
LSTM-Kalman Filter-Based Multi-Sensor Signal Fusion for UAV Altitude Prediction in 

Non-Gaussian Environments 

Nuo Li , Qiang Miao*

College of Electrical Engineering, Sichuan University, Chengdu 610065, China 

Corresponding Author Email: mqiang@scu.edu.cn

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420242 ABSTRACT 

Received: 8 November 2024 

Revised: 2 March 2025 

Accepted: 17 March 2025 

Available online: 30 April 2025 

To address altitude estimation inaccuracies in Unmanned Aerial Vehicles (UAVs) under 

non-Gaussian noise and intermittent sensor failures, this paper proposes a Long Short-Term 

Memory (LSTM)-Kalman cooperative architecture that establishes symbiotic interaction 

between deep feature extraction and physical filtering. The core innovation lies in 

bidirectional cyclic learning: LSTM layers distill temporal noise patterns while Kalman 

modules inject state-space constraints through differentiable projection. A manifold 

interpolation mechanism resolves multi-rate signal mismatches, utilizing LSTM-derived 

coherence weights to guide Lie group synchronization for phase distortion suppression. The 

framework incorporates a fractal-aware decoupling network where LSTM cells generate 

adaptive masks, dynamically separating Gaussian/non-Gaussian components to reconstruct 

Kalman gain rules. Experimental validation demonstrates the architecture's superiority in 

balancing physical consistency and learning capability, providing a novel paradigm for 

robust navigation signal fusion under complex noise conditions. 
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1. INTRODUCTION

The reliable operation of UAVs in complex environments, 

such as executing obstacle avoidance in urban areas or 

stabilizing attitude during disaster response operations, places 

stringent demands on the accurate prediction of their altitude 

information. Precise altitude prediction is a critical factor in 

ensuring mission success and flight safety. However, 

achieving high-accuracy, high-robustness altitude prediction 

in practical applications faces numerous challenges, 

particularly at low altitudes or in signal-degraded 

environments. Traditional physics-based modeling 

approaches, such as Kalman filtering [1], provide a rigorous 

framework for state estimation but often exhibit performance 

degradation when confronted with non-Gaussian noise 

distributions induced by factors like low-altitude turbulence 

[2], or spatiotemporal mismatches caused by effects such as 

multipath [3]. These phenomena lead to systematic deviations 

between theoretical models and actual dynamic characteristics, 

potentially compromising altitude estimation accuracy during 

critical operations. 

In recent years, deep learning techniques have offered new 

avenues for addressing complex problems in sensor data 

processing. For instance, spatiotemporal convolutional 

networks enhance nonlinear modeling capabilities through 

multi-level feature extraction [4], while improved LSTM 

architectures demonstrate significant advantages in temporal 

dependency modeling. Nevertheless, existing purely data-

driven methods still exhibit limitations when applied to UAV 

altitude prediction. On one hand, the "black-box" nature of 

network structures may overlook sensor physical constraints, 

posing risks of violating kinematic principles [5]. On the other 

hand, end-to-end training paradigms can disrupt causal 

relationships within signal processing chains, exacerbating 

spectral distortions in dynamic environments [6]. These issues 

are particularly pronounced in UAV altitude prediction tasks, 

which demand simultaneous adherence to physical 

consistency constraints and environmental adaptability. 

To leverage the complementary strengths of model-driven 

and data-driven approaches, researchers have proposed 

various hybrid architectures. Among these, differentiable 

Kalman filtering frameworks optimize noise parameters via 

gradient propagation [7], while physics-embedded neural 

networks encode sensor characteristics as network priors [5]. 

Although these hybrid methods have achieved certain progress, 

several key challenges remain in enhancing UAV altitude 

prediction performance, such as effectively handling non-

Gaussian noise and sensor spatiotemporal mismatches in 

complex environments, and improving the model's adaptive 

capability while ensuring physical consistency. 

Addressing the aforementioned challenges, this study 

focuses on enhancing the accuracy and robustness of UAV 

altitude prediction in non-Gaussian environments. It proposes 

a novel LSTM-Kalman collaborative optimization 

architecture designed to deeply integrate physical constraints 

with data-driven optimization. The main contribution of this 

paper lies in constructing a fusion framework capable of 

effectively addressing sensor spatiotemporal mismatches and 

complex noise interference, thereby achieving more precise 

and reliable altitude state estimation. Theoretical analysis and 

experimental validation demonstrate that the proposed 

architecture effectively balances physical interpretability and 
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environmental adaptability, offering a new technical pathway 

for improving the reliability of UAV navigation systems, 

particularly the altitude prediction subsystem. 

The remainder of this paper is organized as follows: Section 

2 reviews advancements and challenges in hybrid fusion 

architectures. Section 3 elaborates on the design principles and 

algorithmic implementation of the proposed collaborative 

optimization framework. Section 4 validates the method’s 

effectiveness through multidimensional experiments. Section 

5 concludes the study and outlines future research directions. 

 

 

2. RELATED WORK 

 

2.1 Theoretical evolution of fusion paradigms 

 

The theoretical development of sensor fusion technology 

has transitioned from model-driven to data-driven paradigms. 

Early research centered on the Kalman filtering framework, 

achieving state estimation through precise physical models, 

with these model-driven methods exhibit limitations in non-

Gaussian scenarios due to rigid statistical assumptions [6]. 

Breakthroughs in deep learning have enabled data-driven 

paradigms to extract end-to-end features through 

spatiotemporal convolutional networks, significantly 

enhancing adaptability to complex environments [8]. The 

introduction of memory-augmented architectures further 

strengthens the system’s ability to model historical states, 

exhibiting robustness in scenarios with intermittent sensor 

failures [9]. However, purely data-driven approaches 

frequently suffer from kinematic distortion and energy non-

conservation due to the lack of physical constraints, driving 

researchers to explore hybrid architectures. 

 

2.2 Methodological breakthroughs in hybrid architectures 

 

Current hybrid methodologies follow two technical paths: 

the first enhances traditional filters’ parameter adaptability 

through differentiable programming, such as differentiable 

Kalman frameworks that dynamically adjust noise covariance 

matrices via gradient propagation [10]; the second embeds 

physical conservation laws into neural network structures, 

exemplified by Hamiltonian dynamics-guided recurrent 

networks that preserve system energy properties through 

symplectic integration [11]. 

While such Hamiltonian-based approaches explicitly 

enforce specific conservation laws like energy through 

specialized network architectures, the LSTM-Kalman 

framework proposed in this work achieves physics-data 

synergy via a different mechanism. Our method focuses on 

establishing a deep, bidirectional coupling between the learned 

dynamics of the LSTM and the state-space constraints 

imposed by the Kalman filter structure. Physical consistency 

is thus maintained relative to the filter's model and enhanced 

through data-driven adaptation (e.g., via Bi-DGND and 

adaptive components), rather than through architectural 

enforcement of a specific conservation principle like energy. 

While the former improves dynamic noise adaptation, it still 

depends on manually designed interpolation strategies for 

spatiotemporal alignment of multi-source heterogeneous 

sensors. The latter ensures physical consistency but is limited 

by the completeness of predefined constraints. Recent 

advancements have shifted focus toward co-designing sensor 

physical characteristics with computational frameworks, 

where joint hardware-algorithm optimization enables 

simultaneous noise suppression and temporal alignment 

through systematic integration of device-level features and 

algorithmic parameters [10, 11]. Nevertheless, existing 

methods exhibit delayed responses to sudden sensor 

degradation and unresolved geometric mismatches in cross-

modal feature spaces. 

 

2.3 New directions in physics-informed fusion learning 

 

Physics-inspired machine learning provides novel 

theoretical tools for sensor fusion. Manifold-constrained 

learning frameworks significantly reduce Riemannian metric 

errors in multi-sensor data alignment by preserving the 

differential geometric properties of feature spaces [12]. The 

introduction of differentiable numerical simulators enables 

automatic satisfaction of mass-energy conservation laws 

during end-to-end training, offering a new paradigm for 

complex dynamic modeling. While these advancements 

improve fusion accuracy, theoretical gaps remain in designing 

online adaptation mechanisms for non-stationary 

environments, coupling sensor nonlinearities with algorithmic 

parameters, and developing lightweight deployment strategies 

for resource-constrained scenarios. This study addresses these 

challenges through a systematic solution: the LSTM-Kalman 

collaborative architecture achieves breakthroughs in manifold 

geometric modeling, dynamic noise decoupling, and 

hardware-algorithm co-optimization. 

 

 

3. COLLABORATIVE PERCEPTION 

ARCHITECTURE AND CORE ALGORITHM DESIGN 

 

 
 

Figure 1. Flowchart of the LSTM-Kalman collaborative 

architecture 

 

To address the challenge of inaccurate UAV altitude 

prediction under non-Gaussian noise, this paper proposes a 

novel architecture featuring deep collaboration between 
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LSTM and a Kalman filter (the overall logic of which is 

illustrated in Figure 1). This method aligns multi-source sensor 

data using manifold geometry and leverages bidirectional 

information interaction between LSTM's data-driven analysis 

capabilities and the Kalman filter's physical model constraints. 

This achieves adaptive suppression of complex noise and 

precise modeling of system dynamics. Experimental results 

validate the effectiveness of this architecture in enhancing 

altitude prediction accuracy and robustness compared to 

traditional methods. 

 

3.1 Generalized manifold interpolation compensation 

mechanism 

 

3.1.1 SE(3) × ℝ4 composite manifold construction 

To fuse multi-source, heterogeneous sensor information 

(e.g., IMU, GPS, barometer with different sampling rates and 

noise characteristics) within a unified geometric framework 

for UAV systems, this paper proposes constructing a Lie 

group-based composite manifold. This manifold is designed to 

integrate the rigid-body motion state of the UAV with its 

spatiotemporal coordinates. We define this composite 

manifold space ℳ as: 

 

ℳ = SO(3) ⋉ ℝ3 × ℝ4 (1) 

 

where, SE(3) = SO(3) ⋉ ℝ³ is the special Euclidean group, 

representing rotation (SO(3)) and translation (ℝ³) in 3D space. 

The additional ℝ4 space encodes altitude (h), latitude (φ), 

longitude (λ), and time (t). 

To define distances and perform geometric operations on 

this manifold, we introduce a Riemannian metric tensor g. 

Considering the physical meaning of the subspaces and 

computational feasibility, we design g with a block-diagonal 

structure: 

 

g = (

ω1I3 0 0
0 ω2I3 0

0 0 ω3diag(1, cos2 φ, 1,1)
) (2) 

 

Here, 𝐼3is the 3×3 identity matrix. This structure assumes 

that the metric contributions of rotation, translation, and the 

other state components are decoupled. The ℝ4 component 

includes the cos2 φ term to properly handle the geometric 

properties associated with the geographic coordinate system 

(latitude φ, longitude λ). The scalar weightsω1, ω2, ω3>0 are 

used to adjust the relative scales of these subspaces within the 

manifold geometry. The choice of scalar weights, rather than 

full matrix blocks, primarily aims to simplify computations 

and parameter optimization, facilitating embedded 

implementation, while also intuitively reflecting the relative 

importance assigned to each subspace. 

 

3.1.2 Adaptive metric weight optimization via LSTM-Kalman 

A static manifold metric cannot adapt to dynamically 

changing sensor noise and operating environments. To 

enhance robustness, this paper introduces an adaptive metric 

weight optimization method based on an LSTM-Kalman 

collaborative mechanism. The weights ωi are not fixed values 

but are dynamically adjusted based on real-time data. 

This mechanism combines the strengths of data-driven and 

model-driven approaches: 

⚫ LSTM Analyzes Historical Residuals: A Long Short-

Term Memory (LSTM) network analyzes historical state 

estimation residuals∆x1:k−1 to learn potential temporal 

correlations, nonlinearities, and non-Gaussian noise 

patterns present in the sensor data. 

⚫ Kalman Provides Real-time Uncertainty: The Kalman 

filter (or its variants), during its recursive process, 

provides quantitative information about the current state 

estimation uncertainty, typically embodied in its state 

covariance matrix 𝑃𝑘 (or innovation covariance 𝑆𝑘). 

Information from these two sources is fused via a mapping 

function 𝑓(∙) to update the metric weights 𝜔𝑖  online: 
 

𝜔𝑖(𝑘) = 𝑓(LSTM(∆x1:k−1), 𝐾𝑎𝑙𝑚𝑎𝑛(𝑃𝑘)) (3) 
 

where, Kalman (𝑃𝑘 ) represents a function extracting scalar 

information related to the uncertainty in each subspace 

(rotation, translation, etc.) from 𝑃𝑘 (the specific form depends 

on the implementation). 

This adaptive weight adjustment allows the manifold metric 

g to dynamically reflect the current confidence in different 

sensor readings. For instance, if IMU noise increases 

(reflected in the corresponding blocks of 𝑃𝑘  and potentially 

detected by LSTM from residuals), the weights 𝜔1, 𝜔2 might 

decrease. This effectively "stretches" the distance associated 

with rotation and translation on the manifold, causing 

subsequent operations based on this metric (such as the 

manifold interpolation described in Section 3.1.3) to 

automatically down-weight the influence of this currently less 

reliable information. In this way, the adaptive metric 

mechanism ensures geometric consistency and robustness in 

state estimation under complex environmental perturbations 

(e.g., time-varying noise, intermittent sensor failures) by 

adjusting the manifold's own geometric structure to reflect 

data quality [13].    
 

3.1.3 Geodesic interpolation for asynchronous sensors 

To handle asynchronous data from multi-rate sensors, 

geodesic interpolation is performed on the SE(3) × ℝ4 

manifold, inherently preserving kinematic constraints. 

Utilizing the Lie group exponential (exp) and logarithm (log) 

maps, the state γ(t) at intermediate time t between 

measurements Ti and Ti+1 is estimated via: 
 

γ(t) = Tiexp(k(t) ∙
t − ti

ti+1 − ti

log(Ti
−1Ti+1) + η

∙ LSTM(∆Thist)) 

(4) 

 

Here, the factor k(t) = 1 +
‖ω(t)‖2

4
,  derived from the 

instantaneous IMU angular velocity norm ‖ω(t)‖, 
dynamically adjusts the influence of the geometric 

interpolation step based on rotational dynamics. The term 

involving log(Ti
−1Ti+1) represents the relative transformation 

in the tangent space, weighted by time and scaled by k(t), 

before being mapped back to the manifold via exp(∙). 

Crucially, this formulation synergistically combines the 

kinematically consistent geometric interpolation (adaptively 

scaled by k(t) with data-driven compensation η ∙
LSTM(∆Thist) derived from LSTM predictions based on 

historical residuals. This hybrid approach enhances robustness 

by allowing the interpolation to adapt using both instantaneous 

rotational dynamics (ω)  and learned temporal patterns 

(LSTM), providing higher-fidelity input for subsequent fusion 

steps. 

Regarding the mathematical properties of the interpolation 

operator γ(t) defined in Eq. (4), its continuity with respect to 
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inputs (time, measurements Ti
−1Ti+1, and LSTM outputs) is 

expected, owing to the continuity of the Lie group exponential 

map and assuming standard continuous activation functions 

within the LSTM. While a formal proof of diffeomorphism is 

complex due to the data-driven term, the operator is 

anticipated to possess sufficient local smoothness. These 

properties (continuity and local smoothness) are important for 

ensuring the well-behaved and stable operation of subsequent 

steps like the synchronization mechanism, which relies on 

consistent error evaluation on the manifold. 

 

3.1.4 Bio-inspired synchronization mechanism 

Inspired by neural synaptic plasticity [14], a dual-manifold 

feedback system synchronizes sensor timestamps via the 

update rule:  

 
dτ

dt
= α ∙ sigmoid(β ∙ ‖∇J‖) + γ ∙ tr(Pk) (5) 

 

where, the alignment error J combines geometric and temporal 

residuals. Parameters (α, β, γ)  are optimized via Lyapunov 

stability criteria, enabling adaptive prioritization where 

increased Kalman covariance Pk amplifies LSTM-based 

compensation. This proposed scheme achieves significantly 

improved synchronization accuracy compared to traditional 

methods based on fixed interpolation coefficients [15], as 

detailed in Section 4. 

 

3.2 Noise-aware residual propagation network 

 

This module establishes a deep coupling architecture 

between LSTM and Kalman filtering to achieve dynamic noise 

feature perception and collaborative suppression. The 

technical evolution follows the progressive logic of "feature 

decoupling → parameter optimization → hardware 

acceleration", forming a vertically integrated innovation 

framework from algorithmic theory to engineering 

implementation. 

 

3.2.1 Bidirectional gated neural differentiator 

To address the time-frequency coupling characteristics of 

non-stationary noise, we propose a Bidirectional Gated Neural 

Differentiator (Bi-DGND). The core innovation lies in 

establishing gradient dialogue mechanisms between LSTM 

and Kalman filtering. The forward gating unit achieves 

temporal feature extraction through hidden state fusion: 

 

Γf
t = σ(Wf ∙ [ht−1, ϵKalman

t ] + bf) (6) 

 

where, ht−1  encodes historical motion trajectories, while 

ϵKalman
t injects Kalman residual constraints at current timestep. 

During backpropagation, the residual gradient ∂ϵKalman
t / ∂W 

modifies LSTM weights through gating channels, forming 

feedforward-feedback closed loop between physical models 

and deep learning. This design breaks through the 

unidirectional modeling limitation of traditional recurrent 

networks, constructing noise feature decoupling channels in 

the frequency domain to provide high-purity feature inputs for 

parameter adaptation [13]. 

In contrast to existing hybrid architectures like 

differentiable Kalman filter variants, which primarily leverage 

gradient-based optimization to adapt the filter's internal 

parameters (e.g., noise covariance matrices), the proposed Bi-

DGND establishes a deeper, structural coupling between the 

LSTM and the Kalman filter. The key distinction lies in the 

bidirectional gradient dialogue: Kalman residuals (ϵKalman
t ) 

directly inform LSTM's forward feature extraction, while 

gradients derived from these residuals 𝜕ϵKalman
t 𝜕𝑊⁄  are 

propagated back to explicitly shape the LSTM's learned 

representation. This bidirectional flow forms a closed loop 

between the physical model and the deep learning component, 

yielding enhanced synergy. This mechanism enables the 

LSTM to learn features more attuned to physical state 

estimation while being regularized by the Kalman constraints, 

resulting in improved noise decoupling and robustness against 

complex dynamics compared to approaches focusing solely on 

filter parameter adaptation. 

 

3.2.2 Kalman gain adaptation mechanism 

Based on fractal dimension analysis of LSTM hidden states, 

we establish a dynamic gain adjustment model to handle time-

varying noise environments. As shown in Eq. (2), noise 

statistical characteristics are quantified through hidden state 

autocorrelation coefficients: 

 

Df =
log(N)

log(1 ρ(ht)⁄ )
 (7) 

 

When Df >1.6 (indicating impulse noise dominance), the 

system triggers spectral norm scaling of observation noise 

covariance matrix. This process dynamically generates scaling 

factor β through nonlinear mapping of LSTM outputs, 

enabling Rt
eff  to adaptively adjust within [0.15, 0.35]. This 

hidden-state-driven parameter optimization strategy maintains 

the theoretical completeness of Kalman filtering while 

endowing the algorithm with strong robustness against 

complex noise [16]. 

 

3.2.3 Fractal noise suppression theory 

To suppress fractal noise with long-range correlation, we 

propose a gradient-coupled Hurst index estimator. As shown 

in Eq. (3), this method combines rescaled range analysis (R/S) 

with LSTM gradient feedback: 

 

Ht =
1

2
∙

log(
R
𝑆

)t

log(N)
+ λ ∙

∂ℒLSTM

∂Ht

 (8) 

 

When Ht >0.7, a third-order recursive fractal filter is 

activated, with coefficients designed following fractional 

calculus theory. Through CUDA kernel fusion technology, 

this module achieves instruction-level optimization: (1) 

Pipeline integration of DMA transfers and computing kernels 

eliminates memory access latency; (2) Shared memory reuse 

of LSTM weight caches reduce bandwidth occupancy; (3) 

Dynamic allocation of stream processor resources through 

warp schedulers. This hardware-software co-design reduces 

single-filter latency to 18 clock cycles, compared to the CPU 

baseline implementation with OpenCV optimization (single-

filter latency: 98 clock cycles), our hardware-software co-

design reduces latency to 18 clock cycles, achieving a 5.4:1 

speedup ratio (equivalent to 4.4× real-time performance 

improvement) under identical input conditions. 

While a formal convergence proof for the specific recursive 

structure involving LSTM gradients in Eq. (7) remains 

complex and beyond the scope of this work's theoretical 

analysis, we note that rigorous convergence analysis, often 

employing stochastic process theory, has been successfully 

1114



 

applied to parameter estimation for other classes of complex 

nonlinear feedback systems [17]. This highlights the 

feasibility of such analyses in related domains, further 

motivating future theoretical investigation for the proposed 

Hurst index estimator. Nevertheless, the stability and 

effectiveness of the proposed method are empirically 

supported by the experimental results presented in Section 4. 

 

3.3 LSTM-Kalman collaborative architecture with 

bidirectional optimization 

 

3.3.1 Collaborative architecture design 

This architecture innovatively constructs a feature-state 

bidirectional closed-loop system, overcoming the 

fragmentation between data-driven and model-driven modules 

in traditional approaches. The system achieves dynamic 

collaboration through dual-channel mechanisms of forward 

feature transmission and reverse gradient coupling: 

 

Forward Channel 

The LSTM network extracts physically meaningful residual 

features from raw sensor data. These features reconstruct the 

Kalman filter's observation matrix via a differentiable 

mapping function Φ(∙), extending the traditional observation 

equation H to: 

 

Heff = H + Φ(∆xt
LSTM) (9) 

 

This design draws inspiration from de Curtò and de Zarzà’s 

[18] hybrid architecture but innovatively introduces Lie group 

constraints to ensure kinematic compliance during feature 

mapping. 

 

Reverse Channel 

The Kalman filter's posterior covariance matrix is 

transformed into a regularization term, backpropagated to the 

LSTM network through differentiable pathways. This physics-

constrained gradient transfer mechanism effectively 

suppresses overfitting risks in dynamic systems: 

 

∇Wℒ =
∂‖xt

GT − x̂t‖
2

∂W
+ λ ∙ Tr(

∂Pt
+

∂W
) (10) 

 

where, λ is an adaptive coupling strength coefficient that 

enhances robustness in noisy environments. 

 

3.3.2 Parameter Alternation Optimization Algorithm 

To address the coupled optimization challenge between 

manifold interpolation parameters (ΘM) and residual network 

parameters (ΘR), we propose the Manifold-Aware Alternating 

Training (MAT) algorithm. Its core idea is to alternately 

optimize between manifold-constrained LSTM training and 

residual-corrected manifold projection until parameter 

convergence. The two alternating phases are: 

1. Manifold Constraint Phase 

Fix the manifold interpolation parameters ( ΘM ) and 

optimize the LSTM network within the SE(3)×ℝ⁴ manifold 

space. The loss function is defined as: 
 

ℒR = 𝔼[dgeo(x̂t, xt
GT)] (11) 

 

Here, dgeo represents the geodesic distance metric, which is 

adapted from Tang et al.'s [13] manifold learning methodology 

but incorporates temporal sliding-window averaging to 

enhance convergence speed. 

2. Residual Correction Phase 

Fix the LSTM network parameters ΘR and optimize the Lie 

group projection parameters of the manifold interpolation 

operator. This phase employs covariance-driven adaptive 

learning rates: 

 

ηM =
α

√Tr(Pt
+Pt

−)
 (12) 

 

This design ensures automatic adjustment of parameter 

update steps in high-noise scenarios to prevent manifold 

structure distortion. The two phases are alternated at a fixed 

frequency, and experimental results demonstrate that this 

strategy achieves significantly faster parameter convergence 

and superior generalization capability compared to traditional 

joint training methods. 

 

3.3.3 Dynamic resource allocation theory 

To meet real-time requirements on embedded platforms, we 

propose a Lyapunov stochastic optimization-based dynamic 

scheduling framework. The resource allocation problem is 

formulated as: 

 

minμt
= 𝔼[ℒt]         s. t.      QCPU(t) ≤ Qmax (13) 

 

Let QCPU denote the task queue length and μt represent the 

resource allocation decision. By constructing a drift-plus-

penalty function: 

 

∆(μt) = 𝔼[L(t + 1) − L(t)] + V𝔼[ℒt] (14) 

 

The optimal resource allocation policy is derived as: 

 

μt
∗ =

V ∙ ∂ℒt ∂μt − QCPU(t)⁄

2c
 (15) 

 

where, c is the platform's computational capability coefficient. 

This theory extends edge computing framework, achieving the 

first real-time resource coordination between LSTM and 

Kalman filtering in navigation systems. 

 

 

4. MULTIMODAL EXPERIMENTAL VALIDATION 

AND DYNAMIC PERFORMANCE EVALUATION 

 

4.1 Experimental scenarios and parameter configuration 

 

4.1.1 Experimental platform and dataset configuration 

Prior to model training and evaluation, the UrbanNav 

dataset underwent a rigorous, standardized preprocessing 

pipeline designed to ensure data consistency and enable robust 

algorithmic assessment. 

Firstly, to address the inherent challenges of sensor 

asynchronicity and differing sampling rates (IMU @ 200Hz, 

GPS @ 10Hz, Barometer @ 50Hz), all sensor data streams 

were meticulously spatiotemporally aligned. This crucial step 

utilized the geodesic interpolation method executed on the 

SE(3) × ℝ4 manifold, as detailed in Section 3.1.3. The 

alignment process effectively unified the disparate data 

sources to a common high-frequency timeline, synchronized 

primarily with the IMU data, while simultaneously 

compensating for intrinsic sensor communication and 

processing delays. 
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Secondly, a key objective was to evaluate algorithmic 

robustness under non-ideal, yet realistic, operating conditions. 

To facilitate this, simulated hybrid noise was carefully 

superimposed onto the aligned sensor measurements, focusing 

predominantly on the GPS and barometer data streams while 

preserving the original noise characteristics inherent in the 

IMU signals. This simulated noise profile included zero-mean 

Gaussian white noise, with standard deviations pragmatically 

set relative to typical published sensor specifications, 

alongside low-probability impulse noise. The impulse noise 

was characterized by specifically defined amplitude ranges 

and short durations, designed to mimic transient sensor faults 

or external environmental interference. 

Finally, to generate suitable input samples, particularly for 

the LSTM network's training and validation phases, a sliding 

window data augmentation technique was employed. 

Overlapping temporal sequences were extracted from the 

processed time series using a defined window length (e.g., 50 

frames / 1.0s, consistent with parameters in Table 1) and a 

specified step size determining the degree of overlap. 

Furthermore, minor temporal jitter was intentionally 

incorporated within each extracted window sequence. This 

augmentation step aimed to enhance the diversity of the 

training data and improve the model's generalization 

capabilities when facing slight temporal variations.    

This comprehensive preprocessing procedure yielded the 

final datasets utilized for all subsequent model training, 

validation, and performance evaluation experiments presented 

within this study. 

 

Table 1. Core parameter configuration 

 
Parameter Value Description 

LSTM Hidden 

Units 
64 

GRU structure for 200Hz 

IMU streams 

STW-1856 

Window 

1.0s (50 

frames) 

IEEE 1856-2022 

compliant temporal 

window 

SE(3) k 

Coefficient 
0.7 

UrbanNav SE(3) 

projection standard 

KF_UrbanNoise 

Cov 

diag(0.01, 

0.01, 0.1) 

ANSI urban motion 

model covariance 

 

4.1.2 Benchmark methods configuration 

This study selects four representative methods as 

comparative baselines, with implementation details 

summarized in Table 2. 

 

Table 2. Parameter settings of benchmark methods 

 
Method 

Name 
Core Parameters 

Source 

Reference 

Traditional 

EKF 

Process noise covariance Q=diag 

(0.1,0.1,0.2), Observation noise 

covariance R=diag (0.3,0.3,0.5) 

Brossard et 

al. [19] 

Pure LSTM 

Hidden layer dimension=64, 

Sliding window=50 frames, 

Learning rate=1e-3 

Pan et al. 

[9] 

Manifold 

Interp 

SE(3) manifold projection, Fixed 

interpolation coefficient α=0.7 

Zhu et al. 

[20] 

Hybrid 

Kalman 

LSTM-KF cascade structure, 

Static covariance estimation 

Luo et al. 

[21] 

 

Implementation Notes: 

1. Noise covariance parameters for the traditional EKF 

follow the UAV navigation calibration method proposed by 

Zhu et al. [20]. 

2. The manifold interpolation coefficient retains the 

nominal value from publication [22]. 

3. All benchmark methods are reproduced on identical 

hardware (Jetson TX2) and evaluated using the UrbanNav 

dataset. 

This configuration ensures methodological consistency 

while maintaining technical diversity across data-driven and 

model-based paradigms. 

 

4.2 Multi-sensor signal fusion performance verification 

 

4.2.1 Effectiveness of dynamic weight adjustment 

To validate the performance of the dynamic weight 

allocation mechanism for sensor credibility, Figure 2 

illustrates the weight variation curves during GPS signal 

failure scenarios. When GPS signals are artificially interrupted 

at t = 15 s, the GPS weight rapidly decreases from 0.85 to 0.12 

within 0.5 s, while the IMU weight increases from 0.10 to 0.72 

and the barometer weight adjusts from 0.05 to 0.16. 

Experimental results demonstrate that the Root Mean Square 

Error (RMSE) of position estimation using our method 

increases by only 9.3% (from 0.65 m to 0.71 m) during GPS 

failure, compared to a 217% error surge (from 1.12 m to 3.56 

m) in traditional fixed-weight Kalman filtering. The weight 

recovery time (1.2 s) closely aligns with the Kalman filter 

convergence speed (1.5 s), confirming the stability of the 

closed-loop feedback mechanism. 

 

 
 

Figure 2. Dynamic sensor weight adjustment in GPS-denied 

scenarios 

 

Key Findings: 

1. Latency Advantage: The weight adjustment delay (25 ms) 

is significantly lower than conventional methods (120 ms), 

benefiting from LSTM's temporal prediction capability 

(Section 3.2.1). 

2. Error Suppression: The rapid IMU weight increase 

(+620%) effectively mitigates error divergence, validating the 

engineering value of the bio-inspired synchronization 

mechanism (Section 3.1.3). 
 

4.2.2 Altitude prediction accuracy comparison 

To evaluate the performance of the proposed method in 

challenging environments, altitude prediction accuracy was 

tested in simulated forest conditions with an 80% GPS signal 

denial rate. Table 3 compares the performance of our method 

against three baselines: a traditional Extended Kalman Filter 
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(EKF), a pure LSTM network, and the more recent approach 

by Irfan et al. [23], using key accuracy metrics. 

 

Table 3. Altitude prediction performance comparison 

 
Method RMSE (m) MAE (m) Max Error (m) 

EKF 1.12 0.95 2.34 

LSTM 0.89 0.72 1.98 

Proposed 0.65 0.53 1.12 

Irfan et al. [23] 0.78 0.64 1.45 

 

As shown in Table 3, the proposed method demonstrates 

superior altitude prediction performance in this GPS-denied 

forest environment. It achieves a mean RMSE of 0.65 m, 

which is substantially lower than the 1.12 m RMSE of the 

traditional EKF and the 0.89 m RMSE of the pure LSTM 

approach. To assess the statistical significance of these 

improvements, paired t-tests were conducted comparing the 

results across multiple independent trials. The proposed 

method showed statistically significant improvements over 

both traditional baselines, achieving a relative RMSE 

reduction of 41.9% compared to EKF (p < 0.001) and 27.0% 

compared to LSTM (p < 0.01). When compared to the more 

recent Irfan et al. [23] method (RMSE = 0.78 m), our approach 

also exhibited a statistically significant advantage, with an 

RMSE reduction of 16.7% (p < 0.05). 

 

The enhanced performance stems primarily from two 

synergistic aspects of the proposed architecture: 

⚫ Noise Suppression: The LSTM component, informed by 

fractal noise analysis (Section 3.2.3), effectively 

compensates for non-Gaussian noise sources such as 

barometric temperature drift (with Hurst index 

estimation errors observed below 0.05 in tests). 

⚫ Kinematic Constraints: The integration of the Kalman 

filter's rigid-body motion model (Section 3.1.1) provides 

physical constraints that mitigate potential overshooting 

issues inherent in pure data-driven LSTM approaches, 

particularly during aggressive maneuvers. 
 

Data Highlights:  

During specific 20-second climb-hover-descent maneuver 

segments within the tests, the proposed method reduced the 

maximum altitude error by 22.7% compared to the Irfan et al. 

[23] baseline (1.12 m vs 1.45 m) and decreased the error 

variance by 35.2%. These observations further corroborate the 

efficacy of the joint optimization approach combining 

manifold constraints and the residual propagation network 

(Section 3.2). 
 

4.2.3 Manifold interpolation compensation effectiveness 

analysis 

To evaluate the effectiveness of the proposed geodesic 

interpolation method on the SE(3) × ℝ4 manifold (Section 

3.1.3) in addressing spatiotemporal mismatches for multi-rate 

sensors, we compared it against traditional linear interpolation 

and a modern time-frequency analysis benchmark, Wavelet 

Coherence (WC). Wavelet-based methods like WC are 

recognized as suitable for analyzing time-varying phase and 

synchronization characteristics in non-stationary signals such 

as GNSS time series [24]. We particularly examined the 

performance in compensating phase alignment errors between 

IMU and GPS signals during sharp turn maneuvers (> 180°/s 

angular velocity), a scenario demanding high temporal 

synchronization. Key performance metrics are summary zed 

in Figure 3. 

 

 
 

Figure 3. Comparison of performance metrics for interpolation methods (Latency and Error) 

 

Figure 3 clearly presents the comparison results for the three 

methods across the metrics of average processing latency (ms) 

and cumulative position error (m). As indicated, the proposed 

manifold interpolation method performs best on both metrics, 

achieving an average processing latency of approximately 3.1 

ms and a cumulative error around 1.34 m. Wavelet Coherence 

analysis, serving as an advanced benchmark, outperformed 

linear interpolation with an average latency of about 5.8 ms 

and a cumulative error near 2.25 m. Traditional linear 

interpolation yielded the least favorable results, with latency 

reaching 12.3 ms and cumulative error accumulating to 3.12 

m. Compared to linear interpolation, the proposed method 

reduces average latency by approximately 74.8% and 

cumulative error by 57.1%. Importantly, relative to the modern 

Wavelet Coherence benchmark, our method still demonstrates 

advantages of about 46.6% in average latency and 40.4% in 

cumulative error. This superior performance is primarily 

attributed to the method's effective combination of the 

manifold's geometric structure (ensuring kinematic 

consistency, adapted by the k(t) factor) and data-driven 

compensation via LSTM leveraging historical residuals 
(∆Thist),  allowing for more precise modeling and 

compensation of dynamic sensor delays beyond analyzing 

signal coherence alone. Furthermore, spectral analysis results 
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also indicate that the proposed method effectively 

compensates for IMU-GPS spatiotemporal misalignment, 

outperforming the method in study [18]. These findings 

collectively validate the superiority and effectiveness of the 

proposed manifold interpolation mechanism for handling 

sensor spatiotemporal mismatches. 

 

4.2.4 Ablation analysis of Bi-DGND component contributions 

To further investigate the roles of the key components 

within the Bidirectional Gated Neural Differentiator (Bi-

DGND) proposed in Section 3.2.1, a series of ablation 

experiments were designed and conducted. We compared the 

altitude prediction performance of the following three model 

configurations on the UrbanNav dataset: (1) the complete Bi-

DGND model (Proposed); (2) the model without the forward 

Kalman residual constraint (-FC); and (3) the model without 

the backward gradient feedback (-BG). RMSE and Mean 

Absolute Error (MAE) were used as the primary evaluation 

metrics, with results summarized in Table 4. 

 

Table 4. Bi-DGND component ablation study results 

 
Model Configuration RMSE (m) MAE (m) 

Proposed (Full Bi-DGND) 0.65 0.53 

Proposed w/o FC (-FC) 0.73 0.60 

Proposed w/o BG (-BG) 0.70 0.58 

 

The results in Table 4 show that, compared to the complete 

Bi-DGND model, removing either key component leads to a 

certain degree of performance degradation. Specifically, 

removing the forward constraint (-FC) increased the model's 

RMSE and MAE by 0.08 m and 0.07 m, respectively. This 

suggests that utilizing real-time residual information from the 

Kalman filter to guide LSTM feature extraction likely has a 

positive effect on improving prediction accuracy. Similarly, 

removing the backward gradient feedback (-BG) also resulted 

in reduced performance (RMSE and MAE increased by 0.05 

m and 0.05 m, respectively). This result supports the role of 

the backward gradient path within Bi-DGND, indicating that 

using gradient information derived from the physical model to 

constrain the deep model's learning process could contribute 

to guiding the LSTM towards representations more consistent 

with the physical state. Overall, these ablation results 

preliminarily indicate that both the forward information 

injection and the backward gradient constraint in Bi-DGND 

appear beneficial for achieving optimal performance, 

potentially facilitating effective synergy between the LSTM 

and Kalman filter components. Although this study did not 

directly measure gradient propagation efficiency, the observed 

performance differences hint at the potential value of this 

bidirectional interaction mechanism for information 

integration within the model. 

 

4.3 Hybrid model optimization comparison 

 

4.3.1 Computational complexity analysis 

To validate the optimization efficacy of heterogeneous 

computing scheduling and memory sharing architecture, Table 

5 compares resource consumption across methods. The 

proposed approach reduces per-frame processing time to 3.7 

ms on Jetson TX2, achieving a 76.6% improvement over 

traditional EKF (15.8 ms). This enhancement is primarily 

attributed to: 

1. Heterogeneous task scheduling: LSTM inference tasks 

are allocated to GPU (CUDA kernels) while Kalman updates 

remain on CPU, minimizing idle waiting through 

parallelization (Figure 4). 

2. Memory sharing mechanism: Shared caching of LSTM 

weights and Kalman covariance matrices reduces cache miss 

rates from 27% to 9% via the cache-aware scheduling strategy 

from [25] (Figure 5). 

 

 
 

Figure 4. Heterogeneous task scheduling performance 

 

 
 

Figure 5. Cache miss rate with shared caching 

 

Table 5. Computational resource consumption comparison 

 

Method Processing Time (ms) 
CPU Load 

(%) 

Memory 

(MB) 

EKF 15.8 92 8.4 

LSTM 12.4 85 143 

Proposed 3.7 41 25 

Navardi et al. 

[26] 
5.2 63 38 

 

4.3.2 Noise robustness testing 

Under hybrid noise conditions (impulsive + Gaussian), the 

proposed method achieves a position estimation error variance 

of 0.18, corresponding to a 79.3% reduction compared to 

conventional approaches. As shown in Figure 6, the X-axis 

error distribution of our method exhibits a 95% confidence 

interval of ±1.12 m, demonstrating improved performance 

over baseline methods.   
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Figure 6. Error distribution analysis for noise robustness testing 

 

This enhanced robustness arises from two key innovations: 

1. Fractal Noise Modeling: Online Hurst index estimation 

yields an error of 0.05, outperforming the 0.12 error reported 

for Bouchaib et al.’s [22] sliding-window method. 

2. Time-Frequency Joint Filtering: The bidirectional gated 

neural differentiator (Bi-DGND) attenuates high-frequency 

noise by 62%, compared to 48% attenuation achieved by 

traditional Butterworth filters. 

 

 
 

Figure 7. Altitude prediction RMSE comparison under 

simulated wind disturbances 

 

4.3.3 Robustness validation under simulated environmental 

disturbances 

To supplement the robustness analysis against 

environmental factors like wind and turbulence, which are not 

quantitatively recorded in datasets such as UrbanNav, 

simulation experiments were conducted using the 

DroneWaves dataset [27]. Simulated disturbances 

representing different conditions (low wind ~5 m/s avg. and 

high wind ~10 m/s avg., with associated turbulence, derived 

from DroneWaves [27]) were applied to baseline sensor 

readings using a simplified aerodynamic model, based on 

representative UrbanNav trajectories. The performance of the 

proposed method, EKF, and a pure LSTM baseline was then 

evaluated using these simulated disturbed data. 

Figure 7 compares the altitude prediction RMSE for the 

different methods under the three simulated conditions: no 

disturbance, low wind disturbance, and high wind disturbance. 

As depicted in Figure 7, the prediction errors for all methods 

increased upon introducing simulated wind and turbulence, as 

expected. However, the proposed LSTM-Kalman method 

demonstrated better resilience. Compared to EKF and the pure 

LSTM approach, the proposed method exhibited a smaller 

increase in RMSE under both low and high wind conditions. 

For instance, under high wind disturbance, the RMSE of the 

proposed method remained at 0.90 m, whereas the RMSE for 

EKF and LSTM increased to 1.85 m and 1.55 m, respectively. 

This suggests that the adaptive mechanisms within the 

proposed architecture, such as the adaptive metric weights 

(Section 3.1.2) and the bidirectional information flow in the 

Bi-DGND module (Section 3.2.1), contribute to mitigating the 

impact of external environmental disturbances on state 

estimation accuracy. While based on a simulated environment, 

these results provide valuable supplementary evidence 

regarding the algorithm's robustness against quantifiable wind 

and turbulence disturbances, partially addressing the 

limitations associated with incomplete real-world data records. 

 
4.4 Real-world flight scenario validation 

 
4.4.1 Extreme maneuver testing 

To validate algorithm robustness in high-dynamic scenarios, 

two typical maneuvers were designed (Figure 8): 

1. High-speed Figure 8 trajectory (velocity: 15 m/s, turning 

radius: 3 m) 

2. Emergency obstacle avoidance(instantaneous 

acceleration: 5 m/s²) 

Figure 8(a): Trajectory Tracking Comparison 

The spatial tracking performance during Figure 8 

maneuvers is illustrated, where the black dashed line denotes 

the reference trajectory, the blue solid line represents the 
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proposed method, and the red dashed line corresponds to the 

baseline method from [23]. The proposed method achieves a 

maximum position error of 1.12 m, demonstrating a 52.1% 

reduction compared to the baseline (2.34 m). 

Figure 8(b): Temporal Error Analysis 

Time-domain tracking error curves are shown, with the blue 

line (proposed method, RMSE = 0.65 m) outperforming the 

red line (baseline, RMSE = 1.08 m). This improvement 

primarily stems from the dynamic Lie group projection 

mechanism: 
 

𝒫𝔤(xt) = exp(∑ω
i
(t) ∙ Ai

n

i=1

)xt−1 (16) 

 

where, real-time optimization reduces heading angle 

estimation error from 4.7° (reported in study [1]) to 1.8°. 

 

 

 
 

Figure 8. Trajectory tracking and error analysis in high-dynamic scenarios 

 

4.5 Discussion and limitations 

 

4.5.1 Innovative contributions 

This study addresses the challenges of UAV altitude 

prediction under non-Gaussian noise through a three-tiered 

architecture. First, the dynamic interpolation compensation 

mechanism based on the SE(3) Lie group manifold adaptively 

calibrates multi-sensor spatiotemporal mismatches by 

integrating LSTM historical trajectory residuals. As shown in 

Figure 3, this approach reduces IMU-barometer phase 

compensation errors from 12.3 ms (linear interpolation) to 2.1 

ms (82.9% reduction), with cumulative trajectory errors 

decreasing by 57.1% compared to Lei et al.'s [16] baseline 

method. This advancement stems from the synergy between 

manifold geometric constraints and data-driven adaptation, 

where dynamic weight adjustment overcomes limitations of 

fixed interpolation coefficients in non-uniform sampling 

scenarios. 

Second, the proposed noise-aware collaborative filtering 

framework integrates bidirectional gated neural differentiators 

with variational Kalman gain updates, suppressing non-

Gaussian noise effectively. Under hybrid noise (impulsive + 

Gaussian), prediction error variance decreases from 

0.35m2(baseline) to 0.18 m2(79.3% reduction), validating the 

theoretical advantages of dynamic noise characterization. This 

work complements Tang et al.'s [13] manifold-embedded 

noise suppression framework, providing a novel solution for 

electromagnetic interference through latent state-driven 

covariance adaptation (dynamic range: 0.15-0.35). 

 

4.5.2 Limitations and future directions 

While the proposed architecture demonstrates promising 

performance, certain limitations persist, guiding future 

research directions. Firstly, the model exhibits performance 

degradation under extreme high-dynamic maneuvers (see 

Figure 7), indicating that the modeling of highly nonlinear 

kinematics warrants further enhancement; exploring attention 

mechanisms or more advanced temporal models could offer 

improvements. Secondly, the current manifold metric 

(utilizing block-diagonality and adaptive scalar weights) and 

the fractal analysis components involve simplifying 

assumptions. The general applicability of the fractal noise 

model and the theoretical stability of the Hurst index 

estimation, particularly regarding the gradient feedback term 

(Eq. (7)), require more rigorous validation. Investigating more 

expressive Riemannian metrics or adaptive manifold 

structures could potentially improve geometric consistency. 

Thirdly, this study primarily focused on the core fusion 

algorithm's design and validation; aspects related to optimized 

embedded deployment, performance trade-offs under stringent 

resource constraints, and detailed hardware co-design were not 

explored in depth. 
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Future research will concentrate on enhancing the 

algorithm's robustness and theoretical completeness. Key 

directions include exploring adaptive manifold structures and 

superior nonlinear dynamic modeling techniques. Further 

investigation into advanced hybrid interaction mechanisms 

between deep learning models (such as Transformers) and 

physical filters (like Kalman variations) is planned. Finally, 

significant effort will be directed towards providing more 

rigorous theoretical analyses concerning the convergence, 

stability, and interpretability of the critical hybrid algorithmic 

components. 

 

 

5. CONCLUSION 

 

This study proposes a novel physics-data collaborative 

LSTM-Kalman fusion paradigm to address fundamental 

challenges in multi-sensor integration for UAVs under 

complex noise environments. By establishing a bidirectional 

cyclic learning mechanism, the framework bridges the 

historical divide between model-driven and data-driven 

approaches, providing a theoretical foundation for state 

estimation in dynamic operational scenarios. The core 

innovations manifest in three dimensions: 1) A sensor-

characteristic-guided differential manifold architecture 

resolving cross-modal feature space mismatches; 2) A fractal 

dimension-aware dynamic optimization mechanism enabling 

joint adaptation to noise statistics and computational resources; 

3) A lightweight collaborative engine validating real-time 

fusion feasibility in embedded systems. 

Theoretically, this work pioneers differentiable projection 

constraints and adaptive masking techniques, constructing 

cognitive bridges between physical principles and data 

patterns. This methodological advancement offers new 

insights for intelligent perception system design. Practically, 

the architecture demonstrates enhanced robustness under 

extreme maneuvers and sensor degradation scenarios, 

establishing technical foundations for autonomous navigation 

deployment. 

Current limitations persist in handling sudden strong 

interference scenarios. Future research will focus on three 

directions: 1) Developing dynamic manifold evolution 

mechanisms for online adaptation; 2) Exploring quantum-

inspired noise suppression algorithms. These extensions aim 

to improve continuous learning capabilities in open 

environments. The proposed framework provides critical 

technical support for next-generation intelligent unmanned 

systems in environmental perception and decision-making 

control. 
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