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With the rapid growth of e-commerce, the logistics industry is facing increasing demands 

for automated packaging inspection. The quality of packaging directly affects supply chain 

efficiency and customer satisfaction. Traditional manual inspection methods can no longer 

meet the modern logistics industry's requirements for high efficiency and precision. In recent 

years, deep learning and computer vision technologies have achieved remarkable progress 

in industrial inspection, emerging as powerful tools for enhancing automated packaging 

inspection. While existing studies have primarily focused on the application of machine 

learning algorithms, they still face limitations in accuracy and adaptability under complex 

logistics conditions. To address these challenges, this paper proposes a novel logistics 

packaging inspection method based on a two-dimensional flow model. By integrating deep 

learning and computer vision techniques, the method incorporates a probabilistic 

distribution transformation module, a global feature extraction module, and a multi-scale 

feature fusion module to improve detection accuracy and robustness. This approach offers a 

new perspective for logistics packaging inspection and contributes to the advancement of 

intelligent logistics systems. 
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1. INTRODUCTION

With the rapid development of e-commerce, the demand in 

the logistics industry continues to grow [1, 2], which promotes 

the rapid development of logistics packaging automation 

technology [3]. As a key link in commodity distribution, the 

quality and efficiency of logistics packaging directly affect the 

operational efficiency of the supply chain and the shopping 

experience of consumers [4, 5]. Traditional manual inspection 

methods are inadequate when facing large-scale and high-

frequency logistics packaging and are easily affected by 

human factors [6-9]. Therefore, developing an efficient and 

automated logistics packaging inspection technology has 

become an urgent and important issue. In recent years, the 

application of deep learning and computer vision technology 

in industrial inspection has shown great potential, especially 

in image recognition and processing, which provides a new 

technical path for logistics packaging automation inspection. 

Relevant studies show that logistics packaging automation 

inspection not only helps to improve the stability of packaging 

quality but also reduces labor costs and improves production 

efficiency [10-12]. In addition, with the increase of logistics 

demand, the accuracy and real-time performance of logistics 

packaging inspection play a decisive role in the 

competitiveness of enterprises and the efficiency of the supply 

chain [13]. Therefore, using deep learning and computer 

vision technology for automated logistics packaging 

inspection not only has significant economic significance but 

also can further promote the intelligent and automated process 

of the logistics industry. Through efficient and accurate 

inspection technology, better product quality control can be 

achieved to ensure a good experience for consumers when 

receiving goods. 

Although some progress has been made in automated 

inspection, the existing methods still have some obvious 

shortcomings and deficiencies. Most of the existing studies 

rely on traditional machine learning algorithms such as 

Support Vector Machine (SVM) [14] and Random Forest (RF) 

[15], which often perform poorly when dealing with complex 

and high-dimensional image data, and lack real-time and high-

precision detection capabilities. In addition, many studies have 

not deeply explored how to ensure the robustness and 

adaptability of the detection model in complex logistics 

environments. There are certain limitations when the model 

processes images of different packaging materials and under 

different environments [16-19]. Therefore, the existing 

detection methods fail to fully utilize the advantages of deep 

learning technology when facing diversified and complex 

practical applications. 

This paper aims to propose a new method for automated 

logistics packaging inspection based on deep learning and 

computer vision, and to explore its application possibility in 

practical scenarios by constructing an inspection framework 

based on a two-dimensional flow model. Firstly, the paper 

analyzes the basic idea of using the two-dimensional flow 

model for automated logistics packaging inspection and 

discusses the advantages of the model in complex scenarios. 

Secondly, the paper introduces the key modules of the model 
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in detail, including the probabilistic distribution 

transformation module, the global feature extraction module, 

and the multi-scale feature fusion module. Through the design 

of these innovative modules, the paper hopes to solve the 

problems of accuracy and robustness in diversified packaging 

inspection. The research results not only help to improve the 

efficiency and accuracy of logistics packaging inspection 

technology but also provide valuable theoretical support and 

technical reference for the intelligent development of the 

logistics industry. 

2. ALGORITHM DESIGN

During the production and transportation processes, 

logistics packaging is affected by various factors, such as 

different packaging forms, materials, packaging defects, etc., 

which make the packaging inspection task highly complex. 

Traditional inspection methods often rely on local features for 

recognition, making it difficult to handle packaging anomaly 

problems under complex backgrounds. The two-dimensional 

flow model can well preserve the spatial position information 

of the image and has strong modeling capabilities for object 

relationships in packaging images, thereby enabling the flow 

model to effectively detect anomalies in packaging. By 

maintaining the spatial structure of the image, the two-

dimensional flow model can not only accurately capture local 

features of objects but also perform anomaly detection at a 

global level, fully utilizing the importance of spatial 

information in inspection tasks. 

The basic idea of applying the two-dimensional flow model 

to the logistics packaging automation inspection scenario in 

this paper is to enhance the expressive power of the model by 

combining deep learning technology. Specifically, by using 

Vision Transformer (ViT) as the feature extractor, the model 

can provide global perception, integrating global information 

and local details in the image, thereby better understanding the 

context and details of packaging images. This is especially 

crucial for detecting small-sized targets and subtle anomalies. 

At the same time, the combination with the improved Feature 

Pyramid Network (FPN) further enhances the fusion 

capability of multi-scale features, particularly improving the 

detection accuracy of small-scale targets when dealing with 

packaging objects of different sizes. Finally, by combining the 

two-dimensional flow model with these deep learning 

modules, the model can better maintain the spatial structure 

information of the image and improve the detection ability of 

packaging anomalies in complex scenarios. Figure 1 shows the 

structure diagram of the logistics packaging automation 

inspection model. 

Figure 1. Structure diagram of logistics packaging 

automation inspection model 

In logistics packaging automation inspection, image data is 

the most direct source of input. Specifically, the model input 

usually comes from high-resolution packaging images. These 

images are captured by high-definition cameras on the 

industrial production line and contain detailed information on 

the packaging surface and its defects, such as damage, unclear 

labels, printing errors, wrinkles, etc. In these images, abnormal 

defects often exhibit small target characteristics, so the model 

needs to effectively extract and fuse features at different scales 

to ensure the capture of these minor defects. In this application 

scenario, the diversity and complexity of image data require 

the model to have strong feature extraction capabilities, be 

able to identify different types of defects, and have good 

robustness to environmental noise or irregular backgrounds. 

The input of the two-dimensional flow model also includes 

multiple feature channels in the image, such as color channels, 

texture channels, and depth information. For packaging 

images, color and texture are important features for judging 

packaging quality. Through multi-channel input, the model 

can simultaneously focus on color inconsistencies on the 

packaging surface, defects in patterns, and anomalies in 

texture. Depth information helps extract richer spatial features 

among packaging objects with different heights or angles. In 

some complex packaging image scenarios, it may be necessary 

to consider factors such as image perspective distortion and 

lighting changes. At this time, depth information can 

effectively help the model perform spatial positioning and 

correction, thereby improving the accuracy of defect detection. 

3. ALGORITHM STRUCTURE

3.1 Probability distribution transformation module 

The traditional application of normalized flow usually 

focuses on unsupervised anomaly detection tasks, and it may 

encounter accuracy issues in some tasks. Although traditional 

DifferNet can handle low-dimensional data distributions and 

perform anomaly detection, it "flattens" the output of the 

feature extractor, making it difficult to precisely locate 

anomalies. This shortcoming is particularly prominent in 

logistics packaging inspection, as packaging images typically 

contain rich local details and complex spatial relationships, 

which the smoothing process of normalized flow cannot 

effectively capture. In contrast, the two-dimensional 

normalized flow model offers significant advantages for 

automatic logistics packaging inspection. The two-

dimensional normalized flow performs affine transformations 

on segmented input data using Real NVP’s masking technique, 

enabling reversible transformation of data distribution while 

retaining the spatial structure and local details of images. This 

method allows effective preservation of spatial information in 

images, making it more suitable for anomaly localization tasks 

in logistics packaging inspection. In logistics packaging 

inspection, factors such as the size, shape, material, and 

possible defects of packaging form a complex data distribution. 

The two-dimensional normalized flow can better retain this 

multi-level information through parallel transformations and 

efficient processes, ensuring that the detection model can 

accurately locate abnormal areas when facing complex and 

diverse packaging data. Moreover, the reversibility and 

efficiency of the two-dimensional normalized flow model 

allow it to perform real-time processing in practical 

applications, meeting the logistics industry's needs for 

efficient and rapid anomaly detection. 
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Figure 2. Structure of the affine coupling layer in the 

reversible transformation module of the two-dimensional 

normalized flow model 

In the scenario of automatic logistics packaging inspection, 

the architecture of the two-dimensional normalized flow 

model's reversible transformation module includes affine 

coupling layers, channel permutation layers, and Actnorm 

layers. Among them, the channel permutation layer introduces 

reversible 1×1 convolution to replace the traditional reverse 

permutation method, which is crucial for multi-level and 

multi-scale feature fusion in logistics packaging inspection. In 

packaging images, the morphology of objects, background 

complexity, and packaging defects often manifest as subtle 

spatial structural differences. The channel permutation layer 

initializes its weight matrix using a randomly rotated matrix, 

thereby reducing the demand for computational resources 

while optimizing feature representation based on the premise 

of maintaining model reversibility. For diverse packaging 

types and materials in logistics packaging inspection, the 

channel permutation layer can effectively perform spatial 

information transformation and feature reconstruction, thus 

ensuring that the model can handle complex image structures, 

improve the ability to capture local details, and ensure the 

accuracy and stability of detection. Mapping the normal 

feature a to the standard Gaussian distribution space OC(c) is 

expressed as: 

( )
21

exp
22

C

c
O c



 
= − 

 
(1) 

The Actnorm layer plays an important role in the two-

dimensional normalized flow model. As a preprocessing 

operation for input data, it helps improve the model's training 

effectiveness and stability. In automatic logistics packaging 

inspection tasks, packaging images usually have different 

brightness, contrast, and noise levels, making feature 

extraction from images more challenging. The Actnorm layer 

applies scaling and offset parameters to each channel, realizing 

an affine transformation of activations, thereby ensuring that 

each channel's subsequent processing has zero mean and unit 

variance. This operation not only helps to solve the bias 

problem between different data batches but also accelerates 

the convergence speed of the model and enhances the stability 

of the training process. For complex logistics packaging 

images, the Actnorm layer can balance the influence of 

different scales and feature channels, ensuring that the network 

can perform robust learning under various input conditions, 

thereby improving the model's performance in anomaly 

detection and localization tasks. 

In the application scenario of automatic logistics packaging 

inspection, the affine coupling layer is the core module of the 

two-dimensional normalized flow model that implements 

reversible transformation. Through a series of precise 

operations, it can efficiently process complex packaging 

images while retaining spatial information and local features 

of the images. The specific architecture is shown in Figure 2. 

The following are the five specific transformation steps of the 

affine coupling layer and their applications in automatic 

logistics packaging inspection: 

(1) Channel Splitting: The first step of the affine coupling

layer is to split the input feature map along the channel 

dimension into two parts. The input feature map a is split into 

a1:z and az+1:f, where z represents the first z channels, and f 

represents the remaining channels from z+1 to the total 

number of channels. This splitting process is critical for 

processing packaging images, which often contain multiple 

levels of features, such as background and foreground 

information. By splitting the channels, the affine coupling 

layer can independently process different feature layers, 

ensuring efficient modeling of both detailed and global 

information, which leads to more effective feature fusion in 

subsequent steps. 

(2) Calculation of Mean and Standard Deviation: After

channel splitting, the affine coupling layer calculates the mean 

ω and standard deviation δ of the input feature map a along 

the spatial dimension. By statistically analyzing the spatial 

distribution of the input image, the model can capture 

important global information. In logistics packaging 

inspection, variations in lighting and shadows in images may 

cause spatial feature differences. Calculating mean and 

standard deviation helps normalize image data, eliminate 

unnecessary effects, and improve the stability of subsequent 

processing. Assuming that the height and width of the feature 

map are represented by G and Q, and a very small constant is 

represented by γ, the calculation formulas are: 

, ,

1 1
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g q

a
G Q


= =

=
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(3) Learning Affine Transformation Parameters: The affine

coupling layer uses a two-dimensional convolutional layer to 

learn the affine transformation parameters tu and yu, and 

performs affine transformation on the split a1:z using these 

parameters. In this way, the affine coupling layer can adjust 

the features of different areas in the image, making the data 

distribution more in line with model requirements and 

optimizing its representation capability. In automatic logistics 

packaging inspection, local features such as package surface, 

labels, and defects need to undergo precise transformations to 

be effectively recognized. Learning affine transformation 

parameters helps the model better process these local details, 

thereby improving detection accuracy. Assuming the learnable 
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parameters are tu and yu, and the normalized output au is 

represented by yu, the calculation formula is: 

u u
u u u

u

a
b t y





−
=  + (4) 

(4) Channel Merging: In logistics packaging detection

applications, inspection of packaging images relies not only on 

a part of the features but also on a comprehensive 

understanding of all types of information in the image. After 

affine transformation, a1:z and az+1:f are merged into a new 

output feature map a^, ensuring that the features after affine 

transformation are fully integrated with the original features, 

thereby retaining both local and global information of the 

image. The merged feature map provides a richer feature 

representation, helping the detection model more accurately 

identify and locate anomalies in packaging. 

1 2 1 2
ˆ , ,..., , , ,...,z z z fa b b b a a a+ +

 =   (5) 

(5) Backpropagation to Compute Gradients: Finally, the

affine coupling layer performs backpropagation to compute 

the model gradients, thereby optimizing the model parameters. 

In the task of automatic logistics packaging inspection, the 

model aims to maximize the description capability for normal 

samples while minimizing the misidentification of abnormal 

samples. Through gradient descent algorithms, the model 

continuously optimizes its parameters to minimize the loss 

function MH(ϕ), thereby improving model accuracy and 

effectiveness. In practical applications, gradient optimization 

not only allows the model to achieve better fitting results on 

the training set but also provides more robust anomaly 

detection capabilities when facing complex packaging images. 

By computing gradients through backpropagation, the model 

can gradually adjust parameters to ensure high efficiency and 

accuracy in logistics packaging detection scenarios. Assuming 

the output of the two-dimensional normalized flow is cu, the 

Jacobian matrix between the output q and the input of the two-

dimensional normalized flow is Ku, and the number of normal 

samples is V, the expression is: 
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  
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In the application scenario of automatic logistics packaging 

inspection, the two-dimensional flow model, through its 

bidirectional reversible characteristics, can effectively 

implement transformation and generation of image features. In 

the forward process, the model receives feature maps from the 

packaging image feature extractor. These feature maps may 

contain information such as the shape, identification, print 

quality, and surface texture of the packaging. The two-

dimensional flow model transforms the distribution of these 

original feature maps into a Gaussian distribution in a two-

dimensional space. This process improves the efficiency of 

subsequent processing by simplifying image features into a 

probability distribution that conforms to Gaussian distribution. 

The advantage of this transformation lies in its ability to 

eliminate noise and unnecessary complexity in packaging 

images, allowing the model to focus more on key information 

such as defects, damage, or unclear labels. In the reverse 

process, the two-dimensional flow model samples from the 

Gaussian distribution and generates corresponding packaging 

image features based on these samples. For automatic logistics 

packaging inspection, the generated features can reproduce the 

original packaging information in images, and even simulate 

possible image noise or interference by adding noise. In this 

process, by visualizing the generated feature tensors, it is 

possible to clearly observe how the model captures and 

highlights abnormal areas in the image. For example, when 

damage, deformation, or printing errors appear in packaging 

images, these anomalies can be clearly displayed in the feature 

visualization images. 

3.2 Global feature extraction module 

Although traditional convolutional neural networks (CNNs) 

perform excellently in image classification tasks, their 

performance is often limited when dealing with high-

dimensional and complex image data, especially when the 

features in the image have long-distance dependencies. This 

limitation mainly comes from the local receptive field of 

CNNs. Therefore, this paper introduces ViT as the feature 

extraction module into the model. In logistics packaging 

images, defects, printing errors, or damage may be distributed 

in different parts of the image. ViT, through its global feature 

modeling capability, effectively improves the detection ability 

of these defects, enabling the detection model to more 

accurately identify various anomalies in packaging. In 

addition, in automated detection of logistics packaging, the 

diversity and complexity of image data require the model to 

have strong generalization ability. Compared with CNNs, the 

structure of ViT has more advantages in processing large-scale 

datasets because it integrates information globally through the 

self-attention mechanism, reduces the number of model 

parameters, and avoids the risk of overfitting. 

ViT first divides the input image into multiple image 

patches of the same size and performs dimensionality 

reduction and linear transformation on these patches to 

generate a series of f-dimensional vectors. This patch-based 

processing method allows the model to capture more detailed 

information in local regions, while the linear transformation 

helps simplify the expression of image features. Each image 

patch is also added with position encoding information to 

retain its positional information in the original image, which is 

crucial for packaging images. For example, printing errors or 

defects in packaging images may appear in different locations, 

and position encoding ensures that the model correctly 

understands the spatial relationships between different parts. 

Finally, these processed image patches form a two-

dimensional matrix, which is fed into the Transformer encoder 

for processing. This process can effectively capture complex 

features in the image and enhance the model's understanding 

of image content. 

The multi-head self-attention mechanism of the 

Transformer further enhances the performance of ViT in 

automated detection of logistics packaging. By dividing the 

input two-dimensional matrix into multiple subspaces, the 

model can capture the interrelationships between different 

regions of the image in different subspaces, thereby 

identifying subtle differences in packaging images. In the 

multi-head self-attention structure, the calculation process of 

the query matrix, key matrix, and value matrix ensures that the 

model can effectively perform weighted combinations of the 

features of each image patch, and then extract richer and more 

936



diverse feature representations. This mechanism is very 

effective for complex features in packaging images, especially 

when there are various printing quality issues, physical 

damage, or unclear labels on the packaging surface. ViT can 

capture long-distance dependencies between different parts 

through multi-head self-attention, improving detection 

accuracy and robustness. Specifically, l attention heads are 

used to divide the query matrix, key matrix, and value matrix 

into l parts by columns to obtain Wu, Ju, and Nu, and then 

project them into different linear subspaces to perform multi-

head self-attention transformation. Assuming that the output 

feature maps of all attention heads are represented by Pu, Pu is 

concatenated. The specific calculation formulas are as follows: 

/j f l= (7) 

( )
 softmax , 1,

S
u u

u u
W J

P N u l
j

 
 = 
 
 

(8) 

 ( )1cancat ,..., ,...,u lP P P P= (9) 

3.3 Multi-scale feature fusion module 

Figure 3. Principle of FPN network structure 

In the scenario of automated detection of logistics 

packaging, the anomalies of packaging images often appear as 

subtle damages, scratches, color differences, or irregular 

shapes and other small-object features. These small objects 

occupy a relatively small proportion in the image and may 

exist in a more complex background or with noise. Therefore, 

how to effectively capture these detailed features and 

accurately locate them during anomaly detection is a 

challenging task. To improve the detection accuracy for these 

small-object anomalies, the two-dimensional stream model 

proposed in this paper adopts an optimized FPN structure for 

multi-scale feature fusion. This strategy can make full use of 

features at different levels, thereby enhancing the model's 

ability to recognize small-sized defects. 

The multi-scale feature fusion mechanism of FPN has 

special significance in automated detection of logistics 

packaging. Defects in packaging images often present as low-

resolution details and high-resolution background information. 

Although traditional deep networks can effectively capture 

global semantic information, they gradually lose the details of 

local features, resulting in low detection accuracy for small-

sized defects. The structure principle is shown in Figure 3. By 

introducing FPN, shallow detailed information and deep 

global semantic information can be effectively fused to form a 

complementary effect. The FPN structure extracts features 

through convolution from the bottom to the top, and transfers 

the semantic information of high-level features to the bottom 

layer through the upsampling process. At the same time, the 

lateral connections are used to enhance the fusion effect of the 

feature maps, enabling the model to utilize the high resolution 

and weak semantic information of the low-level features and 

the low resolution and strong semantic information of the 

high-level features. In the detection of logistics packaging 

images, FPN helps the model to capture both the subtle local 

defects and the global packaging structure information on 

multi-level feature maps, thereby improving the recognition 

accuracy of small-object anomalies in complex environments. 

Assuming that the feature matrices of different levels in the 

FPN structure are represented by ax and ay, and the fused 

feature matrix is represented by b. In the above process, the 

spatial feature fusion calculation formula is as follows: 

x yMa a b+ = (10) 

The mathematical expression of the additive fusion function 

is: 

 , , , , , ,,SUM x y

u k f u k f u k fb SUM a a= (11) 

Specifically for the two-dimensional flow model based on 

the ViT model, the optimized version of the FPN can further 

enhance the multi-scale processing capability of image 

features. The specific architecture is shown in Figure 4. The 

ViT model itself has already captured global features through 

its multi-head self-attention mechanism, while the FPN 

introduces multi-scale fusion to better combine feature maps 

at various levels, thereby improving the comprehensiveness 

and accuracy of feature extraction. In logistics packaging 

automated detection, defects on the package may appear in any 

area of the image. Therefore, extracting features at different 

scales and performing effective fusion are essential for 

improving the detection rate of small target anomalies. 

Through the optimized FPN structure, the model can perform 

fusion on feature maps at multiple scales, which not only 

strengthens the localization ability of small surface defects on 

packages, but also improves the overall performance of the 

model, making the automatic detection of packaging defects 

more accurate and efficient. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

According to the data in Table 1, in the packaging damage 

dataset, after incorporating the two-dimensional flow model, 

the AUCROC of the validation set increased from 0.945 to 

0.951, and the AUCROC of the test set remained at 0.985; 

AUCPR, Acc, and F1 indicators also showed different degrees 

of improvement after incorporating the model. In the 

packaging deformation dataset, multiple indicators of the 

validation and test sets were improved after incorporating the 

model, such as the AUCROC of the validation set increasing 

from 0.923 to 0.929. The packaging leakage dataset showed 

the same trend, with all indicators exhibiting an upward trend 
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after incorporating the model, for example, the AUCPR of the 

validation set increased from 0.853 to 0.874. This indicates 

that in different types of logistics packaging detection datasets, 

the key evaluation indicators all showed positive changes after 

incorporating the two-dimensional flow model. Based on the 

above experimental results, it can be concluded that the 

proposed logistics packaging automation detection framework 

based on the two-dimensional flow model demonstrates 

significant advantages in practical detection tasks. The model 

can effectively improve the performance of logistics 

packaging automation detection in different scenarios such as 

damage, deformation, and leakage. The improvements in 

multiple evaluation indicators indicate its positive contribution 

to detection accuracy, reliability, and other aspects, verifying 

the feasibility and effectiveness of introducing the two-

dimensional flow model in practical applications of logistics 

packaging automation detection. 

 

 
 

Figure 4. Improved FPN structure diagram 
 

Table 1. Analysis of the impact of incorporating the two-

dimensional flow model on logistics packaging automation 

detection results 

 

 Validation Set Test Set 

 w/o w/ w/o w/ 

Packaging damage dataset 

AUCROC 0.945 0.951 0.985 0.985 

AUCPR 0.974 0.976 0.993 0.992 

Acc 0.882 0.912 0.974 0.974 

F1 0.813 0.823 0.956 0.953 

Packaging deformation dataset 

AUCROC 0.923 0.923 0.874 0.912 

AUCPR 0.924 0.914 0.889 0.921 

Acc 0.826 0.832 0.782 0.823 

F1 0.851 0.865 0.836 0.846 

Packaging leakage dataset 

AUCROC 0.754 0.765 0.745 0.765 

AUCPR 0.853 0.874 0.851 0.865 

Acc 0.621 0.662 0.632 0.651 

F1 0.548 0.653 0.645 0.652 

 

Table 2. Pixel-level detection results of different methods on 

the validation set 

 

 AUCROC AUCPR P R F1 IoU 

YOLO 0.936 0.421 0.387 0.512 0.432 0.287 

Faster R - CNN 0.954 0.456 0.452 0.552 0.512 0.332 

SSD 0.932 0.235 0.223 0.523 0.318 0.165 

RetinaNet 0.978 0.536 0.574 0.524 0.526 0.358 

PSPNet 0.921 0.754 0.856 0.623 0.724 0.569 

EfficientDet 0.915 0.723 0.823 0.648 0.726 0.564 

CenterNet 0.926 0.746 0.884 0.623 0.728 0.554 

Proposed 

Method 
0.962 0.845 0.865 0.728 0.779 0.638 

From the pixel-level detection results of different methods 

on the validation set in Table 2, the indicators of various object 

detection methods show differences. For the AUCROC 

indicator, RetinaNet reaches 0.978, showing outstanding 

performance, and the method proposed in this paper achieves 

0.962, which is also at a high level; in terms of the AUCPR 

indicator, PSPNet reaches 0.754, and the method proposed in 

this paper achieves 0.845. For the P (Precision), R (Recall), F1, 

and IoU indicators, different methods also have their 

respective strengths. The method proposed in this paper 

achieves 0.865 in P, 0.728 in R, 0.779 in F1, and 0.638 in IoU, 

showing certain performance in all these indicators. 

Comprehensively analyzing the data of various indicators, it 

can be seen that the new logistics packaging automation 

detection method proposed in this paper has strong 

competitiveness in pixel-level detection on the validation set. 

Although it does not reach the highest value in the AUCROC 

indicator, it performs well in multiple key indicators such as 

AUCPR, P, R, F1, and IoU, indicating that the method has 

obvious advantages in detection accuracy, completeness, and 

overall performance, verifying its effectiveness and 

superiority in pixel-level detection for logistics packaging 

automation. 

Observing the pixel-level detection results of different 

methods on the test set in Table 3, the indicators of various 

methods show significant differences. In terms of the 

AUCROC indicator, PSPNet reaches 0.978, EfficientDet is 

0.976, and the method proposed in this paper is 0.963, which 

is at a high level. Regarding the AUCPR indicator, the method 

in this paper achieves 0.712, higher than most of the 

comparison methods. For the Precision (P), the method in this 

paper reaches 0.756, leading other methods; the Recall (R) is 

0.556, F1 is 0.635, and IoU is 0.465, also showing certain 
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performance in these indicators. From the overall perspective 

of the test set indicators, the logistics packaging automation 

detection method based on deep learning and computer vision, 

which constructs a two-dimensional flow model, demonstrates 

good performance. Although it does not rank first in the 

AUCROC indicator, it shows significant advantages in key 

indicators such as AUCPR and Precision, indicating that the 

method stands out in terms of accuracy and overall 

performance in logistics packaging detection, and can 

effectively achieve pixel-level detection of logistics packaging. 

Table 3. Pixel-level detection results of different methods on 

the test set 

AUCROC AUCPR P R F1 IoU 

YOLO 0.952 0.135 0.135 0.432 0.221 0.115 

Faster R - CNN 0.954 0.248 0.238 0.526 0.326 0.189 

SSD 0.945 0.126 0.118 0.468 0.215 0.123 

RetinaNet 0.942 0.235 0.256 0.445 0.315 0.187 

PSPNet 0.978 0.559 0.654 0.389 0.489 0.345 

EfficientDet 0.976 0.624 0.748 0.487 0.586 0.412 

CenterNet 0.962 0.629 0.689 0.475 0.562 0.389 

Proposed 

Method 
0.963 0.712 0.756 0.556 0.635 0.465 

Figure 5. Influence of different numbers of detection 

samples on the performance of the proposed method in 

damaged packaging detection 

From the line chart shown in Figure 5, as the number of 

samples increases from 10 to 80, different performance 

indicators show different trends. The AUCROC-Test and 

AUCROC-Val indicators are relatively stable overall, always 

maintaining at a high level. Although there are small 

fluctuations during the increase in the number of samples, they 

basically stay above 0.95. The Acc-Test and Acc-Val 

indicators are also relatively stable; Acc-Test remains close to 

1 during the sample number variation process, while Acc-Val 

fluctuates around 0.9. The F1-Test and F1-Val indicators 

fluctuate greatly in the early stage, with F1-Val at a low value 

when the sample number is 20, and then gradually increases. 

F1-Test shows an overall upward trend as the number of 

samples increases. The AUCPR-Val and AUCPR-Test 

indicators are relatively stable, always maintaining at a high 

level. From the performance of various indicators, it can be 

concluded that the logistics packaging automation detection 

method based on the two-dimensional flow model proposed in 

this paper has good robustness to changes in the number of 

samples in damaged packaging detection. Most of the key 

performance indicators, such as AUCROC, Acc, and AUCPR, 

can maintain a high level when the number of samples changes, 

indicating that the detection performance of the method will 

not be seriously affected by certain fluctuations in sample size. 

Although the F1 indicator fluctuates greatly in the early stage, 

it gradually becomes stable and increases with the increase of 

sample number, indicating that appropriately increasing the 

number of samples helps to improve the comprehensive 

performance of this method in damaged packaging detection. 

Figure 6. The effect of different detection sample sizes on 

the performance of the proposed method for deformation-

type packaging detection 

Figure 7. The effect of different detection sample sizes on 

the performance of the proposed method for leakage-type 

packaging detection 

From the data in Figure 6, it can be seen that as the sample 

size increases from 10 to 80, various performance metrics 

show an upward trend. The AUCROC-Val and AUCROC-

Test indicators steadily increase, gradually rising from lower 

initial values to nearly 0.95 and 0.9 respectively. The Acc-Val 

and Acc-Test indicators also continue to improve, with Acc-

Test eventually approaching 0.9 and Acc-Val reaching a 

relatively high level. The AUCPR-Val and AUCPR-Test 
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indicators show a clear upward trend, eventually approaching 

0.95. The F1-Val and F1-Test indicators also continue to rise, 

with F1-Test increasing from about 0.75 to around 0.85, and 

F1-Val increasing from slightly above 0.7 to above 0.8. 

Overall, the increase in sample size has a significant 

promoting effect on the performance improvement of the 

proposed logistics packaging automated detection method 

based on the 2D flow model in deformation-type packaging 

detection. As the number of samples increases, key 

performance indicators such as AUCROC, Acc, AUCPR, and 

F1 continue to improve, indicating that the method can 

effectively utilize more samples for learning and detection. In 

handling deformation-type packaging detection tasks, having 

a sufficient number of samples enables its performance to be 

fully utilized. 

According to Figure 7, in leakage-type packaging detection, 

as the sample size increases from 10 to 80, the changes in 

different performance metrics vary. The AUCROC-Val and 

AUCROC-Test indicators show an overall upward trend, with 

AUCROC-Test gradually increasing from about 0.7 to nearly 

0.8. The AUCPR-Val and AUCPR-Test indicators remain 

relatively stable, maintaining a high level around 0.8–0.85. 

The Acc-Val and Acc-Test indicators fluctuate significantly, 

with Acc-Test reaching a peak when the sample size is 30 and 

then declining, and Acc-Val also experiencing obvious 

fluctuations. The F1-Val and F1-Test indicators also fluctuate, 

with F1-Test reaching a higher value when the sample size is 

30, then decreasing and gradually rising again. In general, the 

change in sample size has a certain impact on the performance 

of the proposed logistics packaging automated detection 

method based on the 2D flow model in leakage-type packaging 

detection. Although the AUCROC and AUCPR indicators are 

relatively stable and show an increasing trend, the Acc and F1 

indicators fluctuate significantly, indicating that the increase 

in sample size does not always lead to stable performance 

improvement for this method in handling leakage-type 

packaging detection. However, within a certain range of 

sample sizes, some key indicators can still be improved, 

suggesting that the detection framework has certain 

application potential in leakage-type packaging detection. 

5. CONCLUSION

The research content of this paper revolves around 

“logistics packaging automated detection technology based on 

deep learning and computer vision,” aiming to propose an 

innovative method to improve the efficiency and accuracy of 

automated detection in logistics packaging. The study 

constructed a detection framework based on a two-

dimensional flow model and explored in depth the application 

advantages of this framework in complex scenarios. Firstly, 

the paper analyzed the basic principles of using the two-

dimensional flow model for logistics packaging automated 

detection, emphasizing the unique advantages of this method 

in handling complex backgrounds and variable environments. 

Then, the study introduced several key modules in the 

framework in detail, including the probability distribution 

transformation module, the global feature extraction module, 

and the multi-scale feature fusion module. Among them, the 

probability distribution transformation module aimed to 

handle variations in packaging shapes and sizes, thereby 

improving the adaptability of detection; the global feature 

extraction module effectively extracted global information 

from images, enhancing the recognition ability of the model; 

and the multi-scale feature fusion module further improved the 

detection accuracy of packaging objects by combining features 

at different scales. 

Through experimental validation, the proposed logistics 

packaging automated detection framework showed better 

performance than traditional methods in various complex 

scenarios, specifically in detection speed and accuracy. In 

addition, the model also demonstrated good adaptability in 

real-time detection and processing capabilities, fully proving 

the broad application potential of deep learning and computer 

vision technologies in the logistics industry. Therefore, this 

study not only provided a new idea and technical solution for 

logistics packaging automated detection, but also has 

important theoretical value and application prospects. The 

research results show that the integration of deep learning and 

computer vision technologies can effectively improve the 

detection efficiency of logistics packaging, helping enterprises 

reduce labor costs and improve operational efficiency. 

However, this study also has certain limitations. Firstly, the 

research is conducted under specific environments, so the 

generalization ability of the model still needs to be further 

validated in more real-world scenarios. In addition, for 

extremely complex scenes, the model’s performance may be 

affected and needs further optimization. In future research 

directions, it is suggested to focus on further optimization and 

improvement of the model to enhance its performance in 

complex scenarios. It is also possible to explore the integration 

of other sensor data with visual data to enhance the detection 

capability of the model. Moreover, improving the 

computational efficiency of the model to meet the higher 

requirements of real-time detection application scenarios is 

another important direction for future research. In summary, 

this study provides an important theoretical and practical 

foundation for the automated detection of logistics packaging, 

and future research will further promote the continuous 

development of this field. 
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