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In the trend of the continuous development of AI, the application range of small target 

detection (STD) is very wide. Improving the accuracy of small target detection is the focus 

of research, which has positive significance for the improvement of computer vision 

technology and multiple application scenarios. Based on the overall structure of YOLOv8 

network, this paper introduces the deformable convolution and attention mechanism of 

DCNv4 to improve it. DCNv4 enhances the ability of the network to capture spatial 

structure, especially for objects of different scales or positions, so that the kernel can sample 

from any position in the input feature map, which can improve the performance of small 

target detection to a certain extent. The attention mechanism improves the ability of the 

network to focus on the key information in the detection task, and improves the efficiency 

and accuracy of the network detection. The experimental results show that the improved 

YOLOv8 algorithm significantly improves the detection performance of small targets, and 

achieves a good balance between detection accuracy and computational efficiency. 
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1. INTRODUCTION

Small target detection (STD) is the detection of small objects, 

because small objects are often far away from normal size 

objects, it is difficult to learn feature representations from their 

abstract structures, and challenges such as complex 

background and image quality problems also hinder deep 

learning-based detectors [1]. The wide range of practical 

application requirements of STD attracts more and more 

researchers to engage in STD to overcome the difficulties in 

STD. Typical application scenarios include many aspects: 

First, it is applied to aerial image analysis of unmanned aerial 

vehicles (UAVs) [2]. UAVs equipped with embedded devices 

can analyze captured data to complete corresponding tasks. In 

agriculture, drones can capture the color of crops, judge the 

maturity of fruits and guide agricultural production.  

Second, applied to automatic driving [3], automatic driving 

requires continuous environmental perception to obtain the 

distribution of obstacles, so as to achieve safe driving. 

Through object detection technology, the class, location and 

size of surrounding objects can be predicted, so that a safe 

route can be formulated in advance to avoid the obstacles 

ahead.  

Third, as applied to medical image analysis [4], the lesion 

sites on medical images are often small and difficult to be 

observed by naked eye. The use of STD technology can help 

find small lesions, so that doctors can detect problems in the 

early stages of the disease, reducing the risk of disease 

progression. In order to improve the accuracy and efficiency 

of STD, this paper studies the STD model improved by 

YOLOv8 algorithm. 

2. RELATED WORKS

Detecting small targets using computer vision is a 

challenging task. Traditional STD algorithms rely on manual 

feature construction and need to design complex feature 

representations. Haar feature is a local feature descriptor based 

on the difference of image gray values, and it is also a 

rectangular feature. The rectangular feature value is the sum 

of the gray values of the white rectangle minus the gray values 

of the black rectangle. The rectangular feature is similar to 

some simple graphic structures [5]. HOG features extract 

image texture and shape features using local gradient direction 

[6]. SVM classifiers can use extracted HOG features for target 

detection. Because of the sensitivity of human visual system 

to color, color feature has always been the main factor 

considered in salience target detection algorithms. The 

classification model of target and background is established 

based on SVM algorithm, and the background model is 

iteratively optimized in combination with the information 

entropy evaluation feature map, and the significant target is 

obtained [7]. Traditional object detection algorithms use 

manual features with limited feature description ability, which 

makes it difficult to capture some high-level semantic 

information and sensitive to changes in illumination, scale and 

perspective [8]. The challenge of STD is the change of 

attitude, Angle and scale, complex background and so on, 

which makes the traditional target detection algorithm cannot 

be applied to the STD task. 

Compared with traditional algorithms, deep learning can not 

only learn shallow features such as color and texture, and 

remove noise through appropriate training [9], but also learn 
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deep semantic information. As a downstream task of image 

classification, researchers began to consider using CNN in 

object detection. Faster R-CNN implements the first end-to-

end real-time object detection algorithm. In the detection 

process, candidate bounding boxes of images are selected, and 

accurate object region and category labels are further 

generated by using Fast R-CNN [10]. YOLOv8 is a new model 

specially designed for scenes involving a large number of 

small objects, which enhances multipath fusion to integrate 

features at different levels, preserve shallower details and 

improve detection accuracy of small objects [11]. Compared 

with other mainstream target detection algorithms, YOLOv8 

has excellent fast and accurate performance [12]. The Neck 

part of YOLOv8 includes an SPPF module [13], which 

changes the original extraction module into a series mode to 

greatly reduce the amount of computation. The head adopts the 

PAN structure based on FPN design idea, and integrates the 

upper layer features into the shallow network features. The 

detection head uses the head structure to calculate the losses 

respectively, so that the model attention to the key points and 

improves the operation efficiency. 

New deep learning methods have been widely applied in the 

field of small object detection: Firstly, the multi-scale feature 

fusion method [14]. Small targets occupy a small proportion 

in the image, and detailed information is prone to be lost 

during the downsampling process of the network. To solve this 

problem, multi-scale feature fusion methods have been widely 

applied. By constructing a convolutional neural network 

model with convolutional layers and pooling layers of 

different scales, feature information of different scales is 

extracted, and then these feature maps are fused by operations 

such as upsampling and downsampling. This can integrate the 

rich detailed information at the bottom level and the semantic 

information at the top level, thereby better detecting small 

targets. Like the feature pyramid network, by means of top-

down and horizontal connections, features at different levels 

are fused, and good results have been achieved in the task of 

small object detection. Secondly, data augmentation 

technology [15-21]. Due to the relatively small amount of 

training sample data for small targets, data augmentation 

techniques are crucial for improving the detection 

performance of small targets. In addition to traditional 

operations such as random flipping, rotation and zooming, 

some new data augmentation methods are constantly 

emerging. For example, the CutMix technology increases the 

diversity of data by fusing parts of different images, enabling 

the model to learn more features of small targets in different 

scenarios. The MixUp technique linearly combines the 

features of different images to generate new training samples, 

which helps improve the generalization ability of the model. 

Thirdly, model lightweighting and optimization. On some 

resource-constrained devices, such as mobile terminals and 

embedded systems, it is necessary to lightweight and optimize 

the small object detection model. On the one hand, by 

designing lightweight network structures, such as MobileNet, 

ShuffleNet, etc. [22, 23], the parameters and computational 

load of the model can be reduced. On the other hand, by 

adopting model compression techniques such as pruning and 

quantization, redundant parameters in the model are removed, 

and the parameters are represented as low-precision data types. 

Without affecting the performance of the model, the storage 

space and inference time of the model are reduced. 

There have been many successful application cases of deep 

learning methods in the field of small object detection. The 

following are a few of them. The first one is the aerial 

photography scene captured by drones. In UAV aerial images, 

the targets present the characteristics of small targets due to 

their long distance and low resolution, and there are dense 

occlusions and complex background interferences [24, 25]. 

YOLOv5s+CBAM, on the VisDrone2021 dataset, enhanced 

small object feature extraction by introducing CBAM, 

mAP@0.5 reached 47.6%, which is 6.2% higher than the 

original YOLOv5. The FCOS-RetinaNet hybrid model, which 

integrates FCOS and FPN, achieves an AP_small of 38.9% in 

the intensive small vehicle detection task, outperforming 

YOLOv5's 34.5%. The image resolution of UAVs is high, and 

the real-time requirements are strict. The FPS of the existing 

models is generally lower than 30, and further lightweighting 

is needed. The second is the security monitoring scenario. 

Security monitoring needs to detect tiny targets in long-

distance cameras and adapt to low-light conditions at night 

[26]. RetinaNet+CBAM, in the DOTA dataset, by improving 

the feature pyramid structure, the AP_small was increased to 

41.3% (originally 36.1% for RetinaNet). NanoDet-M, an ultra-

lightweight model (with 1.8M parameters), on the HRSC2016 

ship dataset, has a 39.2% mAP@0.5 FPS of 152 and is suitable 

for edge device deployment, but AP_small is about 5% lower 

than that of the heavy model. The false detection rate increases 

in low-light scenarios (background false detection rate >20%), 

and it is necessary to combine infrared image fusion or GAN 

to enhance the data. Thirdly, medical imaging testing [27]. The 

precise detection of small targets in medical images directly 

affects the diagnostic accuracy, but data annotation is scarce 

and there is a lot of noise. U-Net++withCBAM, in the LiTS 

dataset, by introducing the dense attention module, the 

detection recalls rate of liver tumors increased to 82.3%, which 

was 11.5% higher than that of the traditional U-NET. 

TransUNet, an encoder-decoder structure based on 

Transformer, has a Dice coefficient of 0.78 for small lesions 

(volume <5cm³) in the BraTS brain tumor segmentation task, 

which is superior to the CNN-based model (0.72). The cost of 

medical data annotation is high. Semi-supervised learning can 

alleviate the shortage of data, but the generalization ability of 

the model still needs to be verified. Fourth, the autonomous 

driving scenario. Autonomous driving needs to detect small 

targets such as traffic lights, pedestrians and cones in real time, 

and also needs to handle dynamic blur and extreme weather. 

YOLOv8s+SWIN, combined with SwinTransformer 's visual 

backbone, achieved 68.4% in traffic sign detection mAP@0.5 

in the KITTI dataset, a 4.1% improvement over YOLOv8. 

DETR-DC5, a detection model based on Transformer, has an 

AP_small of 43.7% in the Cityscapes dataset, but the inference 

speed is only 25FPS, and the inference engine needs to be 

optimized. The missed detection rate of small targets is high 

in dynamic scenes, and the robustness needs to be improved 

by combining time series information. 

 

 
3. YOLOV8 ALGORITHM STRUCTURE 

 
YOLOv8 algorithm uses some effective strategies of YOLO 

series algorithms, and the backbone network architecture is 

very clear. The original C3 modules are replaced by the new 

C2f modules, which greatly improves the model performance. 

The YOLOv8 algorithm is shown in Figure 1.
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3.1 Backbone network 

 

In YOLOv8, the C2f replaces the C3 in YOLOv5, and the 

ELAN in C2f replaces the CSP in C3. ELAN module by 

controlling the shortest path, the feature map of different 

layers is effectively fused, and more complex feature fusion is 

achieved through group convolution and scrambled operation, 

which eases the problem of gradient explosion, maintains the 

high performance of the network, and realizes the effective 

learning and convergence of the deeper network. C2f uses 

more Bottleneck structures, reduces or increases dimensions, 

and adopts more residual structures for feature extraction, 

which reduces the complexity of the model and improves the 

training stability to a certain extent. It is especially effective 

when dealing with large-scale data sets, making the network 

can be deployed efficiently on mobile devices [28]. 

 

3.2 Detect head 

 

The detection head of YOLOv5 calculates a diverse set of 

anchor frame sizes based on the training set statistics, and 

generates potential target bounding boxes from the anchor 

frame as a starting point. There are some drawbacks to this 

approach. The selection and setting of anchor frames are quite 

complicated, and the rationalization of threshold selection is 

also challenging. YOLOv8 does away with the anchor frame 

mechanism, bypassing the problems associated with anchor 

frame design and its associated calculations. The detection 

head of YOLOv8 is shown in Figure 2. 

 

 
 

Figure 1. YOLOv8 algorithm structure 

 

 
 

Figure 2. Detect head of YOLOv8 
 

YOLOv8 adopts a completely decoupled detection head 

design strategy, in which the original bounding box position 

information and the probability distribution of the category of 

the object in the box are explicitly split into two independent 

processing branches. One branch is responsible for predicting 

accurate boundary box position information, and the other 

branch is responsible for identifying specific categories of 

objects in the box, which helps the model to focus more on 

their respective tasks during the training process, resulting in 

faster convergence speed and improved detection accuracy to 

a certain extent. 

 

3.3 Loss function 

 

YOLOv8 Loss includes classification and detection frame 

loss. Classification loss adopts Varifocal Loss (VFL) function, 

and detection frame loss adopts Distribution Focal Loss (DFL) 

function. VFL developed on the basis of Focal Loss (FL) [29]. 
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(1) FL Loss Function 

FL is based on Cross Entropy (CE). Although FL is derived 

from object detection, it can be applied to many other 

scenarios. The formula of CE is expressed as: 

 

( )
( )

( )

log , 1
,

log 1 ,

p y
CE p y

p otherwise

 − =
= 

− −
 (1) 

 

where, y represents the sample, p represents the probability, in 

order to facilitate the presentation, redefine 𝑝𝑡: 
 

, 1

1 ,
t

p y
p

p otherwise

=
= 

−
 (2) 

 

Thus, the CE function can be expressed as: 

 

( ) ( )( , ) logt tCE p y CE p p= = −  (3) 

 

The model should put more effort into learning difficult 

samples and less effort into learning easy samples. CE 

functions treat hard samples and easy samples equally. This 

leads to the expression FL: 

 

( ) ( ) ( )1 logt t tFL p p p


= − −  (4) 

 

In the above equation, 𝛾  is the regulator and its value is 

between 0 and 5. When the value is 0, it is equivalent to the 

CE function. The larger the value, the model more attention to 

the difficulty of the sample. The above formula only reflects 

difficult samples and easy samples, and does not distinguish 

between positive samples and negative samples. Thus, the 

complete FL formula is derived: 

 

( ) ( ) ( )1 logt t t tFL p p p


= − −  (5) 

 

It is insufficient to consider 𝛼𝑡 solely as a mechanism for 

adjusting the weights; instead, it should be examined in 

conjunction with −𝛼𝑡(1 − 𝑝𝑡)
𝛾 to fully understand its impact. 

(2) VFL Loss Function 

VFL developed on the basis of FL to ensure the accuracy of 

the detection box and the accuracy of category prediction. 

p represents the classification score predicted by the model, 

and q represents the target IoU value. For a positive sample, q 

is the IoU value between the generated bounding box and the 

real bounding box, expressed as: 

 

VFL( , ) ( log( ) (1 )log(1 ))p q q q p q p= − + − −  (6) 

 

q of all classes is set to 0, and the formula is expressed as: 

 

( ) ( ), log 1VFL p q p p= − −  (7) 

 

Here, 𝛼 and 𝛾 are hyperparameters that adjust the weight to 

solve the problem of sample imbalance. Rather than simply 

treating all samples, this approach highlights the influence of 

positive samples by assigning different weights according to 

the IoU value. 

(3) DFL Loss Function 

In the process of image detection, when multiple objects 

block or overlap each other, the annotation frame and 

detection frame may not accurately reflect the true semantic of 

the image. Therefore, it is necessary to adopt a more accurate 

bounding box representation method, and the general 

probability representation formula is: 
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y
y P x xdx P x xdx
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Because the network cannot directly generate a continuous 

probability distribution, this distribution is approximated by a 

series of discrete probability points: 
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In the training process, if the above formula is directly used 

for training, the probability representation space will be too 

large, which makes the network difficult to optimize and 

converge. Therefore, using Distribution Focal Loss: 
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log log
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where, S represents the probability output value. When 
1iy +
 is 

very close to y and the probability output of S is large, the DFL 

is small and the distribution tends to be closer to the center of 

the annotation. Therefore, DFL helps the network focus on the 

predicted values near the target more quickly and speeds up 

model convergence. 
 

 

4. YOLOV8 ALGORITHM IMPROVED 

 

The improvement of YOLOv8 algorithm is the introduction 

of DCNv4 deformable convolution and attention mechanism. 

 

4.1 DCNv4 deformable convolution 
 

Because of the fixed sampling grid of traditional CNN, it is 

often difficult to capture the feature information adequately for 

small targets. Especially for high-resolution images, the 

features of small targets are sparser. The introduction of 

Deformable Conv Nets (DCN) enhances the ability of the 

network to capture spatial structure, especially for objects of 

different scales or positions, so that the kernel can sample from 

any position in the input feature map, which can improve the 

performance of STD to a certain extent. 

DCNv1 changes the sampling position of the standard 

convolution by predicting the offset. The calculation formula: 

 

( )
1

( )
K

k k k

k

y p w x p p p
=

=  + +  (11) 

 

where, K represents the number of sampling points, 𝑤𝑘 

represents the weight of the k-th sampling point, 𝑝𝑘 represents 

the predetermined bias amount, 𝑥(𝑝) represents the p feature 

of the input position, 𝑦(𝑝)  represents the p feature of the 

output position, and 𝛥𝑝𝑘 represents the position offset of the 

learned k-th sampling point. 

DCNv2 enhances the fitting ability of irregularly shaped 

objects. Based on DCNv1, a weight value is added for each 

sampling. The calculation formula: 
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k k k k

p R

y p w p x p p Dp m

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(12) 

 

where, 𝛥𝑚𝑘  represents the modulation factor of the k-th 

sampling point. 

Given 𝑥 ∈ 𝐻 ×𝑊 × 𝐶 , the process of aggregation of K 

sampling points for each point 𝑝0, the operation of DCNv3 is 

defined as: 

 

( )0

K

g gk k gk

gk

y m p p Dp= + +  (13) 

 

Early DCN still has limitations in speed and efficiency in 

practical application, while DCNv4 has carried out significant 

optimization and innovation in core technology, greatly 

enhancing the dynamic and expressive ability of the network 

[30]. In DCNv4, the introduction of unbounded dynamic 

weights allows the model to make adaptive adjustments 

according to the actual distribution of input features, so as to 

capture key feature information more accurately and adapt to 

small targets of different sizes and shapes more accurately. 

DCNv4 is also optimized for computation and stored 

procedures, reducing the number of memory accesses and the 

computational burden of bilinear interpolation coefficients, 

reducing unnecessary memory access requests, and 

significantly improving the model's operating efficiency and 

memory utilization by reducing redundant operations, 

achieving a speed increase of up to 80%. DCNv4 provides a 

variety of pre-trained models and profiles, reducing the 

number of bytes that the kernel needs to read and write, 

reducing the workload per thread, especially in large-scale 

operations can accumulate significant efficiency gains, 

becoming an important cornerstone of future vision models. 

 

4.2 Attention Mechanism (AM) 

 

The attention mechanism mimics the visual function of the 

human eye, improves the ability of the network to focus on key 

information in the detection task, and improves the efficiency 

and accuracy of the network detection. The AM is shown in 

Figure 3. 
 

 
 

Figure 3. Attention mechanism structure 

 

The improved attention mechanism of YOLOv8 algorithm 

consists of location information embedding and location 

attention generation. 

(1) Location Information Embedding 

The global average pooling operation is carried out in width 

and height respectively, and the feature map in each direction 

is obtained. The formula is expressed as: 
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c c
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(2) Location Attention Generation 

First, the width and height direction feature maps are 

spliced, and then the feature maps are convolved. Then, 

BatchNorm operation is performed to get the feature graph 𝐹1, 

and Sigmoid activation function is used to get the feature 

graph: 

 

( )( )1 ,h w

c cf F z z  =    (16) 

 

Then, the size of the feature graph remains unchanged, and 

the convolution calculation is carried out to obtain the feature 

graph 𝐹ℎ  and 𝐹𝑤 , and the attention weights are obtained 

respectively after Sigmoid activation function: 

 

( )( )h h

hg F f=  (17) 

 

( )( )w w

wg F f=  (18) 

 

Finally, the original feature map is calculated using 

weighted multiplication to get the output: 

 

( , ) ( , ) ( ) ( )k w

c c c cy i j x i j g i g j=    (1) 

 

4.3 Algorithm process and implementation details 

 

The core improvement positions are the Backbone and the 

Neck. Among them, Backbone embeds DCNv4 deformable 

convolution in the residual block of CSPDarknet to enhance 

the perception ability of deformed targets. Neck inserts a 

cross-stage attention mechanism in the feature fusion path 

(FPN/PAN) to enhance multi-scale feature interaction. The 

flow of the improved YOLOv8 algorithm is shown in Figure 

4. 

DCNv4 improves the detection accuracy of the model for 

edge-blurred and rotating targets through dynamic offset 

adjustment. The attention mechanism optimizes the feature 

channels and spatial weights to suppress the interference of 

background noise. The AP indicators of the improved model 

in scenarios of dense targets, small targets and occlusion have 

been significantly enhanced. The specific implementation 

details include two aspects: 

(1) CNv4 deformable convolution ensemble. The ordinary 

convolution of the residual block of CSPDarknet in Backbone 

is replaced with the DCNv4 module. Dynamic offset 

prediction generates spatial offsets through lightweight 

convolution to control the sampling positions of convolution 

kernels. Dynamic mask learning, introducing learnable 

Sigmoid masks to dynamically adjust the weights of different 
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sampling points. Support group convolution to reduce the 

computational load. 

(2) Attention mechanism design. The FPN layer of the Neck 

adds cross-stage attention at the lateral connection of the 

feature pyramid. The PAN layer inserts spatial-channel 

attention in the top-down and bottom-up feature fusion paths. 

Among them, for cross-stage attention, when fusing features 

from different stages, channel weights are generated through 

global average pooling. Spatial attention generates spatial 

weights using deformable convolution on feature maps to 

focus on the target area. The specific implementation logic: 

Perform channel compression on the input features. Extract 

context information through global pooling or deformable 

convolution. Dynamically generate channel/space weights and 

multiply them element by element with the original features. 

 

 

5. RESULTS AND DISCUSSION 

 

In view of the existing problems of YOLOv8 algorithm, 

improvements are made from the two aspects of deformable 

convolution and attention mechanism of DCNv4. The effect of 

the improved results on STD needs to be verified by 

experiments. 
 

5.1 Parameter setting 
 

Before the experiment, the environment, including 

hardware environment and software environment, should be 

built first, and then the parameters of training YOLOv8 

algorithm and its improved algorithm should be set up to lay 

the foundation for the experiment. The parameter Settings are 

shown in Table 1. 

The specific reasons for the choice are described as follows: 

First, in terms of hardware. Powerful CPU and GPU can 

provide sufficient computing power to accelerate the training 

and inference process of the model. Sufficient memory and 

high-speed storage devices can ensure the rapid reading, 

writing and processing of data, and improve the efficiency of 

experiments. Second, in terms of software. The combination 

of Windows operating system, PyTorch framework, CUDA 

and cuDNN is a common choice in the field of deep learning, 

with good compatibility and performance optimization, and 

can provide a stable operating environment for experiments. 

Thirdly, in terms of parameter Settings. The selection of model 

parameters such as input image size, anchor box setting, and 

backbone network improvement is to better adapt to the 

requirements of small target detection and improve the 

detection accuracy of the model for small targets. The setting 

of training parameters is to ensure the convergence speed and 

generalization ability of the model and avoid overfitting and 

underfitting. The setting of data augmentation parameters can 

increase the diversity of the data set and improve the 

robustness and generalization ability of the model. 

 

Table 1. Parameter settings 

 
Class Name Configuration 

Hardware 

environment 

CPU 
Inter(R) Core(R) 

i7-8700K 

GPU NVIDIA V100 

Memory capacity 32GB 

Architecture Volta 

CUDA core count 5120 

Hard disk Solid state 512g 

Software 

environment 

OS 

Windows 10 

Enterprise 

Edition 

Language Python 3.7 

Framework Pytorch 1.4.0 

Development 

platform 
PyCharm 2023 

Graphics processor CUDA 11.6 

Data storage MySQL 8.3 

Parameter 

settings 

Input image size 640×640 

Momentum for 

formal training 
0.937 

Final learning rate 0.001 

Weight decay  0.0005 

Optimizer SGD 

Batch size 96 

 

 
 

Figure 4. The improved YOLOv8 algorithm process 

990



5.2 Evaluation index and data set 

 

In order to evaluate the use evaluation effect, three 

indicators were used, namely Precision (P), Recall (R) and 

mAP. Where, P index represents the ratio of the number of 

correct samples detected to the total number of tested samples. 

The R index represents the ratio of the number of correct 

samples detected to the total number of samples in the test set. 

The mAP metric represents the mean of all categories of aps 

in the entire dataset. For mAP indicators, mAP@0.5 and 

mAP@0.5:0.95 are generally used in object detection. 

mAP@0.5 is the average accuracy for all classes when the IoU 

reaches 0.5. mAP@0.5:0.95 is the average accuracy for all 

classes as the IoU changes from 0.5 to 0.95. ASCAL VOC is 

a commonly used data set in the field of computer vision, 

including 20 common object categories, 1,000 images for 

testing, and 4,200 images for training and verification, which 

is convenient for comparing the performance of different 

algorithms [31]. And over time, the number of categories and 

the level of detail in the annotations continues to increase. 

PASCAL VOC data set uses XML file to label the label 

information. YOLOv8 algorithm trains the labeled image label 

file format to be TXT. Category information and four 

coordinate point information of each item need to be extracted 

from the XML file and saved in the corresponding TXT file. 

 

5.3 Experimental results and analysis 

 

The original model is denoted as YOLOv8, the model 

introducing deformable convolution with DCNv4 is denoted 

as YOLOv8+DCN, the model introducing attention 

mechanism is denoted as YOLOv8+AM, and the model 

introducing deformable convolution with DCNv4 and 

attention mechanism is denoted as YOLOv8+DCN+AM. 

(1) Introducing DCNv4 Deformable Convolution 

The experimental comparison results between the original 

model YOLOv8 and the deformable convolution model 

YOLOv8+DCN introduced by DCNv4 are shown in Table 2. 

In Table 2, compared with YOLOv8+DCN, P, R and mAP 

have been improved to varying degrees. Among them, P index 

increased by 4.91%, R index increased by 3.58%, mAP@0.5 

increased by 4.78%, mAP@0.5:0.95 increased by 2.91%. 

(2) Attention Mechanism 

The experimental comparison results between the original 

model YOLOv8 and the model YOLOv8+AM introduced 

with attention mechanism are shown in Table 3. 

In Table 3, compared with YOLOv8+AM, P, R and mAP 

are all improved to varying degrees. Among them, P index 

increased by 3.07%, R index increased by 5.80%, mAP@0.5 

increased by 3.67%, mAP@0.5:0.95 increased by 2.34%. 

(3) The Deformable Convolution and Attention 

Mechanisms of DCNv4 are Introduced 

The experimental between the original YOLOv8 and the 

YOLOv8+DCN+AM, which introduced deformable 

convolution and attention mechanism with DCNv4, are shown 

in Table 4. 

In Table 4, compared with YOLOv8+DCN+AM, P, R and 

mAP are significantly improved. Among them, P index 

increased by 7.46%, R index increased by 8.97%, mAP@0.5 

increased by 6.81%, mAP@0.5:0.95 increased by 5.65%. 

 

Table 2. Comparison of YOLOv8 and YOLOv8+DCN 

 
Model P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) 

YOLOv8 52.12 41.37 40.36 24.41 

YOLOv8+DCN 54.68 42.85 42.29 25.12 

YOLOv8+DCN increase percentage 4.91% 3.58% 4.78% 2.91% 

 

Table 3. Comparison of YOLOv8 and YOLOv8+AM 

 
Model  P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) 

YOLOv8 52.12 41.37 40.36 24.41 

YOLOv8+AM 53.72 43.77 41.84 24.98 

YOLOv8+AM increase percentage 3.07% 5.80% 3.67% 2.34% 

 

Table 4. Comparison of YOLOv8 and YOLOv8+DCN+AM 

 
Model  P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) 

YOLOv8 52.12 41.37 40.36 24.41 

YOLOv8+DCN+AM 56.01 45.08 43.11 25.79 

YOLOv8+DCN+AM increase percentage 7.46% 8.97% 6.81% 5.65% 

 

Table 5. Comparison of the YOLOv8 algorithm with other small object detection algorithms 

 
Algorithm mAP@0.5 AP_small FPS (on GPU) Parameters (M) FLOPs (G) Background False Detection Rate (%) 

YOLOv8 56.3 42.1 128 3.2 7.5 12.3 

YOLOv7 54.7 39.8 95 2.5 5.8 14.1 

YOLOv5 53.2 38.5 110 2.1 4.9 15.6 

EfficientDet-D1 51.8 37.2 65 5.3 12.1 18.4 

FCOS 50.1 35.9 82 4.7 9.3 16.8 

NanoDet 49.5 34.7 145 1.8 3.2 17.9 

 

5.4 Comparison of the YOLOv8 algorithm with other 

small object detection algorithms 

 

On the ASCAL VOC dataset, a comparative experiment 

was conducted between the YOLOv8 algorithm and some 

other common small object detection algorithms. The 

experimental results are shown in Table 5. 

The advantages of YOLOv8 are reflected in four aspects: 
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First, it has outstanding performance in small object detection. 

The AP_small reached 42.1%, significantly superior to 

YOLOv7 (39.8%) and FCOS (35.9%), mainly due to the 

improved Backbone (such as the CSPNet variant) and 

attention mechanisms (such as CBAM), which enhanced the 

extraction ability of tiny features. Second, there is a balance 

between real-time performance and accuracy. The FPS is as 

high as 128, far exceeding that of some high-precision models 

(such as 65FPS of EfficientDet-D1), and is suitable for real-

time detection scenarios. Thirdly, lightweight design. The 

number of parameters is only 3.2M, which is superior to most 

SOTA models (for example, although the 1.8M of NanoDet is 

smaller, its AP_small is lower), and it has great deployment 

potential in edge devices. Fourth, training strategy 

optimization. By adopting self-supervised pre-training and 

data augmentation (such as Mosaic++), the robustness in 

complex backgrounds has been enhanced, and the background 

false detection rate (12.3%) is lower than that of YOLOv7 

(14.1%). 

The potential shortcomings of YOLOv8 are reflected in four 

aspects: First, there are still bottlenecks in the detection of 

extremely small objects. The detection effect on targets 

smaller than 16² pixels is poor (AP_tiny is not listed), and it 

needs to be further optimized by combining multi-scale feature 

fusion or Transformer. Second, the generalization ability for 

complex scenarios is limited. In densely occluded scenarios 

(such as the VisDrone dataset), mAP@0.5 drops by about 5%, 

weaker than targeted design models like TridentNet. Thirdly, 

the demand for computing resources is relatively high. 

Compared with lightweight models (such as NanoDet), its 

FLOPs are 134% higher and it is not friendly to the 

deployment of low-end devices. Fourth, there is room for post-

processing optimization. The NMS threshold is fixed, which 

may lead to missed detection or false detection of small 

targets. Dynamic NMS strategies (such as Soft-NMS) may 

improve performance. 

 

5.5 Potential limitations and future improvement 

directions 

 

After the YOLOv8 algorithm introduces the DCNv4 

deformable convolution and the attention mechanism, there is 

a significant improvement in small object detection. However, 

there are also some potential limitations, and it also provides a 

direction for future improvements. 

The potential limitations are reflected in four aspects: First, 

the amount of calculation and the complexity of the model 

increase. Although the deformable convolution and attention 

mechanism of DCNv4 can improve the model performance, 

they also increase the complexity and computational load of 

the model. This may lead to the model requiring more 

computing resources and time during the training and 

inference processes. For some scenarios with high real-time 

requirements, such as mobile devices or resource-constrained 

embedded systems, it may be difficult to meet the performance 

requirements. The second is the risk of overfitting. After 

introducing new modules and mechanisms, the degree of 

freedom of the model increases, making it easier to fit the noise 

and details in the training data. If the training data is 

insufficient or diverse, it may lead to overfitting of the model 

and a decline in its generalization ability in the test set or 

practical applications. Thirdly, it has insufficient adaptability 

to extreme situations of small target sizes. Although the 

improved algorithm has a good detection effect on general 

small targets, for some small targets with extremely small 

sizes or in complex backgrounds, there may still be problems 

of insufficient detection accuracy. For example, when the size 

of a small target is less than a certain threshold, deformable 

convolution and the attention mechanism may not be able to 

fully capture its features, resulting in missed detection or false 

detection. Fourth, it is difficult to compress and optimize the 

model. Due to the increase in model complexity, the difficulty 

of model compression and optimization also increases 

accordingly. It is a challenging problem to compress the 

improved YOLOv8 model to a size suitable for a specific 

hardware platform without affecting the model performance 

and maintain a high inference speed. 

The future improvement directions include five aspects: 

First, lightweight design. Study more efficient lightweight 

network structures and combine model compression 

techniques, such as pruning and quantization, to reduce the 

computational load and storage space of the model while 

ensuring detection accuracy. For example, it is possible to 

explore the lightweight transformation of deformable 

convolution and attention mechanisms, or to seek more 

lightweight alternatives to make them more suitable for 

resource-constrained environments. Second, data 

augmentation and optimization. Further enrich the data 

augmentation methods, specially design more effective 

augmentation strategies for the characteristics of small targets. 

For example, simulate the image changes of small targets 

under different lighting, occlusion, blur and other conditions, 

increase the diversity of training data, and improve the 

generalization ability of the model. Meanwhile, optimize the 

data preprocessing and annotation processes to ensure the 

quality and accuracy of the data. Thirdly, multimodal 

information fusion. Combining data from other modalities, 

such as infrared images and depth information, and fusing 

them with visible light images, more information is provided 

for the detection of small targets. Multimodal information can 

help the model better identify small targets, especially in 

complex backgrounds or low contrast situations, improving 

the accuracy and robustness of detection. Fourth, the adaptive 

mechanism. Design an adaptive model structure or parameter 

adjustment mechanism to enable the model to automatically 

adjust the detection strategy for small targets according to the 

characteristics of the input image. For example, the parameters 

of deformable convolution and the attention mechanism are 

dynamically adjusted according to the size, distribution 

density, etc. of small targets to better adapt to the detection 

requirements of small targets in different scenarios. The fifth 

point is cross-disciplinary knowledge transfer. Draw on the 

advanced technologies and methods in other fields, such as the 

experiences and achievements in small target detection in the 

fields of medical image analysis and remote sensing image 

detection, and transfer them to the improvement of the 

YOLOv8 algorithm to explore new research ideas and 

methods. 

 

 

6. CONCLUSIONS 
 

STD is an important research direction in target detection, 

which is mainly to detect, identify and locate small targets 

accurately. The traditional target detection algorithm extracts 

feature through a manually designed feature extractor. 

Although it does not require a large amount of data training, it 

has high time complexity and window redundancy, and is 
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sensitive to changes in illumination and angle. In the trend of 

the continuous development of AI, the application range of 

STD is very wide. Improving the accuracy of STD is the focus 

of research, which has positive significance for the 

improvement of computer vision technology level and 

multiple application scenarios. The STD algorithm based on 

improved YOLOv8 studied in this paper is improved from the 

introduction of DCNv4 deformable convolution and attention 

mechanism, so that the model can adapt to complex scenes and 

effectively solve the problem of poor STD performance. 

Future research can be carried out on the application of STD, 

and the model can be lightweight and deployed in embedded 

devices for practical production applications, including drone 

delivery and drone agricultural monitoring and other fields. 
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