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Considering the fact of increasing population and as a result, the number of patients is 
constantly increasing the delivery of medical services must be prompt and of good quality. 
There is no question that any perfect healthcare system should track the given activities, 
behaviours, schedules, and even general health of the patients. The focus of this study is in 
utilizing ML and DL in tracing patients and diagnosing ailments. Mounted cameras from 
different orientations and placements are intended for health monitoring and event 
surveillance for possible medical issues in the future. Classical ML and more advanced DL 
methods are applied for analyzing physiological and behavioral patterns to identify health 
conditions and stress the importance of high accuracy and real-time performance for 
practical purposes. Initial outcomes show that patient outcomes are enhanced by getting 
timely medical advice while decreasing hospital-based burdens on staff. Two challenging 
datasets, ETRI-Activity3D and NTU-RGB-D, are pre-processed to remove unimportant data 
and reduce computational load. A strong multi-feature description system can extract 
gradient values, and the process is followed by feature matching and feature optimization. 
Then, in the last Maximum Entropy Markov Model (MEMM) classifier is used, achieving 
an accuracy of 97.2% for ETRI-Activity3D, and 98.3% for the NTU-RGB-D dataset.  
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1. INTRODUCTION

Supervision of individuals in need of healthcare services is
crucial for tracking their behavior and protecting their well-
being, especially in caring for elderly people, rehabilitation 
centers, and hospitals. Given the fact that a rising number of 
people require constant medical supervision, the need for 
systems capable of creating permanent checks and responding 
immediately escalates. The present work proposes a health 
monitoring and surveillance system that incorporates multiple 
camera view analysis, employing machine learning and deep 
learning algorithms to assess the indices of physiology and 
behavior. Through early detection of health risks, such 
systems will greatly improve patient experience, particularly 
for one living alone, a critically injured patient, the elderly, or 
those in a rehabilitation center. Flashing light technology aims 
to enhance the quality of patient’s and senior’s lives due to 
constant activity and efficient emergency response. It reduces 
the pressure that healthcare providers face while delivering 
medical care and achieves the purpose of providing care at the 
right time. Apart from healthcare, the system uses are 
numerous; in workplace safety, one can look for hazardous 
behaviours in a bid to avoid accidents; in sports analytics, the 

system can monitor the physical and mental status of athletes 
and their performance. 

HAR systems use multiple approaches to function, 
consisting of data collection followed by feature extraction 
and classification steps. Three main data acquisition 
instruments consist of RGB cameras and depth sensors 
together with wearable devices. Systems advance accuracy 
levels by processing different types of data inputs, including 
audio data and body signals. The traditional approach to 
feature extraction involved human-based methods that 
included Histogram of Oriented Gradients (HOG) and Scale-
Invariant Feature Transform (SIFT), and spatiotemporal 
descriptors. The use of deep learning techniques, including 
Convolutional Neural Networks and Long Short-Term 
Memory and Transformer models, has gained wide acceptance 
in recent times. Sport vector machines (SVMs), together with 
deep neural networks, are among the classifier choices, along 
with data application-dependent network selection for these 
techniques, which need normalization or segmentation as 
preprocessing before classification. 

The existing systems have achieved major breakthroughs, 
although they operate under essential boundaries. The 
computational requirements of deep learning models make 
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them unsuitable for real-time healthcare usage, even though 
they are effective for their tasks. The development of models 
that generalize to real-world situations becomes challenging 
because existing systems require large labelled datasets that 
get collected primarily from controlled environments. Using 
visual cues exclusively delivers insufficient results because it 
overlooks crucial contextual or behavioral signals that would 
improve diagnostic accuracy plus timely reaction ability. 

This motivates for development of a real-time context-
aware and efficient framework. Researchers have highlighted 
an important void in the field because optimization-based 
methods, especially evolutionary algorithms, need integration 
with machine learning for developing weight-efficient 
systems. The current research has inadequate examination of 
how to unite behavioral and physiological inputs alongside 
multi-view visual data to create more comprehensive patient 
context. 

To address these gaps, we suggest implementing 
evolutionary algorithms combined with machine learning 
principles into our architecture because they optimize feature 
selection, improve classification accuracy, and decrease 
computational load. The proposed system achieves successful 
classification of patient monitoring scenarios with notable 
precision, according to our results. Following this 
introduction, the paper combines the necessary content 
through these sections: Section 2 presents detailed research 
into current HAR systems along with their known weaknesses. 
The system design section explains the multi-view camera 
system and feature extraction protocol, along with details 
about classifier implementation. The evaluation of 
experimental outcomes and performance assessments is 
provided in depth in Section 4, and the paper concludes 
through Section 5 with a finding’s discussion. 
 
 
2. RELATED WORK 

 
The research community has investigated different 

innovative sensor methods for patient monitoring and 
healthcare challenges through ambient, video, and wearable 
systems. Secondly, these investigations demonstrate multiple 
approaches to monitoring with their current performance 
standards together with encountered operational limitations. 
The research of Saner et al. [1] combines ambient and 
wearable technology sensors, which integrate PIR motion 
sensors into the system. The work of Ferraris et al. [2] uses 
Microsoft Kinect v2 RGB-Depth camera as an ambient 
contactless tool to assess Parkinson’s Disease (PD) postural 
stability in home environments. Maitre et al. [3] developed an 
ambient sensor-based system that included UWB radars in a 
constructed prototype apartment. The evaluation performance 
of three UWB radars depends on the new data processing 
technique with its implementation of a band-pass Chebyshev 
Type I filtering method. Abbe and O'Keeffe [4] developed a 
systematic approach for healthcare Continuous Video 
Monitoring (CVM) implementation that combines market 
research with steering committee formation to deploy decision 
tools for clinical staff. The research of Diao et al. [5] presents 
video-based physiologic monitoring through the application of 
ML and DL systems to analyze heat and light sensor data to 
detect patients' heart rates and respiratory rates. Herfandi et al. 
[6] studied real-time patient tracking systems based on WBAN 
technology in IoMT networks for ongoing health monitoring 
tasks. These research projects illustrate how sensor-based 

techniques monitor the health of patients through multiple 
sensor types, such as environment, video surveillance, and 
wearable devices, to solve different healthcare problems and 
improve healthcare outcomes. 

 
 

3. METHODS AND MATERIALS 
 

The system aims to analyze input videos and recognize 
patient activities. Initially, the video is segmented into frames, 
which are then denoised by removing unnecessary 
background. An averaging filter is applied to blur the frames, 
followed by further denoising through the conversion of the 
RGB images into grayscale. After completing the denoising 
process, the frames are forwarded to the next step: human 
detection. Human detection is performed using two different 
methods: the first involves extracting human silhouettes, while 
the second uses pose estimation. Four distinct features are 
extracted from both detection techniques, two for each. For 
joint points, DOF, 3D Point Cloud features are extracted, 
while for full body Distance Transform, and GMM are 
utilized. These extracted features are optimized through early 
fusion and the Whale Optimization Algorithm (WOA). Then, 
for classification, we have employed a Maximum Entropy 
Markov Model (MEMM) classifier, which is applied to the 
proposed system and demonstrates superior performance 
compared. Figure 1 illustrates the general design of the 
proposed system. 
 

 
 

Figure 1. Proposed architecture for classification 
 

3.1 Image pre-processing 
 

Preprocessing is a major input in many areas, including but 
not limited to machine learning, image processing, and deep 
learning. In this context, the original input is in the form of 
videos, and the actions associated with this input are 
segmented frames [7]. These frames normally come with 
background noise, which makes background subtraction an 
imperative step to get the object of interest to improve the 
quality of input data for other processes. Since image 
backgrounds and noise distract the algorithm from learning 
relevant features of the target object, the application of ML/DL 
increases the model’s efficiency and decreases the chance of 
over-fitting. Here, the process isolates pixels that are 
associated with the central object and removes unnecessary 
information from the background, thereby making the object 
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of interest stand out. The other process is the smoothing 
process, which is used to remove detail, edges, or extra detail 
in an image. This is done by taking the mean of the pixel 
intensities in a neighborhood of each pixel, thereby resulting 
in an image with a smoother appearance. Reducing image 
noise has a great advantage in the subsequent calculations and 
reduces the amount of insignificant information. In image 
processing, ML, and AI applications, one filter type that we 
often use to perform smoother operations is the Gaussian blur 
filter. This filter then brings the center of the pixel into every 
image and blurs the surrounding area. In addition to this, 
conversion to grayscale is also common because working with 
3D images will be more computationally costly [8]. A 
common type of this approach is quantization; it assigns a 
rational value between 0 and 255 to each of the pixels; in other 
words, it reduces a 3-dimensional picture to 2 dimensions. The 
outcome is the single-channel image view, which takes less 
perceptive power compared to the streams of the RGB model. 
The grayscale value is determined as a weighted average of the 
RGB pixel values using the values: Grey=0,2988R +0,5872G 
+ 0,1137 B. Their weights provided concern about color 
intensity as being perceived by humans. These, as stated by 
NTPC (National Thermal Power Corporation Limited), are 
based on perception and could change under applications’ 
demands. Fine-tuned methods for the RGB-to-grayscale 
conversion do exist for varied different purposes. Figure 2 
summarizes the pre-processing techniques in sequential order 
from top to bottom. 
 

 
 

Figure 2. The steps of pre-processing are (a) Extracted 
Frame, (b) background removed, (c) blurred, (d) grey scaled 

 
3.2 Human detection  
 

Human detection is the determination of the presence and 
location of humans within a given frame or an image, much as 
a basic concept widely used in the many fields of computer 
vision [9]. This step is very important as it allows separate the 
object of our interest; thus, after enhancing procedures in the 
frame of our research, all the next processes will be 
concentrated on the identified human. To achieve this, we 
employ two distinct techniques: The main processes that 
should be mentioned are called image silhouette extraction and 
skeletonization. In silhouette extraction, we have a full body 
representation, while skeletonization paints the human figure 
with the barest minimum boundary as the essence of the figure 
isn’t the flesh but the bone. Specifically, for silhouette 
extraction, we use the Sobel operator, which is among the most 
widely used operators for edge detection. Edge detection 
techniques such as the Sobel operator compute the rate of 
change in intensity between two pixels or between two 
neighboring pixels, areas of high spatial frequency which are 
areas of edges. This is done using two 3×3 convolution kernels 
to identify changes in intensity in the x and y axes. Due to its 
simplicity and efficiency, the Sobel operator is highly effective 

in enhancing salient features while rejecting noise which is 
especially important when needs to detect edges accurately 
This step adds value to other subsequent processes such as 
feature extraction because it only focuses on areas of interest 
in an image thereby improving the efficiency of computation 
[10]. When used in conjunction with skeletonization, the use 
of the two models guarantees a rich data capture of human 
features that is vital for the subsequent analytic process as in 
Eq. (1) and Eq. (2). Figure 3 illustrates the Sobel kernels used 
for this operation, which can be described as follows. 
 

𝐺𝐺𝑥𝑥,𝑦𝑦(𝑖𝑖, 𝑗𝑗) = � � 𝐺𝐺𝑥𝑥,𝑦𝑦(𝑚𝑚,𝑛𝑛). 𝐼𝐼(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛)
1

𝑛𝑛=−1

1

𝑚𝑚=−1

 (1) 

 
where, 
 

𝐺𝐺(𝑖𝑖, 𝑗𝑗) = �𝐺𝐺𝑥𝑥(𝑖𝑖, 𝑗𝑗)2 + 𝐺𝐺𝑥𝑥(𝑖𝑖, 𝑗𝑗)2 (2) 
 

 
 

Figure 3. Binary images of human after extracting sobel 
image (a) NTU-RGB-D (b) ETRI-Activity3D, Illustrations of 

MOCAP (c) NTU-RGB-D (d) ETRI-Activity3D 
 

These are the horizontal (x) and vertical (y) gradient kernels, 
respectively. For Sobel, these are typically 3×3 kernels, but for 
a more complex operator, you can increase to 5×5, is the 
summation now depends on a kernel of size (2k+1)×(2k+1), 
allowing for larger or more sophisticated filters, and 𝐼𝐼(𝑖𝑖 +
𝑚𝑚, 𝑗𝑗 + 𝑛𝑛) represents the pixel intensities in the neighborhood 
of pixel (i,j). Joint Motion Capture (MOCAP) is an analytical 
sub-component of the general motion capture technology that 
is more particularly related to the accurate direction and 
measurement of human joints or other articulated mechanisms. 
It is a paramount technology to applied domains such as 
biomechanics, sports science, computer animation and 
graphics, computer graphics, film and games, and virtual 
reality. What sets MOCAP apart is that while it delivers a 
detailed account of the operation of joints, it captures the 
highly complex motion of the skeletal structure that can 
accommodate complicated movements in physical modeling. 
The rotations at the joints are measured and modeled using 
quaternions, which offer an efficient and stable method of 
quantifying joint rotations. Eq. (3) and Eq. (4), present the 
quaternions that incorporate trigonometric functions and 
vector components that represent the axis of rotation and the 
angle of rotation equally well in a highly efficient method. 
Further, dual quaternions generalize this approach for 
including translations, which allow the modelling of combined 
rotational and translational joint movements, which is critical 
for effecting detailed capture and analysis of articulated 
systems. 
 

𝑞𝑞(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜔𝜔𝜔𝜔
2
� + 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜔𝜔𝜔𝜔
2
� �𝑢𝑢𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑦𝑦𝑗𝑗+𝑢𝑢𝑦𝑦𝑘𝑘� (3) 
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For combined joint transformations, 
 

Չ = 𝑞𝑞𝑟𝑟 +
∈
2
𝑞𝑞𝑟𝑟 ⊕ (0, 𝑡𝑡) (4) 

 
where, 𝑞𝑞(𝑡𝑡) is quaternion representing the rotation of a joint at 
a time, 𝜔𝜔  is the angular velocity of rotation, measured in 
radians per unit of time, 𝑡𝑡 is the time variable, indicating the 
specific moment at which the rotation is computed, �𝑢𝑢𝑥𝑥𝑖𝑖 +
𝑢𝑢𝑦𝑦𝑗𝑗+𝑢𝑢𝑦𝑦𝑘𝑘� is a unit vector that defines the axis of rotation in 
(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) 3D space, Չ is dual quaternion representing a joint's 
combined rotation and translation, and 𝑞𝑞𝑟𝑟  rotational 
quaternion, describing the joint's orientation. The imagery 
output of human detection can be seen in Figure 3 where 
images a and b are Sobel images, and images c and d are 
MOCAP of humans. 
 

 
3.3 Feature extraction 
 

The first approach is based on the Degree of Freedom 
technique in which we find angles at the joint points and 
distances between them. This method also presents a new way 
of obtaining geometric features from human pose images by 
applying computer vision and data analysis. When using joint 
points as reference indicators, we calculate different geometric 
characteristics, including distances in distinct joint couples 
and angles in corresponding joints. This approach offers a 
more specific quantitative measurement of body postures and 
movements and all aspects of the biomechanics of human 
locomotion and provides a deeper insight into the subject. 
Furthermore, it increases the accuracy and robustness of pose 
estimation in various fields of interest, sports analytics, 
physical therapy, and human factors engineering. Eq. (5) and 
Eq. (6) use the Vector algebra geometry that brings together 
Euclidean distance and angle calculations to derive an all-
encompassing range of features. This guarantees a solid 
quantitative context that facilitates understanding of human 
motion in two and three dimensions. 
 

𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 = ��𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑗𝑗�, 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
(𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑘𝑘) ∙ �𝐽𝐽𝑗𝑗 − 𝐽𝐽𝑘𝑘�
‖𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑘𝑘‖ ∙ �𝐽𝐽𝑗𝑗 − 𝐽𝐽𝑘𝑘�

�� (5) 

 
Such that, 

 
𝑖𝑖, 𝑗𝑗, 𝑘𝑘𝑘𝑘ℐ, 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 (6) 

 
where, 𝐽𝐽𝑖𝑖 , 𝐽𝐽𝑗𝑗 , 𝐽𝐽𝑘𝑘  are the joint points in 2D or 3D space 
represented as vectors, �𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑗𝑗�  is Euclidean distance 
between joints 𝑖𝑖, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗, (𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑘𝑘) ∙ �𝐽𝐽𝑗𝑗 − 𝐽𝐽𝑘𝑘� is dot product of 
vectors, ℐ is the set of all detected joint points, and 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 is set 
of all geometric features extracted, including distances and 
angles. Feature extraction from 3D point cloud is a crucial part 
in preparation of 3D spatial data for different uses in human 
motion analysis, object identification, identification of state of 
patient and 3D scene modeling. It includes procedures for 
defining and enumerating distinctive geometric and structural 
properties allowing the representation of intricate forms with 
low dimensionality [11]. Some of the identified techniques 
include Principal Component Analysis (PCA) which plays a 
role in reducing dimensions in the shape of the surface, 
curvature estimation for capturing the geometrical properties 
of the surface, and determination of the surface normal as a 

way of getting the orientation of points within the shape in the 
3D space is also great way of characterizing the shapes in 
spatial sense. Recently developed potent PointNet++ employs 
deep learning for learning topological features, which 
drastically increases accuracy and provides robustness. 
PointNet++ is an extension of PointNet wherein we introduce 
hierarchical feature learning to address the issues of capturing 
not only the local relation of neighbors for point clouds and 
global features. This makes it very suitable for dense estimates 
from low-dimensional datasets, especially if the point density 
varies greatly. Moreover, 3D convolutional neural networks 
(CNNs) are used to improve feature extraction where the 
dependencies in the input domain using graph-based methods 
that can capture spatial dependencies and hierarchical 
structures in the input. The enhancement or fine-tuning of 
features really aids subsequent processes such as 
classification, segmentation, and registration, while improving 
recognition makes feature extraction a fundamental step in 3D 
data processing pipelines. Eq. (7) defines how PointNet++ 
aggregates feature hierarchically. At each layer, the local 
neighborhood is considered, and features are updated by 
combining spatial relationships with the features of 
neighboring points. 
 

𝑓𝑓(l+1)(𝑝𝑝𝑖𝑖) = max
𝑝𝑝𝑖𝑖∈𝒩𝒩(𝑝𝑝𝑖𝑖)

∅(𝑓𝑓(l)�𝑝𝑝𝑗𝑗� ,𝜓𝜓(𝑝𝑝𝑗𝑗−𝑝𝑝𝑖𝑖)) (7) 
 
where, (𝑓𝑓(l)�𝑝𝑝𝑗𝑗�) is the feature vector of point 𝑝𝑝𝑗𝑗  at layer 𝑙𝑙,  
𝑓𝑓(l+1)(𝑝𝑝𝑖𝑖) is the updated feature vector of 𝑝𝑝𝑗𝑗  point at layer l +
1, 𝒩𝒩(𝑝𝑝𝑖𝑖)  is the local neighborhood, 𝜓𝜓(𝑝𝑝𝑗𝑗−𝑝𝑝𝑖𝑖)  a positional 
encoding function to capture relative spatial relationships, and 
max  is a symmetric aggregation function. Figure 4 is an 
imagery representation of the output of all joint point features. 
 

 
 

Figure 4. Feature on human MOCAP (DOF)(a) NTU-RGB-
D (b) ETRI-Activity3D, 3D point cloud (c) NTU-RGB-D (d) 

ETRI-Activity3D 
 
The other three features that are extracted are BRISK, HOG 

and ORB. These feature points are applied to the full human 
body (silhouettes). BRISK (Binary Robust Invariant Scalable 
Keypoints) is a computer vision algorithm renowned for its 
robust feature detection and description capabilities. Utilizing 
binary patterns for image patch representation, BRISK excels 
in scenarios with varying lighting conditions and viewpoints, 
ensuring robustness and reliability. BRISK constructs a scale 
pyramid and detects key points using a variant of FAST, 
refining their positions for accuracy. It generates binary 
descriptors based on local intensity patterns around key points, 
facilitating efficient image matching and recognition in 
computer vision tasks. BRISK's binary descriptors enable 
efficient feature matching and resilience to noise, enhancing 
its usability in tasks such as the matching of images, 
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recognition of an object, and reconstruction of 3D objects, 
where robustness, accuracy, speed, and working are 
paramount. Its further processing is explained in Eq. (8). 
 

𝐻𝐻𝐻𝐻(𝑋𝑋,𝑌𝑌) = �𝑥𝑥𝑖𝑖 ⊕ 𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= �(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (8) 

 
where, 𝑏𝑏(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) denotes bit inequality, in Eq. (15), 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖  
are the 𝑖𝑖𝑡𝑡ℎ  bits of the descriptors 𝑋𝑋  and 𝑌𝑌  respectively. Its 
examples of both datasets can be seen in Figure 5. The last 
feature extraction technique is Gaussian Mixture Model 
(GMM) is a probabilistic generative model, which is 
considered to be a soft clustering model, much of the time used 
in feature extraction for clustering and density estimation. 
GMMs model data with a mixture of several Gaussian 
distributions, with parameters of mean vector and covariance 
matrix. To estimate the above-mentioned parameters of these 
Gaussian components from a given dataset, expectation 
maximization (EM) is one of the frequently used methods. 
This approach provides a probability to each and every datum 
belonging to each Gaussian component and thus highlights the 
distribution structure and variability of the datasets. Possible 
extracted features from GMM may be the posterior 
probability, mean, variance, as well as weight by each of the 
Gaussian components or a selection thereof. These features are 
useful in many machines learning processes, including 
classification, clustering, and anomaly detection, because they 
can represent high-dimensional multi-modal probability 
density functions. Eq. (9) explains the basic concept of GMM. 
 

𝑝𝑝(𝑥𝑥) = �𝜋𝜋𝑘𝑘

𝐾𝐾

𝑘𝑘=1

∙
1

(2𝜋𝜋)𝑑𝑑 2� |∑ .𝑘𝑘 |1 2�
𝑒𝑒𝑒𝑒𝑒𝑒 

�−
1
2

(𝑥𝑥 − 𝜇𝜇𝑘𝑘)𝑇𝑇�(𝑥𝑥 − 𝜇𝜇𝑘𝑘)
−1

𝑘𝑘

� 

(9) 

 
where, 𝑝𝑝(𝑥𝑥) is probability density function of the data point 𝑥𝑥, 
𝐾𝐾 number of Gaussian components, 𝜋𝜋𝑘𝑘 is weight of the 𝐾𝐾 −
𝑡𝑡ℎ  Gaussian component, where ∑ 𝜋𝜋𝑘𝑘𝐾𝐾

𝑘𝑘=1 = 1,  𝜇𝜇𝑘𝑘  is mean 
vector and ∑ 𝑡𝑡ℎ𝑘𝑘  covariance matrix of the 𝐾𝐾 − 𝑡𝑡ℎ Gaussian. 
Figure 5 shows the representation of full-body feature 
extraction points. 
 

 
 

Figure 5. Feature on human full body (Distance transform) 
(a) NTU RGB-D (b) ETRI-Activity3D, GMM (c) NTU 

RGB-D (d) ETRI-Activity3D 
 

3.4 Features fusion 
 
Early fusion is a concept in machine learning and data 

processing where the diverse sources of information and 

features are combined early, commonly before input into a 
learning model or algorithm. In this approach, we combine the 
features from the different modalities or different extraction 
techniques into one. This fused representation is then 
introduced as data for the model [12]. The strong point of this 
approach is that all correlations and dependencies between 
features from different sources are combined right after the 
feature extraction step, allowing the final model to work with 
enhanced information. For instance, in human action 
recognition, features like DOF, and GMM could be 
concatenated into one vector retaining the separate 
contribution of each feature but improving the capability of the 
model to distinguish between features of complex patterns 
across different modalities. However, early fusion requires 
careful normalization and scaling of features to ensure 
compatibility and prevent any single modality from 
dominating the combined representation. Moreover, its 
working can be understood with the help of Eq. (10), and Eq. 
(11). 
 

𝑦𝑦 = 𝑓𝑓(
[∑ 𝜔𝜔𝑖𝑖 ∙ ∅𝑖𝑖(𝑓𝑓𝑖𝑖) +𝑛𝑛

𝑖𝑖=1 𝑉𝑉𝑉𝑉𝑉𝑉(𝐻𝐻) − 𝜇𝜇𝐹𝐹]
𝜎𝜎𝐹𝐹

) (10) 

 

𝐻𝐻 = �� � �𝜔𝜔𝑖𝑖 ∙ ∅𝑖𝑖(𝑓𝑓𝑖𝑖)�
𝑛𝑛

𝑗𝑗=𝑖𝑖+1

⊕ �𝜔𝜔𝑗𝑗 ∙ ∅𝑗𝑗�𝑓𝑓𝑗𝑗��
𝑛𝑛

𝑖𝑖=1

� (11) 

 
where, 𝑦𝑦 is the final output, 𝑓𝑓𝑖𝑖 is the feature vector extracted 
by the different techniques, 𝑛𝑛 is the total number of feature 
extraction techniques, ∅𝑖𝑖  is the transformation function, 𝜔𝜔𝑖𝑖 
are weight assigned to the feature vector, 𝐹𝐹  is the fused 
feature, 𝜇𝜇𝐹𝐹 is mean of values, 𝜎𝜎𝐹𝐹 is standard deviation. Figure 
6 shows the points distribution among different classes. 
 

 
 

Figure 6. Graphical representation of feature fusion 
 

3.5 Features optimization 
 
In the context of machine learning, optimization is the 

process of setting the values of the parameters of a given 
model that best fit an objective function, usually error or loss. 
In performing learning, it assists in fine-tuning the weights and 
biases of the model in search of the required accuracy or 
efficiency. The Whale Optimization Algorithm (WOA) is an 
optimization method designed based on the hunting behavior 
of humpback whales and their bubble-net hunting strategy. 
The whale humpback whales optimization algorithm is a 
metaheuristic algorithm created to find the optimal solution to 
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problems based on the feeding mechanism employed by 
humpback whales to exploit or explore the prey. In WOA, 
whales are modeled as candidate solutions within the search 
space. The algorithm alternates between two phases: 
exploitation and exploration. In exploitation, the whales 
advance towards a current solution, thus forming a spiral or 
encircling motion reminiscent of bubble-net hunting. In 
exploration, whales randomly search the space by moving far 
from the current best solution to avoid local optima. The 
balance of these phases is regulated by a parameter that is 
reduced linearly across iterations. These behaviors, in 
sequence, enable WOA to locate the global optima of 
numerous challenging optimization issues. Eq. (12) is the 
mathematical representation of WOA. 
 

𝑋𝑋𝑖𝑖
(𝑡𝑡=1) = �

𝑋𝑋∗ − 𝐴𝐴 ∙ 𝐷𝐷,      𝑖𝑖𝑖𝑖 𝑝𝑝 < 0.5𝑎𝑎𝑎𝑎𝑎𝑎 ∣ 𝐴𝐴 ∣≤ 1
𝑋𝑋∗ + 𝐷𝐷′̷ ∙ 𝑒𝑒𝑏𝑏𝑏𝑏 ∙ cos(2𝜋𝜋𝜋𝜋) ,      𝑖𝑖𝑖𝑖 𝑝𝑝 < 0.5
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐴𝐴 ∙ 𝐷𝐷,                         𝑖𝑖𝑖𝑖 |𝐴𝐴| > 1

 (12) 

 
where, 𝑋𝑋∗ Represents the position of the current best solution 
(i.e., the leader whale), 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a randomly chosen solution 
from the population used for exploration, 𝐴𝐴  is coefficient 
vector that controls the convergence behavior, 𝐷𝐷  is the 
distance between a whale's position and the best solution, 𝐷𝐷′ 
modified distance vector for spiral motion, 𝑝𝑝  is random 
number in [0, 1] that determines whether to exploit (closer 
search) or explore (global search) the solution space, 𝑏𝑏  is 
constant defining the shape of the spiral for encircling prey, 𝑙𝑙 
is a random number used in the spiral equation for 
diversification, 𝑒𝑒𝑏𝑏𝑏𝑏 an exponential decay factor controlling the 
amplitude of the spiral movement. Algorithm 1 gives full 
implementation of the optimizer. Figure 7 shows a 3D graph 
representation of WOA. 
 

Algorithm 1: Structural and functional code of WOA 
1. Input: 
    - Objective function 𝑓𝑓(𝑥𝑥), where 𝑥𝑥 =  (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑥) 
    - Population size 𝑁𝑁 
    - Maximum number of iterations 𝑇𝑇 
    - Search space boundaries [𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢] 
 
2. Initialize  
     - Initialize whale population 𝑋𝑋1 = 𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑁𝑁) 
randomly within [lb, ub] 
     - Evaluate fitness of each whale: 𝑓𝑓(𝑋𝑋𝑖𝑖) for each whale 
𝑋𝑋𝑖𝑖 
     - Determine the best whale position 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  with the 
lowest fitness 
     - Set initial parameter 𝛼𝛼 = 2 
 
3. For t = 1 to T: 
     - For each whale 𝑋𝑋𝑖𝑖 in population: 
         - Generate random numbers 𝑟𝑟 ∈  [0,1], 𝑝𝑝 ∈  [0,1] 
         - Update parameters: 
             - 𝐴𝐴 =  2 ∙ 𝑎𝑎 ∙ 𝑟𝑟 − 𝑎𝑎 
             - 𝐶𝐶 =  2 ∙ 𝑟𝑟 
 
         - If 𝑝𝑝 <  0.5 then: 
             - If |𝐴𝐴|  <  1 then: 
                  // Exploitation: encircling the prey (best 
solution) 
                 - 𝐷𝐷 =  |𝐶𝐶 ∙ 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  −  𝑋𝑋𝑖𝑖| 
                 - 𝑋𝑋𝑋𝑋 =  𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  −  𝐴𝐴 ∙ 𝐷𝐷 

             - Else: 
                  // Exploration: search for random prey 
                 - Select random whale 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟from population 
                 - 𝐷𝐷 =  |𝐶𝐶 ∙  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −  𝑋𝑋𝑖𝑖| 
                 - 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟- A ∙ D 
         - Else: 
              // Exploitation: spiral updating position 
             - 𝐷𝐷 =  |𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 −  𝑋𝑋𝑖𝑖| 
             - 𝑏𝑏 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑒𝑒.𝑔𝑔. , 1) 
             - 𝑙𝑙 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 [-1, 1] 
             - 𝑋𝑋𝑖𝑖 =  𝐷𝐷 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏 ∙ 𝑙𝑙) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋 ∙ 𝑙𝑙)  +  𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
 
          - Ensure 𝑋𝑋𝑋𝑋 is within [𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢] 
          - Evaluate new fitness 𝑓𝑓(𝑋𝑋𝑋𝑋) 
           
          - If 𝑓𝑓(𝑋𝑋𝑋𝑋)  <  𝑓𝑓(𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then: 
              - Update 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑖𝑖 
 
      - Update 𝑎𝑎 =  2 −  (2 ∙ 𝑡𝑡 / 𝑇𝑇)// Decrease linearly 
4. Output  
- Return 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏as the optimal solution 

 

 
 

Figure 7. Accuracy optimization graph using whale 
optimization 

 
3.6 Events classifier: MEMM 
 

A MEMM classifier is a Maximum Entropy Markov Model 
that is a sequence model used to label as well as to segment 
sequences, such as in natural language processing and time 
series analysis. It integrates two concepts, the maximum 
entropy, a probability distribution theory that maximizes 
entropy, and the function of Markov, which holds that the 
conditions currently rely upon the previous condition. 
MEMMs estimate the probability of the next label when the 
current observation has been made, and the previous label 
known. This is done by using a conditional probability 
distribution commonly estimated by using logistic regression. 
The inputs to the model are feature sets; these are vectors that 
provide context as to the sequence: the model then estimates 
the probability by using the principle of Maximum Entropy; 
that is the model aims at choosing the least biased probability 
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distribution for the data given certain constraints. 
Maximum Entropy Markov Models (MEMMs) effectively 

solve problems that depend on sequence order or time-based 
events. The predictive process for MEMMs depends on both 
present input data and past label information. A logistic 
regression model estimated the necessary probabilities by 
using refined feature vectors. L2 regularization came into use 
during training as an effective measure against overfitting, 
which made the model more successful at generalization. The 
model required optimal configurations, which were 
discovered through a grid-searching process. The team 
evaluated multiple values of regularization strength alongside 
window dimensions and past information weight as they 
related to the Markov assumption. Through cross-validation, 
the model values achieved their final configuration because 
they demonstrated consistent performance across distinct data 
partitions. 

During the prediction stage, the Viterbi decoding algorithm 
was applied to determine the most likely sequence of labels, 
using the conditional probabilities generated by the MEMM. 
This approach guarantees that the output sequence is the best 
possible one overall, considering the full context of the input. 
The complete process, starting from feature extraction, 
combining and refining the features, and leading up to 
classification with the MEMM, was carefully structured to 
ensure consistent results and strong performance across 
different runs. Algorithm 2 gives a complete pseudo-code for 
MEMM. Figure 8 shows the functional architecture. 
 

Algorithm 2: Structural and functional code of WOA 
Function: MEMM_Train (X, Y, Features) 
Input: 
    - X: Sequence data (observations) 
    - Y: Ground truth label sequences 
    - Features: Feature functions 𝜙𝜙(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−1) 
 
Steps: 
     1. Initialize model weights 𝑊𝑊 randomly. 
     2. For each sequence (𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠) ∈ (𝑋𝑋,𝑌𝑌): 
          a. For each time step 𝑡𝑡: 

      - Set 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑦𝑦𝑡𝑡−1 (𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑡𝑡 = 0) 
              - Compute scores: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦𝑡𝑡) = 𝑊𝑊 ⋅
𝜙𝜙(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  
              - Compute probabilities: 𝑃𝑃(𝑦𝑦𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  
 

1. Compute gradient of loss (NLL) and 
update weights: 𝑊𝑊 = 𝑊𝑊 − 𝜂𝜂 ⋅ 𝛻𝛻𝛻𝛻 
2. Return trained model 𝑊𝑊 

Function: MEMM_Predict (X_test, W, Features, 
Label_Set) 
Input: 
    - X_test: Test sequences 
    - W: Trained weights 
    - Features: Feature functions 
    - Label_Set: Set of possible labels 
 
Steps: 

1. For each test sequence 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 : 
              a. Initialize Viterbi table 𝑉𝑉 and backpointer 𝐵𝐵 
              b. For 𝑡𝑡 = 0 to 𝑇𝑇: 

              - For each label 𝑦𝑦𝑡𝑡: 
                    - For each previous label 𝑦𝑦𝑡𝑡−1: 

                            - Compute  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑉𝑉[𝑡𝑡 − 1][𝑦𝑦𝑡𝑡−1] +
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡−1) 
                              - Keep max score and store back pointer 
              c. Backtrack to find optimal label sequence 

2. Return predicted sequences 
 

 
 

Figure 8. Functional structure of MEMM classifier 
 
 
4. EXPERIMENTAL SETTINGS AND ANALYSIS 
 

This section presents the experimental results of our 
approach and highlights its distinctions from previous 
research. Our method shows better accuracy results than 
earlier studies when evaluating these datasets. 
 
4.1 Datasets description 
 

Our research used two widely recognized datasets, ETRI-
Activity3D and NTU-RGB-D, for patient action recognition 
purposes [13]. Both were specifically chosen due to their 
relevance to healthcare applications, including patient 
monitoring, elderly monitoring, rehabilitation analysis, and 
assisted living support. The ETRI-Activity3D dataset exists at 
the Electronics and Telecommunications Research Institute 
(ETRI) in South Korea as an important resource dedicated to 
enhancing telemedicine along with smart home innovations 
through daily human behavior video analysis [14]. It contains 
approximately 4.5TB of data across 55 diverse action classes 
captured in indoor environments. Our research included 10 
specific classes that are frequently used during healthcare and 
assisted living operations. Importantly, only the video data 
from the dataset was used to align with our vision-based action 
recognition approach. The NTU-RGB-D dataset stands as one 
of the most extensive action recognition datasets because 
researchers from Nanyang Technological University (NTU) 
developed it. The NTU-RGB-D dataset organizes its 
information into three fundamental groups, which include 
Daily Actions, mutual Actions, and Medical Conditions. Our 
work analyzes only health-related activities from the Medical 
Conditions category that consists of 12 health-related classes 
that include activities such as walking and lying down because 
they are relevant to patient safety. The subset contains more 
than 50,000 video samples that establish an excellent 
foundation for health system training and assessment tasks. 
Research utilizes health-related portions of these datasets to 
confirm the validity of proposed methods on data that mirrors 
actual patient activity monitoring in clinical settings. 

The experiments in our research were performed using 
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Python on an Intel Core i5 CPU with 8GB of RAM, we did not 
utilize a dedicated GPU. Cloud services served to store data, 
but the entire training process, together with evaluation 
operations, took place within local computing power. 
Executing 2000 images through the system took about 20-25 
minutes. Our system was tested through an ablation study that 
examined different stages and configurations while indicating 
their corresponding inference times. The proposed system 
operates at a frame rate speed of 250–300 milliseconds when 
fully developed. The method proves to be efficient for 
execution on low-resource hardware systems, which enables 
its applications in real-world settings without access to high-
performance computing resources. We used Eq. (13) for 
precision, Eq. (14) for recall, and Eq. (15) for accuracy to 
assess the performance of our recognition model. The findings 
showed a 97.2% accuracy rate on the ETRI-Activity3D dataset 

and 98.3% on the NTU-RGB-D dataset.  
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (13) 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (14) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 (15) 

 
Figures 9 and 10 are the confusion matrices, and Tables 1 

and 2 present the comparison of each class with their precision, 
accuracy, F1 score, and recall. Table 3 is a comparison table. 
Table 4 shows the ablation study of all the phases of our 
research. 

 

  
  

Figure 9. Confusion matrix (ETRI-Activity3D) Figure 10. Confusion matrix (NTU-RGB-D) 
 

Table 1. Accuracy table of each class of ETRI-Activity3D 
 

Classes Accuracy Precision Recall F1 Score 
Brushing Teeth 99.80 100.00 97.90 98.95 
Eating Apple 99.70 98.00 98.00 98.00 

Hanging Clothes 99.50 96.00 96.00 96.00 
Mopping 99.90 99.00 99.00 99.00 

Washing Clothes 99.40 95.00 95.00 95.00 
Washing Hands 99.60 97.00 97.00 97.00 

Reading Newspaper 99.60 97.00 97.00 97.00 
Clapping 99.90 99.00 99.00 99.00 

Brushing Hairs 99.60 97.00 97.00 97.00 
Peeling Fruits 99.70 97.00 97.00 97.00 

Mean 99.76 97.20 97.20 97.50 
 

Table 2. Accuracy table of each class of YouTube 
 

Classes Accuracy Precision Recall F1 Score 
Sneezing 99.67 98.00 99.00 98.50 

Staggering 99.83 99.00 99.00 99.00 
Falling Down 99.83 99.00 99.00 99.00 

Headache 99.83 99.00 99.00 99.00 
Chest Pain 99.50 97.00 97.00 97.00 

Nausea 99.50 96.00 96.00 96.00 
Back Pain 99.83 99.00 99.00 99.00 
Neck Pain 99.83 99.00 99.00 99.00 
Fan Self 99.83 99.00 99.00 99.00 
Yawing 99.67 98.00 98.00 98.00 
Stretch 99.67 98.00 98.00 98.00 

Blowing Nose 99.83 99.00 99.00 99.00 
Mean 99.73 98.33 98.58 98.54 
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Table 3. Comparison of proposed model with state-of-the-art methods 
 

Methods ETRI 3D (%) NTU-RGB-D (%) 
Wang et al. [15] - 84.2 

Xu et al. [16] 83.0 85.1 
Li et al. [17] - 86.5 

Jang et al. [14] - 88.0 
Li et al. [18] 82.4 - 
Li et al. [19] 83.3 - 

Yan et al. [20] 86.8 - 
Proposed System 97.2 98.3 

 
Table 4. Ablation study of all the phases of our experiment showing tick mark for step included and cross for not including 

algorithms 
 

Ablation 
Settings Preprocessing Human 

Detection 
Full Body 
Features 

Joint Point 
Features 

Early 
Fusion 

Whale 
Optimization 

Classifiers Accuracy 
Inference 
Time (ms) CNN LSTM MEMM 

NTU-
RGB-

D 

ETRI-
Activity3D 

Base Line ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ 88.2 87 200-250 
Human 

Detection ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ 67.3 66.8 150-200 

+ Full-body 
features ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ 72.1 71.2 150-200 

+ Joint Points 
Features ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ 83.4 82.1 250-300 

Human 
Detection + 

MEMM 
✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ 66.2 64.2 150-200 

Full Body + 
MEMM ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ 71.2 70.7 150-200 

All Features 
+ MEMM ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ 79.7 76.4 150-200 

Early Fusion ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 85.1 85.3 200-250 
Whale 

Optimizer ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ 91.8 90.3 200-250 

Full Proposed 
System ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ 98.3 97.2 250-300 

 
 
4.2 Failure cases 
 

During the preprocessing stage, while the background is 
successfully removed, the system often fails to eliminate noise 
that exists within the foreground. This issue arises because the 
noisy pixels in the foreground are spatially connected or 
closely linked with the actual subject, causing the system to 
interpret them as relevant parts of the main object mistakenly. 
Consequently, this misinterpretation introduces ambiguity 
during further processing, which can negatively impact the 
system's accuracy and performance. Such confusion in 
distinguishing between true foreground features and irrelevant 
noise can lead to incorrect classification or recognition 
outcomes. Representative examples of these types of system 
failures are shown in Figure 11. 

 

 
 

Figure 11. Failure cases, (a) back ground removed properly, 
(b) case failure 

5. CONCLUSIONS AND FUTURE WORK 
 

A method which unites feature detection algorithms with 
optimal classifier systems enables the detection of key events 
during patient gait measurement. Mathematical models in the 
system track successive human body movements to perform 
precise behavioral analysis and event identification. The 
method achieves strong benchmark results. Upcoming work 
aims at four main enhancements for better practical use and 
improved stability. The next stage of development involves 
making the model more efficient for lower power consumption 
purposes and real-time edge-device capability alongside 
integration of biomechanical data elements such as joint 
motion measurement and energy expense metrics. We planned 
to add wearable sensor data as a supplement to visual 
information for enhancing recognition performance when 
vision is obstructed or when lighting is poor. The model 
development extends to analyze aerial video obtained from 
drones, which will permit the study of group characteristics 
along with event identification across extensive public areas. 

As the video-based patient monitoring systems create 
ethical and privacy issues. This research employs only 
anonymized public benchmark datasets (NTU RGB+D and 
ETRI-Activity3D) that meet approved consent standards; 
however, we understand that deployment requirements in 
clinical or residential settings demand strict adherence to 
privacy rules and ethical practices. The research demands 
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obtaining patient consent along with strong data 
anonymization practices combined with secure databases and 
processing systems. The development of edge computing 
alongside federated learning and pose-based abstraction 
solutions aims to improve user privacy protection capabilities 
in future research. 
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NOMENCLATURE 

PD Parkinson’s Disease 
WOA Whale Optimization Algorithm 
MEMM Maximum Entropy Markov Model 
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