the original data. All the 

attributes in a data are normalized by mounting the value such 

that they fall in the minimum range within [0.0-1.0]. Vi of 
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attribute A from the range of [mini-maxi] to [newminA-

newmaxA]. 

 

𝑉𝑖
′ =

𝑉𝑖𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴
(new𝑚𝑎𝑥𝐴-new𝑚𝑖𝑛𝐴)+new𝑚𝑖𝑛𝐴 (1) 

 

where, Vi indicates the new computed value. The relationship 

among the original values is preserved through the min-max 

normalization method. 

 

3.2 ALSTM-based prediction process 

 

For the prediction process, the OALSTM-BGLP technique 

uses the ALSTM model. In 1997, the LSTM network was 

initially developed [26]. Owing to its exclusive design 

framework, LSTM is appropriate for handling and forecasting 

significant actions with actual long intervals in time series. 

LSTM is nothing but a gated recursive neural network (GRNN) 

that inserts a gating device to switch the data spread in the NN 

based on RNN. For normal NN, the motive why performing 

gradient explosion is clarified below: there is a non-linear 

relation among the exterior condition at the latter stage and the 

exterior condition at this stage, and this link is assigned in 

every time step. The GRNN was able to resolve the problem 

of gradient explosion by raising the linear requirement among 

them. Generally, in LSTM, 3 control gate units contain namely 

output gate 𝑜𝑡  forget gate ft and input gate it. The gates of 

forget and input are the bases for LSTM to recall the 

dependency of long‐term. 

Input gate (it) defines how much data about the existing state 

wants to be kept in the interior state: 

 

𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1 + 𝑊𝑖𝑥𝑡 + 𝑏𝑖) (2) 

 

where, σ denote the function of logistics, Wi and Ui represents 

the weight matrix; bi refers to the bias term. ht-1 refers to the 

output of memory block at time t-1 and xt signify the input 

vector at time t. 

Forget gate (ft) defines how much data from the previous 

wants to be rejected. 

 

𝑓𝑡 = 𝜎(𝑈𝑓ℎ𝑡−1 + 𝑊𝑓𝑥𝑡 + 𝑏𝑓) (3) 

 

where, Wf and Uf indicate the weight matrix; bf signifies the 

bias. 

Output gate (ot) fixes how much data from the interior state 

wants to output to the exterior state at an existing stage. 

 

𝑜𝑡 = 𝜎(𝑈𝑜ℎ𝑡−1 + 𝑊𝑜𝑥𝑡 + 𝑏𝑜) (4) 
 

where, Wo and Uo denote the weight matrix; bo refers to the 

bias term. 

The foremost steps of the LSTM prediction method are 

mentioned below. 

(1) At first, the exterior state at the previous stage (ht-1) and 

the input vector at the existing stage (xt) have been employed 

to compute candidate state (𝐶𝑡
~) and 3 gates; 

(2) Next, merge the input gate (it) and forget gate (ft) to 

upgrade the interior state (Ct) of the existing stage; 

(3) Finally, dependent upon the output gate (ot) the interior 

state data was transmitted to the exterior state (ht). 

The abovementioned steps can recognize the prediction of 

the LSTM technique recognized in Keras utilizing 

TensorFlow.  

LSTM is capable of efficiently resolving the issue of 

gradient explosion [27]. At the procedure of training, 

overfitting will basis the test set to collapse. To resolve this 

issue, a dropout layer was inserted to enhance the framework 

of LSTM. Generally, the LSTM places the NN input vector to 

fixed measurement, which has reliable results while dealing 

with lower sizes. If the size of the input parameter is 

comparatively big, it will disturb the solution of the method 

owing to the size explosion issue. To concentrate on the 

prominent parameter, this research presents an attention 

mechanism (AM), which is recognized by preserving the 

LSTM intermediate output encoding for the input series. 

Most attention techniques trust an Encoding‐Decoding 

structure [28]. The encoding procedure of the original codec 

method produces a vector of intermediate in the technique of 

Seq2Seq that is utilized to keep the data of the original series. 

However, the vector is fixed. If the input original series length 

is extensive, then this vector can able to store restricted data 

which bounds the accepting capability of the system. Use an 

AM to pause the restraints of the original codec technique on 

a fixed vector. Figure 2 represents the infrastructure of 

ALSTM. 

 

 
 

Figure 2. Structure of ALSTM 

 

The AM is primarily executed in the subsequent steps [26]. 

In LSTM, the output [h1, h2, …, hn] is changed non-linearly to 

get [u1, u2, u3, … un]. When predicting BG levels using CGM 

data with an Attention LSTM, more attention is typically given 

to the most relevant past glucose readings that strongly 

influence the current prediction. The AM dynamically 

allocates higher weights to time steps in the input sequence 

where patterns or trends are most critical for making accurate 

predictions.  

The significance of each intermediate time step may be 

represented by the attention weight matrix α1, α2, α3, …, αn, 

which is generated by the AM. The weight matrix (Wk) can 

signify the prominence of the intermediate state. Lastly, a 

weighted sum has been executed for a parameter of input and 

weight to get the encoded vector V. The output y is acquired 

by decode as per the encode vector V. The complete 

formulation is mentioned below: 

 

𝑢𝑘 = tanh(𝑊𝑘ℎ𝑘 + 𝑏𝑘) (5) 
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𝛼𝑘 =
exp (𝑢𝑘

𝑇𝑢𝑠)

∑ exp𝑛
𝑘=1 (𝑢𝑘

𝑇𝑢𝑠)
  (6) 

 

𝑉 = ∑ 𝛼𝑘
𝑛
𝑘 ℎ𝑘  (7) 

 

The weight matrix is represented by Wk, a bias term or offset 

is denoted as bk, normalised attention weights are represented 

by αk, and the attention matrix for the time series CGM data is 

randomly initialised as us. 

 

3.3 Hyperparameter tuning using RMSProp optimizer 
 

Eventually, the parameter tuning process was executed by 

using the RMSProp optimizer to boost the ALSTM model 

performance. Optimizer is a hyperparameter required for 

training DL networks. They are widely classified into dual for 

non-convex optimizer issues, such as adaptive rate of learning 

optimization techniques, and non-adaptive rate of learning 

(classical SGD). Even though there is a second-order 

optimizer technique for a convex problem, the considerable 

variation among convex and non-convex optimizer issues for 

convex optimizer problem has one global goal, while the non-

convex optimizer issue has more than one local goal. The 

objective is on first-order optimizer algorithms for non-convex 

problems. This is due to a non-convex optimization problem 

that is the most widespread in NN study. The loss surface 

defines the difficulty and complexity of finding the global 

optima. Therefore, an optimizer is employed for reducing the 

cost function which is evaluated by the cross-entropy, whereas 

the loss function calculates the error which shows the model 

efficiency. RMSprop is a gradient-based optimization method 

used in NN model training. A gradient of complex functions 

such as NN models tends to explode or vanish as the data 

transmits via the function. RMSprop was designed as a 

stochastic method for learning the mini-batch model. 

RMSprop addresses the abovementioned problem through 

the moving average of the squared gradient for normalizing 

the gradients. This balances the step size (momentum), 

increases the step for a smaller gradient to prevent vanishing, 

and decreases the step for a larger gradient to prevent 

exploding. Geoffrey Hinton developed RMSProp, which is 

like an algorithm of gradient descent with motion [29]. 

RMSProp attempts to solve AdaGrad’s entirely reducing rate 

of learning by utilizing a squared gradient moving average that 

uses the scale of current gradient descent for standardization. 

So, with the rate of learning upsurge, this method utilized 

might travel in a straight way with faster converge of higher 

steps. 

 

𝐸[𝑔2]𝑡 = 0.9𝐸[𝑔2]𝑡+1 + 0.1𝑔𝑡
2 (8) 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√(1−𝛾)𝑔𝑡−1
2 +𝛾𝑔𝑡+𝑒

⋅ 𝑔𝑡  
(9) 

 

where, gt represents the moving average of squared gradients. 

γ denotes the term of decay which has a range from zero to one. 

In this work, the RMSProp optimizer is used to define the 

hyperparameter concerned in the ALSTM method. Below, we 

define the objective function that is used to measure the MSE. 

 

𝑀𝑆𝐸 =
1

𝑇
∑ ∑ (𝑦𝑗

𝑖 − 𝑑𝑗
𝑖)

2𝑀
𝑖=1

𝐿
𝑗=1   (10) 

 

Here, M and L represent the resultant values of layer and 

data respectively, whereas 𝑦𝑗
𝑖  and 𝑑𝑗

𝑖  denote the attained and 

desired sizes for jth unit from the resultant layer of the system 

at time t respectively. 

 

 

4. RESULTS ANALYSIS 

 

The literature defines and uses a number of statistical 

criteria to quantify the performance of BGL predictions. In this 

work, we used the Mean Square Error (MSE), Root Mean 

Square Error (RMSE), the Mean Absolute Error (MAE), and 

the Mean Absolute Percentage Error (MAPE). These 

measurements were prevalent in the literature, particularly for 

predictive tasks and specifically for forecasting BG levels. 

The RMSE is a reliable measure of the prediction's accuracy, 

since it permits the error to be expressed in units identical to 

the predicted quantity. Here, the error is defined as the 

disparity between the predicted and observed BGL values at 

every time point where a BGL measurement exists within the 

prediction time frame [30].  

Consider a sequence of BG levels (denoted y) and its 

expected measurements ŷ with a length equal to n. The RMSE 

is expressed as: 

 

√
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)

2𝑁

𝑖=1
  (11) 

 

In most cases, the scale of the error is defined in percentage 

terms using the MAPE, which is given by: 
 

100

𝑛
∑ │

𝑦𝑖−ŷ𝑖

𝑦𝑖
│𝑛

𝑖=1   (12) 

 

In this section, the performance analysis of the OALSTM-

BGLP technique takes place on the OhioT1DM dataset. 

The results are inspected under varying time horizons. 

Table 1 and Figure 3 represent the blood glucose prediction 

results of the OALSTM-BGLP technique under 15m 

prediction horizon (PH). These obtained result values exhibit 

that the OALSTM-BGLP technique displays effectual 

prediction under varying patient IDs. With patient ID of 540, 

the OALSTM-BGLP technique obtains MSE of 43.1915, 

RMSE of 6.5720, MAE of 3.5361, and MAPE of 0.0235. Next, 

based on patient ID of 552, the OALSTM-BGLP method gets 

MSE of 12.1690, RMSE of 3.4884, MAE of 2.3258, and 

MAPE of 0.0185. Also, with patient ID of 584, the OALSTM-

BGLP algorithm gains MSE of 65.3590, RMSE of 8.0845, 

MAE of 3.6239, and MAPE of 0.0244. Meanwhile, based on 

patient ID of 596, the OALSTM-BGLP system achieves MSE 

of 18.5014, RMSE of 4.3013, MAE of 2.5968, and MAPE of 

0.0201. 

Table 2 and Figure 4 examine the BG prediction outcomes 

of the OALSTM-BGLP system at 30m PH. These 

experimental results showed that the OALSTM-BGLP method 

demonstrates effective prediction with varying patient IDs. 

According to patient ID 540, the OALSTM-BGLP system 

gains MSE of 34.5652, RMSE of 5.8792, MAE of 3.1300, and 

MAPE of 0.0207. Moreover, with patient ID of 552, the 

OALSTM-BGLP system obtains MSE of 12.0182, RMSE of 

3.4667, MAE of 2.2911, and MAPE of 0.0188. Similarly, 

based on patient ID of 584, the OALSTM-BGLP technique 

achieves MSE of 67.5320, RMSE of 8.2178, MAE of 3.6693, 

and MAPE of 0.0252. Besides, with patient ID of 596, the 

OALSTM-BGLP algorithm offers MSE of 18.4980, RMSE of 

4.3009, MAE of 2.5721, and MAPE of 0.0195, 

correspondingly. 
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Table 1. Prediction using OALSTM-BGLP under 15m PH 

 
Patient ID MSE RMSE MAE MAPE 

540 43.1915 6.5720 3.5361 0.0235 

544 18.1007 4.2545 2.7271 0.0195 

552 12.1690 3.4884 2.3258 0.0185 

567 61.1774 7.8216 2.8162 0.0220 

584 65.3590 8.0845 3.6239 0.0244 

596 18.5014 4.3013 2.5968 0.0201 

 

Table 2. Prediction outcomes of OALSTM-BGLP at 30m PH 

 
Patient ID MSE RMSE MAE MAPE 

540 34.5652 5.8792 3.1300 0.0207 

544 18.5069 4.3020 2.5005 0.0174 

552 12.0182 3.4667 2.2911 0.0188 

567 60.1172 7.7535 3.2886 0.0272 

584 67.5320 8.2178 3.6693 0.0252 

596 18.4980 4.3009 2.5721 0.0195 

 

 

 
 

Figure 3. Prediction results of the OALSTM-BGLP model under 15m PH (a-b) MSE and RMSE (c-d) MAE and MAPE 
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Figure 4. Prediction from the OALSTM-BGLP system at 30m PH (a-b) MSE and RMSE (c-d) MAE and MAPE 

 

Table 3 and Figure 5 display the blood glucose prediction 

analysis of the OALSTM-BGLP method with 45m PH. These 

experimentation outcomes indicated that the OALSTM-BGLP 

algorithm exhibits proficient prediction at varying patient IDs. 

Based on patient ID 540, the OALSTM-BGLP system 

provides MSE of 36.2906, RMSE of 6.0242, MAE of 3.1425, 

and MAPE of 0.0212. 

Additionally, with patient ID of 552, the OALSTM-BGLP 

approach gets MSE of 12.1974, RMSE of 3.4925, MAE of 

2.3315, and MAPE of 0.0189. Likewise, based on patient ID 

of 584, the OALSTM-BGLP method acquires MSE of 

68.5057, RMSE of 8.2768, MAE of 3.8021, and MAPE of 

0.0260. Finally, with patient ID of 596, the OALSTM-BGLP 

system accomplishes MSE of 18.1017, RMSE of 4.2546, 

MAE of 2.5421, and MAPE of 0.0194. 

Table 4 and Figure 6 demonstrate the blood glucose 

prediction outcomes of the OALSTM-BGLP system under 

60m PH. These achieved findings denoted that the OALSTM-

BGLP algorithm shows successful prediction with varying 

patient IDs. For the patient ID of 540, the OALSTM-BGLP 

method gains MSE of 39.2007, RMSE of 6.2610, MAE of 

3.3479, and MAPE of 0.0227. Meanwhile, with patient ID of 

552, the OALSTM-BGLP approach gets MSE of 14.0294, 

RMSE of 3.7456, MAE of 2.5598, and MAPE of 0.0209. 

Moreover, based on patient ID of 584, the OALSTM-BGLP 

technique provides MSE of 68.3196, RMSE of 8.2656, MAE 

of 3.6609, and MAPE of 0.0253. In conclusion, with patient 

ID of 596, the OALSTM-BGLP method achieves MSE of 

20.3714, RMSE of 4.5135, MAE of 2.6548, and MAPE of 

0.0202. 

Table 5 and Figure 7 present a brief average result of the 

OALSTM-BGLP technique on varying time horizon. These 

experimentation findings implied that the OALSTM-BGLP 

technique exhibits better predictive outcomes under all 

horizon time intervals. With horizon time of 15m, the 

OALSTM-BGLP technique offers MSE of 36.4165, RMSE of 

5.7537, MAE of 2.9377, and MAPE of 0.0213. Additionally, 

based on horizon time of 30m, the OALSTM-BGLP method 

gives MSE of 35.2062, RMSE of 5.6533, MAE of 2.9086, and 

MAPE of 0.0215. Followed by horizon time of 45m, the 

OALSTM-BGLP algorithm provides MSE of 36.7045, RMSE 

of 5.7611, MAE of 2.9926, and MAPE of 0.0222. At last, with 

horizon time of 60m, the OALSTM-BGLP method gains MSE 

of 37.5874, RMSE of 5.9081, MAE of 3.0980, and MAPE of 
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0.0231, respectively. 

Figure 8 compares actual against predicted values of the 

OALSTM-BGLP system using the training dataset. The figure 

reported that the OALSTM-BGLP method properly predicts 

the blood glucose levels. It is also noticed that the predicted 

blood glucose levels by the OALSTM-BGLP technique are 

much nearer to actual values. 

Figure 9 compares the actual and predicted values of the 

OALSTM-BGLP method on the testing dataset. This figure 

pointed out that the OALSTM-BGLP system appropriately 

predicts blood glucose levels. This can be perceived that the 

predicted blood glucose levels by the OALSTM-BGLP 

algorithm is highly close to actual values. 

 

 

 
 

Figure 5. Prediction of the OALSTM-BGLP model under 45m PH (a-b) MSE and RMSE (c-d) MAE and MAPE 

 

Table 3. Prediction outcomes of the OALSTM-BGLP method on 45-min PH 

 
Patient ID MSE RMSE MAE MAPE 

540 36.2906 6.0242 3.1425 0.0212 

544 19.5290 4.4192 2.9300 0.0216 

552 12.1974 3.4925 2.3315 0.0189 

567 65.6025 8.0995 3.2077 0.0263 

584 68.5057 8.2768 3.8021 0.0260 

596 18.1017 4.2546 2.5421 0.0194 

 

Table 4. Prediction outcomes of the OALSTM-BGLP method at 60m PH 

 
Patient ID MSE RMSE MAE MAPE 

540 39.2007 6.2610 3.3479 0.0227 

544 25.2215 5.0221 3.1173 0.0225 

552 14.0294 3.7456 2.5598 0.0209 

567 58.3816 7.6408 3.2471 0.0268 

584 68.3196 8.2656 3.6609 0.0253 

596 20.3714 4.5135 2.6548 0.0202 
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Figure 6. Prediction outcome of the OALSTM-BGLP model under 60 PH (a-b) MSE and RMSE (c-d) MAE and MAPE 

 

Table 5. Average PH of OALSTM-BGLP method under varying PH 

 
PH(m) MSE RMSE MAE MAPE 

15 36.4165 5.7537 2.9377 0.0213 

30 35.2062 5.6533 2.9086 0.0215 

45 36.7045 5.7611 2.9926 0.0222 

60 37.5874 5.9081 3.0980 0.0231 

 

Figure 10 presents the prediction concentration results of 

the OALSTM-BGLP technique under varying time horizons. 

These results pointed out that the OALSTM-BGLP technique 

accomplishes better performance with enhanced prediction 

concentration results under all-time horizons. 

The results demonstrate low error values for the numerical 

metrics MSE, RMSE, MAE, and MAPE, indicating a 

significant enhancement in prediction accuracy. Precision is 

crucial for effective diabetes management, as accurate 

predictions minimise the discrepancy between predicted and 

actual glucose levels. This approach enhances decision-

making speed by reducing errors, and aiding individuals and 

healthcare professionals in effectively predicting and 

managing hypo- or hyperglycaemic episodes. This enhances 

patient safety by avoiding overcorrections and facilitates 

personalised treatment approaches that are adapted to 

individual glucose variability. This increased accuracy enables 

healthcare providers and patients to make informed decisions 

about insulin dosage, dietary changes, and lifestyle 

modifications. Thus, low error metrics indicate the model's 

robustness. 

Numerical metrics are useful for evaluating model 

performance; however, they do not always provide a 

comprehensive understanding of real-world impact. Clarke's 

Error Grid Analysis (CEGA) is commonly utilised to evaluate 

the clinical reliability of blood glucose level predictions [31]. 

CEGA categorizes predictions into five regions: A, B, C, D, 

and E, concerning the clinical outcome of insulin dosing based 

on the predicted BG level. The most unfavorable scenario (D 

and E regions) involves an excessively high BG level 

prediction, which may result in hypoglycemia, a critical 

emergency condition. Consequently, we can categorise the 

identical absolute numerical error into different regions based 

on the actual BGL range and the sign of the error. A predicted 
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value is considered 'clinically acceptable' if it falls within 

either the A or B region. CEGA modifies the grid such that the 

'accurate' domain matches the 'clinically acceptable' 

categorisation. We have generated Clarke error grids for 

prediction horizons at 15m, 30m, 45m, and 60m to analyze the 

clinical implications of the OALSTM-BGLP model. Figure 10 

prominently displays the CEGA at 15m, 30m, 45m, and 60m 

prediction horizons, the majority of the data points also lie in 

region A, reinforcing the reliability and clinical relevance of 

our model's predictions across different time intervals. This 

consistent performance highlights the potential of the 

OALSTM-BGLP model in real-world applications for BG 

level prediction. 

 

 

 
 

Figure 7. Average PH of OALSTM-BGLP model (a-b) MSE and RMSE (c-d) MAE and MAPE 

 

  

  

Figure 8. Comparison of actual and predicted glucose values 

using the OALSTM-BGLP model on the training dataset 

Figure 9. Comparison of actual and predicted values of the 

OALSTM-BGLP model under testing dataset 
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Figure 10. Clarke error grid analysis at different prediction horizons: (a) 15m, (b) 30m, (c) 45m, and (d) 60m 

 

 

5. DISCUSSION 

 

The new OALSTM-BGLP model is designed for predicting 

BG levels by leveraging historical CGM data across four 

critical prediction intervals: 15, 30, 45, and 60 minutes. The 

selection of time intervals for BG level prediction is 

determined by clinical significance and the properties of the 

data. Glucose levels exhibit rapid fluctuations, particularly 

during mealtime. Shorter intervals, such as 15 minutes, are 

clinically significant for monitoring rapid glucose fluctuations, 

facilitating prompt interventions for insulin adjustments. 

While intermediate intervals (30–60 m) provide valuable 

insights into broader trends, they are beneficial for general 

glucose management, including meal planning, physical 

activity, and insulin administration. Additionally, the 

sampling frequency of CGM data (every 5 m) influences the 

selected PH, balancing model accuracy with real-time 

applicability. This approach ensures the model aligns with 

both clinical needs and data constraints. 

Our results demonstrate that the proposed model 

outperformed various recent DL-based approaches in terms of 

predictive accuracy. While direct comparison with existing 

studies is feasible for the 30m and 60m predictions, a 

noticeable gap exists in the recent literature for 15m and 45m 

horizons. Table 6 illustrates its performance in comparison to 

new models tested on various versions of the OhioT1DM 

dataset. 
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Table 6. Comparison of recent literature utilizing the OhioT1DM Dataset with the OALSTM-BGLP model 

 
Study Model Patients PHs RMSE [mg/dL] 

[32] RNN 6 
30m 

60m 

22.43 

36.39 

[33] Deep Residual Forecasting Architecture 6 
30m 

60m 

18.2 

31.7 

[34] GluNet 6 
30m 

60m 

19.28 to 22.93 and 

31.83 to 39.53 

[35] Multilayer CRNN 6 
30m 

60m 

17.45 

33.67 

[36] DCNN, Seq-to-Seq LSTM, MLR, BRC 12 
30m 

60m 

17.52 

24.58 

[21] E3NN 12 
30m 

60m 

18.92 

32.54 

[30] LSTM+WaveNet+GRU 12 

30m 

45m 

60m 

21.90, 

29.12, 

35.10 

[37] 
Autonomous Channel DL 

Framework 
12 

30m 

60m 

16.77 to 21.08 and 

28.36 to 35.22 

Proposed OALSTM-BGLP 6 

15m 

30m 

45m 

60m 

5.75 

5.65 

5.76 

5.91 

 

Martinsson et al. [32] proposed an approach based on RNNs 

trained in an end-to-end fashion that required nothing but the 

glucose level history for the patient and predicted the BG on 

30 m and 60 m PHs. The approach achieved the RMSE values 

of 22.43 and 36.39 for 30 and 60m PHs, respectively. Falcone 

et al. used data from six patients from an updated version of 

the OhioT1DM dataset in their study to suggest a new deep 

residual time series forecasting architecture. This architecture 

modified N-BEATS by incorporating a bidirectional LSTM 

network into each block in place of fully connected layers. The 

method included supplementary input variables, including 

bolus insulin and carbohydrates, and introduced three 

additional loss terms. The proposed deep residual forecasting 

method achieved average RMSEs of 18.2 for the 30 m glucose 

forecasting interval and 31.7 for the 60 m interval. Li et al. [34] 

introduced GluNet, a glucose forecasting method, utilising 

data from six patients in the Ohio T1DM 2018 dataset and 

employing deep neural networks. The findings indicated that 

GluNet attained RMSE values between 19.28 mg/dl and 22.93 

mg/dl for 30 m PH, whereas for 60 m PH, RMSE values varied 

from 31.83 mg/dl to 39.53 mg/dl. Freiburghaus et al. [35] 

introduced a multilayer CRNN that employs multivariate data 

from six patients in the OhioT1DM dataset. The RMSE 

obtained was 17.45 for a 30 m PH and 33.67 for a 60 m PH. 

Zhang et al. [36] designed four different models, including 

deep learning algorithms and regression models, and tested 

how well they could predict BG levels within 30 or 60m PH 

using data from 12 people with OhioT1DM. The two deep 

learning models are the DCNN and the Seq-to-Seq LSTM 

model. The two regression models are a MLR model and a 

BRC model. The Seq-to-Seq LSTM model exhibited superior 

performance in 30m ahead predictions with a 17.52 Average. 

RMSE, whereas the MLR model excelled in 60m-ahead 

predictions with a 24.58 avg. RMSE. Zhu et al. [21] proposed 

a GRU-based RNN model, E3NN, that incorporates an 

attention mechanism and evidential regression. The model was 

developed and evaluated on three datasets, including 

OhioT1DM (12 subjects). The model scored RMSE 18.92 on 

30 m PH and 32.54 on 60 m PH. Dudukcu et al. [30] proposed 

a fusion of LSTM, WaveNet, and GRU models. Experiments 

were done with data from 12 patients with OhioT1DM to make 

predictions on 30m, 45m, and 60m PH, as well as 21.90, 29.12, 

and 35.10 Avg. RMSE was achieved, respectively. Yang et al. 

[37] developed an autonomous channel deep learning 

framework. Researchers tested the framework on data from 12 

patients in the clinical OhioT1DM dataset. The study's 

experiments revealed an RMSE range of 16.775 to 21.085 on 

30 m PH and 28.36 to 35.22 on 60 m PH. 

In this study, we predict BG levels at 15, 30, 45, and 60 m 

into the future, offering a more granular and comprehensive 

analysis compared to most recent studies, which primarily 

focus on 30 and 60 m horizons. By including shorter (15 m) 

and intermediate (45 m) prediction intervals, our approach 

captures more immediate and nuanced glucose dynamics, 

which are critical for timely interventions and effective 

diabetes management. Our RMSE results demonstrate robust 

performance across all horizons. 

 

 

6. CONCLUSIONS 

 

In this study, we have introduced the OALSTM-BGLP 

methodology, which combines Min-Max normalization, an 

attention-based LSTM model, and RMSProp optimizer-based 

parameter tuning for accurate BG level prediction. The 

OALSTM-BGLP technique initially normalises the input data 

through Min-Max scaling, facilitating consistent and 

meaningful comparisons among different features. The 

attention mechanism in the ALSTM model enables the model 

to concentrate on the most pertinent information within the 

input sequence, while also effectively capturing long-term 

dependencies. This enhances the model's capacity to extract 

significant features, thereby improving predictive accuracy. 

The RMSProp optimiser modifies the learning rate in 

accordance with the magnitude of recent gradients, thereby 

enhancing training efficiency and accelerating convergence. 

The assessment of the proposed method using the OhioT1DM 

dataset indicates its superior performance, surpassing recent 

state-of-the-art techniques regarding accuracy. The enhanced 

predictive capability can substantially assist in real-time 

diabetes management, enabling patients and healthcare 

providers to make timely and informed decisions. Potential 
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real-world applications encompass integration into 

personalised diabetes management systems, mobile health 

applications, and continuous glucose monitoring devices, 

where it can deliver actionable insights to avert 

hyper/hypoglycemic events. 

Future research could look into the inclusion of additional 

variables, including insulin dosage, physical activity, and meal 

intake, to improve prediction accuracy. Furthermore, 

examining the model's incorporation into wearable devices for 

continuous, real-time monitoring could facilitate 

advancements in automated diabetes management. Future 

research should examine the model's performance across 

diverse patient populations to verify its robustness and 

applicability in different clinical contexts. 
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NOMENCLATURE 
 

BG Blood Glucose 

BRC Bidirectional Reservoir Computing 

CGM Continuous Glucose Monitoring 

DL Deep Learning 

DCNN Dilated Convolutional Neural Network 

ML Machine Learning 

PH Prediction Horizon 

NN Neural Networks 

RNN Recurrent Neural Network 

GRNN Gated Recurrent Neural Network 

LSTM Long Short Term Memory 

AM Attention Mechanism 

ALSTM Attention based Long Short Term Memory 

SGD Stochastic Gradient Descent 

MSE Mean Square Error 

RMSE Root Mean Square Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MLR Multiple Linear Regression 

  

Greek Symbols 

 

 Weight 

σ Function of Logistics 

ϒ Decay Term 

Ƞ Learning Rate 

θ Parameter value w.r.t time 

Subscripts 

A Attribute 

t Time 
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