
  

  

Urban Residential Wind Field Visualization and Wind Speed Recognition System Based on 

Image Fusion with Health Risk Early Warning 

 

 

Xin Huang1 , Lei Zhang2* , Lei Huang3, Hua Zhong4 , Yuntao Xia5,6 

 

 

1 School of Architecture, Tongji Zhejiang College, Jiaxing 314001, China 
2 School of Architecture and Planning, Anhui Jianzhu University, Hefei 230601, China 
3 Dalian Municipal Friendship Hospital, Dalian 116001, China 
4 School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, United Kingdom 
5 Department of Information Management, Anhui Vocational College of Police Officers, Hefei 230031, China 
6 Anhui Zhianxin Information Technology Co., Ltd., Hefei 230031, China 

 

Corresponding Author Email: zhanglei@ahjzu.edu.cn 

 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

 

https://doi.org/10.18280/ts.420239 

  

ABSTRACT 

   

Received: 9 September 2024 

Revised: 27 February 2025 

Accepted: 13 March 2025 

Available online: 30 April 2025 

 With the acceleration of urbanization, improving the wind environment in urban residential 

areas has become a crucial issue for enhancing residents' quality of life and health safety. 

Traditional wind field monitoring methods have significant limitations and fail to meet the 

demand for large-scale, high-resolution, real-time wind field monitoring. Therefore, 

developing new technologies to improve the accuracy of wind field visualization and to 

provide scientific support for urban planning has become an urgent research need. This study 

proposes an urban residential wind field visualization and wind speed recognition system 

based on image fusion. By combining infrared hyperspectral images with their extracted 

feature values, a technical framework for wind field visualization and wind speed 

recognition is developed, leading to the implementation of a health risk early warning 

mechanism. Existing research primarily relies on physical models, sensor networks, and 

remote sensing technologies to study wind field distribution and wind speed variations; 

however, these methods often suffer from limitations in spatial coverage, data fusion 

capabilities, and computational efficiency. By introducing an innovative image fusion 

technique, this study overcomes the limitations of traditional approaches, offering a more 

precise visualization solution for urban residential wind fields. Furthermore, by leveraging 

feature values from infrared hyperspectral images for wind speed recognition, the system 

enables proactive health risk warnings. This method provides effective technical support for 

urban planning, environmental protection, and public health management, and holds 

significant theoretical and practical value. 
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1. INTRODUCTION 

 

With the continuous acceleration of urbanization, the 

planning and design of urban residential areas are facing more 

and more challenges [1, 2]. The improvement of the wind 

environment not only affects residential comfort but also has 

important impacts on urban climate regulation, pollution 

dispersion, energy consumption, and other aspects [3-5]. The 

wind field distribution in urban residential areas is directly 

related to residents' quality of life and health safety [6, 7]. 

Therefore, effective monitoring and prediction of the wind 

field in urban residential areas are of great significance. 

However, traditional wind field monitoring methods mainly 

rely on field measurements [8], which are limited by 

equipment layout constraints and spatial resolution of the data 

[9], making it difficult to achieve real-time and accurate 

monitoring of large-scale urban areas. Therefore, how to 

improve the accuracy of wind field visualization through 

emerging technologies, and thus provide strong support for 

urban planning, has become an urgent problem to be solved. 

Wind field visualization and wind speed recognition not 

only have important application value in architectural design, 

urban greening, and other fields, but also play a key role in 

public health and environmental management [10, 11]. 

Abnormal changes in wind speed may directly affect the 

distribution and dispersion of air pollutants [12], thereby 

impacting the health status of urban residents. In addition, with 

the intensification of global climate change and the frequent 

occurrence of extreme weather events [13-15], changes in the 

urban wind environment have also brought potential risks to 

residents' physical health [16, 17]. Therefore, wind field 

visualization and wind speed recognition based on image 

processing and remote sensing technology can provide 

scientific support for policymakers, planners, and urban 

managers, effectively responding to and preventing health 

risks caused by wind environment changes. 

Existing research mainly focuses on wind field simulation 

based on physical models, wind speed measurement through 

sensor networks, and applications of remote sensing 

technology. However, these research methods still have some 
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shortcomings. Traditional wind field simulation mostly relies 

on limited field monitoring point data, making it difficult to 

fully reflect the wind speed distribution under complex urban 

terrains [18]. Although sensor networks can provide relatively 

accurate wind speed data, their deployment and maintenance 

costs are high, and they cannot cover large-scale areas [19]. In 

addition, although remote sensing images can provide some 

support for wind field monitoring, most methods face 

bottlenecks in data fusion technology and computational 

efficiency when processing high-resolution remote sensing 

images [20]. Therefore, existing research methods still need to 

be improved in terms of real-time performance, accuracy, and 

large-scale coverage capabilities of the wind field. 

The main goal of this study is to propose an urban 

residential wind field visualization and wind speed recognition 

system based on image fusion technology, combining infrared 

hyperspectral images and the feature values of infrared 

hyperspectral images, to achieve precise monitoring and 

analysis of the urban wind field. Specifically, the research 

content of this paper includes two aspects: first, using infrared 

hyperspectral image fusion technology to realize the 

visualization of the urban residential wind field and accurately 

depict the wind speed distribution; second, through the wind 

speed recognition method based on the feature values of 

infrared hyperspectral images, accurately identify wind speed 

changes and predict possible health risks. 

This study will provide new technical means for the scientific 

planning and management of the urban wind environment and 

has important application value in fields such as health risk 

early warning and environmental protection. 

 

 

2. VISUALIZATION OF URBAN RESIDENTIAL WIND 

FIELD BASED ON FUSED INFRARED 

HYPERSPECTRAL IMAGES 

 

The core of the research objective in this paper is to estimate 

the motion vectors of atmospheric features such as water vapor 

or temperature changes through a global dense optical flow 

algorithm, and then assign appropriate heights to each motion 

vector. Infrared hyperspectral images can provide detailed 

information about different surface temperatures, humidity 

levels, and material properties of objects in urban areas, which 

are crucial for wind field studies. In the urban environment, 

features such as buildings, roads, and green spaces have 

significant impacts on the flow of wind. Infrared hyperspectral 

images can help analyze the variations of wind speed and 

temperature in different areas, thus supporting the dynamic 

changes of the wind field. By combining high-resolution 

inversion results of temperature and humidity with 

atmospheric motion vectors, the vertical distribution of wind 

can be further determined, ultimately providing accurate 

visualization of the wind field in urban residential areas. 

 

 
 

Figure 1. Schematic diagram of the dense optical flow 

method 

 

The core idea of the dense optical flow method is to use 

changes in adjacent pixel points in the time domain of an 

image sequence to calculate the optical flow field. By 

performing a polynomial approximation on the neighborhood 

information of each pixel in the image, the motion vector of 

each pixel is obtained, thereby constructing the motion field of 

the entire image. Figure 2 shows the schematic diagram of the 

dense optical flow method. By analyzing continuously 

acquired infrared hyperspectral images, the dense optical flow 

method can calculate the motion of each pixel in the time 

series. These motion vectors actually correspond to the two-

dimensional plane movement of air, i.e., the wind field. To 

ensure the accuracy of calculation and the smoothness of 

visual effects, this paper adopts the image pyramid method, 

calculating the optical flow field layer by layer from different 

scales, gradually refining the details of the wind field. The 

main calculation process of the dense optical flow method is 

as follows: 

 

2.1 Image modeling 

 

When applying the dense optical flow method to the 

visualization of the urban residential wind field, image 

modeling must first be performed. Infrared hyperspectral 

images provide temperature information at each pixel, and 

temperature differences are often associated with changes in 

wind speed and wind direction. To achieve wind field 

visualization, it is necessary to extract temperature-related 

information from infrared hyperspectral images and regard the 

brightness changes of the image as the manifestation of airflow. 

In this process, image modeling not only includes the 

acquisition of temperature information but also involves the 

establishment of a time sequence of images, ensuring temporal 

correlation between adjacent images to reflect changes in wind 

speed. 

Specifically, the grayscale value of the image pixel can be 

regarded as a function d(a, b) of a two-dimensional variable. 

Suppose the two-dimensional column vector is represented by 

a, the symmetric 2×2 matrix is represented by X, the 2×1 

matrix is represented by y, and the scalar is represented by z. 

Then, taking the pixel of interest as the center, the local image 

is modeled. The following equation gives the binomial 

expansion of the function: 
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( )

2 2
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1
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/ 2
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d a b e e a e b e a e b e ab

e e ea a
ab e

e e eb b

a Xa y a z

 + + + + +

      
= + +      

      

= + +

 (1) 

 

Assume that the neighborhood range of each pixel is 

(2v+1)×(2v＋m), then based on the weighted least squares 

method, fitting the values and coordinates of the (2v+1)2 pixel 

points in the neighborhood can obtain a six-dimensional 

coefficient vector for the central pixel of the image. The 

grayscale value matrix of the neighborhood (2v+m)×(2v+m) is 

split and combined into a (2v+1)2×1 vector d in column-major 

order. Let the transformation matrix Y, whose basis functions 

are (1, a, b, a2, b2, ab), be composed of six column vectors yu, 

with the dimension of (2v+1)2×6, and the coefficient vector e 

within the neighborhood has the dimension 6×1. Thus: 

 

( )1 2 3 4 5 6d Y e y y y y y y e=  =   (2) 

 

When the neighborhood matrix with a two-dimensional 
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Gaussian distribution characteristic of size (2v+m)×(2v+m) is 

split and combined into a (2v+1)2×1 vector x in a column-

priority order, the original basis function transformation 

matrix Y becomes: 

 

( )1 2 3 4 5 6d x y x y x y x y x y x y=        (3) 

 

By performing dual transformation on Y, the dual 

transformation matrix H is obtained: 

 

( ) ( )

( ) ( )

1 1 1 6

6 1 6 6

, ,

, ,

x y y x y y

H

x y y x y y

  
 

=  
   

 (4) 

 

Assuming that the column vectors of the transformed basis 

function matrix are represented by y~
u, and the cross-

correlation process is represented by ∗, then at this time e is: 

 

( )

( )( )( )

( )( )( )

1

1

6

x y d a

e a H

x y d a

−

  
 

=  
   
 

 (5) 

 

2.2 Displacement estimation 
 

Based on image modeling, the next step is displacement 

estimation. According to the principle of dense optical flow 

method, the motion of pixels between two consecutive images 

can be used to estimate the displacement of objects. In the 

application of urban residential wind field, the motion of the 

wind field is reflected through the pixel brightness changes 

caused by temperature variations in the image. By tracking the 

brightness value changes of each pixel, the motion vector 

between adjacent images can be calculated, which corresponds 

to the direction and magnitude of wind speed. This process is 

realized by solving the optical flow equation, ensuring that the 

motion of each pixel is consistent with that of its neighborhood 

pixels, satisfying the optical flow smoothness assumption. The 

displacement estimation process ensures that the motion of 

each pixel is accurately captured, thus enabling an accurate 

description of the wind field speed and direction within urban 

residential areas. 

Specifically, after obtaining the coefficient vectors of pixels 

in two consecutive images, the optical flow field is further 

calculated. If a displacement d occurs between two images, it 

will cause changes in the expanded polynomial within the 

neighborhood of the image center pixel. Suppose the original 

position of the previous image is: 
 

( )1 1 1 1

T Td a a X a y a z= + +  (6) 

 

Assuming that the appearance information of the pixel 

motion scene between the two images remains unchanged, 

there is X2= X1, y2= (y1-2X1f), 2= fTX1f-yT1f+z1, then after the 

displacement of pixels, the new position becomes: 
 

( ) ( )

( ) ( ) ( )

( )

2 1

1 1 1

1 1 1 1 1 1

2 2 2

2

T T

TT T T

T T

d a d a f

a f X a f y a f z

a X a y X f a f X f y f z

a X a y a z

= −

= − − + − +

= + − + − +

= + +

 (7) 

If X1 is a non-singular matrix, then based on y2= (y1-2X1f), it 

follows that: 

 

( )1

1 2 1

1

2
f X y y−= − −  (8) 

 

Ideally, X1= X2, but in practical situations, this is not the case, 

and needs to be approximated by the average value. Let: 

 

( )
( ) ( )1 2

2

X a X a
X a

+
=  (9) 

 

( ) ( )2 1

1

2
y a y y = − −  (10) 

 

Then: 

 

( ) ( ) ( )X a f a y a=   (11) 

 

( ) ( )
1

T Tf X X X y
−

=   (12) 

 

Suppose the objective function is represented by r(a), and 

the weight function of neighborhood pixels is represented by 

q(Δa). In order to obtain the optimized displacement, let r(a) 

represent the weight within the neighborhood of the central 

pixel, then the expression is: 

 

( ) ( ) ( ) ( )
2

a U

r a q a X a a f y a a
 

=  + − +  (13) 

 

The above steps only construct the local model of the image. 

In order to avoid the error caused by only considering the 

displacement change in local polynomials at the same 

coordinate positions of two images, this paper introduces a 

priori displacement field f~(a). Assume that the pixel positions 

of two consecutive images are represented by a and a+f~(a), 

respectively, then the relative displacement estimation to the 

true value can be obtained by calculating the displacement 

difference between the two: 

 

( )
( ) ( )1 2

2

X a X a
X a

+
=  (14) 

 

( ) ( ) ( )( ) ( ) ( )2 1

1

2
y a y a y a X a f a = − − +  (15) 

 

2.3 Scale transformation 

 

In the visualization process of urban residential wind fields, 

the complexity of the wind field requires consideration of 

motion information at different scales. In order to effectively 

handle this problem, the dense optical flow method introduces 

the scale transformation method, usually using the image 

pyramid technique. The image pyramid captures wind field 

information at different scales through multi-level image 

processing. On each layer of the image, the optical flow field 

is first calculated, and then the high-level results are used to 

guide the optical flow calculation on the lower-level images. 

This layer-by-layer calculation method helps to handle 

complex influencing factors such as buildings and roads in 

cities, especially at low-resolution levels where large-scale 
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wind flow trends can be better captured, while at high-

resolution levels, small-scale local wind speed variations can 

be finely reflected. Scale transformation ensures the step-by-

step calculation process from global to local, from coarse to 

fine, enabling the visualization of the wind field to have both 

global characteristics and sufficient detail representation. 

Specifically, when there are regional and global visual 

differences in the image, in order to accurately track the 

feature points in the image, this paper chooses to perform scale 

transformation based on the image pyramid. Suppose the scale 

transformation matrix is represented by T(a), the following 

formulas give the calculation of the intermediate variables H′ 

and g: 

 

( ) ( ) ( ) ( ) ( )'
T T

H a P a X a X a P a=  (16) 

 

( ) ( ) ( ) ( )
T T

g a P a X a y a=   (17) 

 

Before solving the optical flow field fOUT, it is necessary to 

perform a blurring operation on the intermediate variables H′ 

and g. Suppose the blurred H′ and g are H 'AVG and gAVG. The 

optical flow field solving formula is: 
 

( ) ( ) ( )
1'

OUT AVG AVGf a H a g a
−

=  (18) 

 

 

3. WIND SPEED IDENTIFICATION AND HEALTH 

RISK EARLY WARNING BASED ON INFRARED 

HYPERSPECTRAL IMAGE FEATURE VALUES 

 

The wind field in urban residential areas has complex 

airflow patterns, influenced by buildings, topography, and 

other environmental factors. These factors may cause 

nonlinear and local variations in wind speed. Therefore, 

selecting the reflectance slope of high spectral bands, the 

average intensity of reflected spectra, and the thermal source 

regions with higher radiation intensity from the infrared 

hyperspectral images provides effective indicators for 

identifying wind speed. To achieve this goal, this paper adopts 

the BP neural network to establish the functional relationship 

between feature values and the wind speed in urban residential 

areas. By inputting the extracted feature values from the 

infrared hyperspectral images, the neural network can learn the 

intrinsic relationship between these features and the urban 

wind speed and predict the wind speed based on the training 

data. Let the input feature values be denoted by au, the wind 

speed inversion value by OjWI, the Sigmoid activation function 

by d, and the number of nodes in the input layer, hidden layer, 

and output layer by l, v, and g, respectively. The neuron 

weights between the input layer and hidden layer and between 

the hidden layer and output layer are denoted by Quk and Nkj, 

and the thresholds of the hidden layer and output layer are 

denoted by ϕk and φj, respectively. The formula for a single 

hidden layer BP network is: 

 

1 1

g v
WI

j kj uk u k j

j k

O d n d q a  
= =

    
= − −   

    
   (19) 

 

3.1 Extraction of reflectance slope feature values of 

hyperspectral bands 

 

The reflectance slope reflects the response changes of 

surface materials to infrared radiation of different wavelengths. 

The spatial influence of wind speed on the surface is 

manifested in the variations of the wind field; different wind 

speeds and directions may lead to changes in the surface 

reflectance of buildings, green belts, roads, etc. When the wind 

speed is high, the thermal source regions and reflected spectra 

on the surface undergo varying degrees of change, affecting 

the reflectance slope of the hyperspectral image. By analyzing 

these slope changes, the characteristics of the wind field under 

different wind speeds can be identified, thereby providing a 

reliable basis for wind speed estimation. 

To ensure the accuracy of the extracted reflectance slope, 

the first step is to remove the baseline noise, thereby 

eliminating signal deviations caused by environmental 

interference, sensor noise, and other factors. Baseline noise 

may cause inaccuracies in the reflectance data of hyperspectral 

images, which would further affect the accuracy of subsequent 

wind speed identification. In the environment of urban 

residential areas, the infrared band reflection characteristics of 

different types of surface features, such as buildings, roads, 

and green spaces, may generate errors due to the presence of 

such noise. This paper selects the region before the "flicker 

zone" without scattering signals in the infrared hyperspectral 

image as the baseline noise calculation region. Assuming the 

baseline noise at a certain moment is represented by σNO, and 

the number of pixels in the baseline noise calculation region is 

denoted by V, the specific calculation formula is: 
 

( )
2.25 2.0

1.0 2.5

1
,

d

NO f

f

B d
V 

 
−

=− =−

=    (20) 

 

After subtracting the baseline noise, the scattered signal 

power value B-(π, df) can be calculated by the following 

formula: 

 

( ) ( ), ,f f NOB d B d  = −  (21) 

 

The second step is the generation of the delayed integration 

waveform. The generation of the delayed integration 

waveform is achieved by integrating the radiation intensity at 

different bands of the hyperspectral image over time or space. 

The wind speed in urban residential areas is usually influenced 

by factors such as building clusters, green spaces, and road 

network layouts; therefore, changes in the wind field will 

affect the intensity and distribution of surface thermal 

radiation. By generating the delayed integration waveform, a 

comprehensive reflection intensity waveform can be obtained, 

which can reflect the changes in the reflectance of building 

surfaces, roads, and green areas under different wind speeds. 

In this paper, incoherent integration is performed over the 

selected range of the infrared hyperspectral image, assuming 

the Doppler frequency shift range of the window is denoted by 

△df. When the Doppler frequency shift range is △df, the 

function of delay-scattering power is represented by F(πk, △df). 
The number of Doppler points corresponding to each fixed 

delay in the image is denoted by L, and the calculation formula 

is: 
 

( ) ( )
1

1
, ,

l

L

k f k f

l

F d B d
L

 
=

 =   (22) 

 

After denoising and generating the delayed integration 

waveform, the reflectance slope of the hyperspectral band is 
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calculated. In urban residential areas, the changes in wind 

speed directly affect the surface temperature distribution and 

radiation intensity, thereby influencing the changes in 

reflectance. The reflectance slope is a measure of the rate of 

change of reflectance with respect to wavelength, which can 

reveal the changes in surface reflectance characteristics caused 

by wind speed in different regions. In areas with higher wind 

speeds, the reflectance changes more sharply. Therefore, by 

calculating the reflectance slope of the hyperspectral bands, 

the extent to which wind speed affects the surface material 

reflectance characteristics can be determined. Specifically, the 

leading edge region centered around the leading center point 

of the delayed integration waveform is fitted with a first-order 

polynomial to obtain the slope of the best fit line. Assuming 

the delay and Doppler frequency shift ranges for calculating 

the reflectance slope of the hyperspectral band are △π and △df, 
and the slope and intercept of the best fit line are denoted by x 

and z, the calculation formula is: 

 

( )

( ) ( )
2

2

,
1

,

,

LES f

k f k
z

k

d

ARGMIN F d z


 

 
=

  =

   
 − +  

   


 (23) 

 

3.2 Extraction of average intensity characteristic value of 

reflectance spectrum 

 

The average intensity of the reflectance spectrum refers to 

the overall response intensity of the surface to infrared 

radiation, which contains important meteorological 

information. Buildings and other surface features in urban 

residential areas are affected by solar radiation during the 

daytime, while at night, they exhibit different thermal 

radiation characteristics. Wind speed has an indirect impact on 

the average intensity of the reflectance spectrum, especially 

under conditions of high wind speed, where changes in the 

wind field cause uneven distribution of heat sources in the air, 

thereby affecting the radiation intensity of the surface. By 

comparing the average intensity of the reflectance spectrum in 

different regions, the distribution of wind speed can be 

determined, thus identifying the characteristics of the wind 

field. This characteristic value provides a quantitative basis for 

thermal source distribution changes in wind speed 

identification. 

 

( )
( ),

,
l

V L

k f

k l
FFLX f

B d

d
LV



   =


 
(24) 

 

3.3 Extraction of characteristic value of high radiation 

intensity thermal source area 

 

High radiation intensity thermal source areas usually 

represent local thermal concentration regions, which are often 

closely related to wind speed changes. Buildings, roads, and 

green spaces in urban residential areas exhibit different 

variation patterns of thermal radiation intensity under different 

wind speeds. Stronger wind speeds may intensify the radiation 

intensity differences of thermal source areas, affecting the 

distribution of thermal sources in hyperspectral images. 

Therefore, the analysis of high radiation intensity areas can 

effectively reflect the impact of wind speed on surface thermal 

distribution, thus providing strong support for wind speed 

identification. These characteristic values help extract key 

indicators of wind speed changes from infrared hyperspectral 

images, aiding in precise wind speed monitoring and health 

risk warning in urban environments. 

 

( )
2 2

, , 2 23

2
4

f fd d s t s e S E

YEZT S S E

to to

B U M M E E

O H H

 
 


=  (25) 

 

Assuming that the scattering signal power of the high 

radiation intensity thermal source areas in the image is 

represented by Bπ,df, the loss correction introduced by the 

average intensity of the reflectance spectrum is represented by 

Uπ,df, and atmospheric loss corrections are represented by Ms2t 

and Ms2e. The wavelength is represented by η, the signal 

transmission power in the reflection direction of high radiation 

intensity thermal source areas is represented by OS, the 

reflection signal gains of high radiation intensity thermal 

source areas are represented by HSto and HEto, and the distances 

from the image shooting point to the ground are represented 

by ES and EE. 

 

3.4 Multi-feature-value-based wind speed identification 

method 

 

Since the characteristic values extracted from infrared 

hyperspectral images have significant numerical differences, 

in order to prevent the characteristic values with lower 

numerical values from being overwhelmed in subsequent 

analysis, and to accelerate the learning and convergence speed 

of the BP neural network, this paper adopts a normalization 

processing method. Normalization maps each characteristic 

value into the [0,1] interval, ensuring that all characteristic 

values are within the same numerical range, thus improving 

the stability of the data and the learning efficiency of the neural 

network. Especially in the urban residential wind field, the 

variation of wind speed in different regions affects the 

characteristic values such as reflectance and radiation intensity 

in infrared hyperspectral images differently. Through 

preprocessing, the magnitude differences among these 

characteristic values are reduced, thereby enabling better 

inversion and identification of wind speed. Assuming that the 

characteristic value is represented by a, the normalized 

characteristic value is represented by a′, and the maximum and 

minimum values in the characteristic value dataset are 

represented by aMAX and aMIN respectively, the specific formula 

is: 

 

' MIN

MAX MIN

a a
a

a a

−
=

−
 (26) 

 

Furthermore, based on different combinations of 

characteristic values, this paper establishes a wind speed 

inversion model using a BP neural network. Wind speed 

inversion does not rely solely on a single characteristic value 

but forms a more comprehensive feature matrix by combining 

multiple characteristic values. To verify the inversion 

performance under different feature value combination 

methods, two-dimensional or three-dimensional feature 

matrices were selected as inputs to the BP neural network, and 

multiple tests were conducted to optimize the network 

structure. Considering the balance between network learning 

efficiency and effectiveness, this paper set the number of 

hidden layer nodes to 5 and 6 respectively, and used training 
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and validation sets for model training. The BP neural network 

learns the wind speed variation patterns in the 

multidimensional feature matrix, enabling more accurate 

identification of wind speed in the urban residential wind field. 

This multi-feature-value combination method not only 

improves the accuracy of wind speed identification but also 

provides more reliable wind speed data support for health risk 

warnings. 

Further specific strategies for health risk warnings need to 

combine the correlation between wind speed and air quality, 

building structure, and environmental factors within urban 

residential areas. By analyzing the air flow patterns under 

different wind speed conditions, areas where excessively high 

wind speed may cause the accumulation or dispersion of air 

pollutants, such as PM2.5, nitrogen dioxide, and other harmful 

gases, can be identified. Combined with existing health risk 

data, real-time air quality warnings can be provided to 

residents in these areas. When monitoring detects excessively 

high wind speeds that may cause an increase in pollutant 

concentrations, the system will automatically trigger warnings 

to remind residents to take corresponding health protection 

measures, such as wearing masks, reducing outdoor activities, 

or closing windows. These correlations between wind speed 

and pollutant concentrations will be monitored and predicted 

in real-time through big data analysis models to timely identify 

potential health risks. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 2 shows multiple types of residential areas in Jiaxing, 

covering high-, medium-, and low-density determinant slab 

residential areas, including Sujia Zhijingyuan, Vanke 

Guangnianli Future Community Huoju Community 

(Xincheng Town), Huoju Community (Xincheng Town), 

Xingfuli Future Community, Hongxiang Tianyufu Future 

Community, Nanjiang Apartment, Mengdie Huayuan, 

Shuangxi Garden, Jindi Minglu Mansion, Jiaxing Lake Shore 

Pearl Home, Yanjing Community, and New Hope Jinlin 

Minglu, etc. These residential areas are distributed in different 

regions of Jiaxing, with differences in building layout, floor 

area ratio, and other aspects, providing rich and diverse 

research samples for the experimental study of the image-

fusion-based urban residential wind field visualization, wind 

speed identification system, and health risk early warning. 

The determinant slab residential area cases of different 

densities, with their building arrangement, spacing between 

buildings, and surrounding environments, significantly affect 

wind field characteristics. High-density residential areas have 

relatively compact buildings, which may lead to complex local 

wind speed changes and obvious airflow interference; 

medium- and low-density residential areas have larger spacing 

between buildings, and the wind field is relatively open, but 

may also be affected by surrounding topography, road 

orientation, and other factors. Through wind field visualization 

and wind speed identification of these typical case samples, 

the characteristics of wind environments in different 

residential areas can be deeply studied, providing basic data 

for health risk early warning. It also helps assess the potential 

impact of the wind environment on residents' health, such as 

the accumulation of air pollutants caused by poor ventilation, 

the intensification of the heat island effect, etc., thus providing 

scientific basis for optimizing urban residential planning and 

design. 

 

 
 

Figure 2. Typical case samples of wind field visualization for high-, medium-, and low-density determinant slab residential areas 

in Jiaxing 

 

Figure 3 shows multiple height layouts and residential 

building type models used in the experiments, presented in the 

form of three-dimensional columnar diagrams. Different 

columns represent different residential buildings, with 

differences in height and arrangement mode among the models. 

Observing from left to right and top to bottom, the models 

cover a variety of combinations of building heights and 

arrangement patterns, reflecting diversified residential 

building types and layouts, providing rich material for 

studying wind field characteristics under different spatial 

forms. 
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Figure 3. Height layouts and residential building type models used for the experiment 

 

From Figure 4, it can be seen that in both the training set 

and test set, there are differences in the inversion accuracy of 

the wind field U and V components under different weight 

settings and feature combination values. For the wind field U 

component, under different pressure values, the root mean 

square error (RMSE) values of the wind field U component 

with various weight combinations show different change 

trends. In the test set, when the weight is set as 0.2, 0.4, and 

0.4 for the three feature combination values (black solid line), 

within a certain pressure range, the RMSE value of the wind 

field U component is relatively low. For the wind field V 

component, similarly in both the training set and test set, the 

RMSE values vary with different weight combinations. When 

the weight is set as 0.2, 0.4, and 0.4 for the three feature 

combination values (black solid line), in some pressure 

intervals, the RMSE value is lower than other weight 

combinations, showing better inversion accuracy. Overall, the 

weight setting of 0.2, 0.4, and 0.4 for the three feature 

combination values has a clear advantage in the inversion of 

wind field U and V components. 

Figure 5 shows the variation of the simulated brightness 

temperature of the wind field with wavenumber under the 

pressure conditions of 200hPa and 500hPa. Under 200hPa 

pressure, the simulated brightness temperature data is marked 

with red asterisks. In the wavenumber range of 1600 - 2300 

cm⁻¹, the simulated brightness temperature shows a certain 

fluctuation trend, with the value range roughly between 230 - 

300K. Under 500hPa pressure, the simulated brightness 

temperature data is marked with blue triangles. Similarly, 

within the wavenumber range of 1600 - 2300 cm⁻¹, the 

simulated brightness temperature also fluctuates, with the 

value range roughly between 220 - 300K. Under the two 

pressure conditions, the fluctuation trend and range of the 

simulated brightness temperature with wavenumber are 

different. From the data, it can be seen that different pressures 

cause differences in the variation of the simulated brightness 

temperature of the wind field with wavenumber. This indicates 

that pressure is an important factor affecting the relationship 

between simulated brightness temperature and wavenumber in 

the wind field, which is of great significance for using infrared 

hyperspectral images for urban wind field monitoring and 

analysis. 

Figure 6 shows the displacement distribution identified 

under different frame numbers at the pressure conditions of 

200hPa and 500hPa. Under 200hPa pressure, the horizontal 

axis represents frame numbers (1 - 100), and the vertical axis 

represents displacement (m). Different colored points 

represent different displacement values, with the displacement 

value range roughly between 0 - 2m. The displacement 

distribution corresponding to each frame number is relatively 

scattered, with no obvious concentration trend. Under 500hPa 

pressure, similarly with frame numbers as the horizontal axis 

and displacement as the vertical axis, the displacement value 

range is also between 0 - 2m. The displacement distribution 
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across different frame numbers is also relatively scattered and 

differs from the distribution under 200hPa pressure. From the 

data, it can be seen that under the conditions of different 

pressures (200hPa and 500hPa), as the frame number changes, 

the identified displacement distribution shows different 

characteristics. This indicates that pressure has a significant 

impact on displacement distribution identified based on 

infrared hyperspectral images, and the displacement 

distribution is closely related to wind speed, thereby affecting 

wind field monitoring and analysis. 

 

 
(1) Two combinations of feature organizations 

 
(2) Three combinations of feature organizations 

 

Figure 4. Comparison of wind field U and V component inversion accuracy under different weight settings and feature 

combination values 

 

 
 

Figure 5. Influence of wavenumber on simulated brightness temperature of wind field at 200hPa and 500hPa 
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Figure 6. Displacement distribution identified under different frame numbers 

 

  
(1) Combination 1                                                                               (2) Combination 2 

 
(3) Combination 3                                                                               (4) Combination 4 

 

Figure 7. Comparison between wind field inversion values and real values under different feature combination conditions 

 

Table 1. Fitting results of infrared hyperspectral image feature values under different combinations 

 

 Combination 1 Combination 2 Combination 3 Combination 4 

Pearson correlation coefficient 0.936 0.874 0.915 0.948 

Root Mean Square Error (RMSE) 2.14 3.21 2.26 1.78 

Mean Relative Error (MRE) 2.68 7.89 5.89 2.56 
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Figure 8. Example of wind environment and fine particulate matter concentration and flow field distribution simulation 

experiment in the equal-height model 

 

Figure 7 shows the comparison between wind field 

inversion values and real values under different feature 

combination conditions. In the figure, combinations 1 to 4 

correspond respectively to: the reflectance slope of 

hyperspectral bands + the average intensity of the reflected 

spectrum; the reflectance slope of hyperspectral bands + 

thermal source areas with higher radiation intensity; the 

average intensity of the reflected spectrum + thermal source 

areas with higher radiation intensity; and the combination of 

all three features in four situations. The four subfigures 

correspond respectively to combinations 1 to 4, where the 

horizontal axis is the actual wind speed and the vertical axis is 

the inverted wind speed. In combination 1, the data points are 

relatively scattered, with some points deviating from the 

diagonal line, indicating that there is a certain deviation 

between the inverted wind speed and the actual wind speed; in 

combination 2, the data points are also unevenly distributed, 

with relatively obvious deviations in high wind speed areas; in 

combination 3, the data points are relatively concentrated near 

the diagonal line, but there are still some scattered points; in 

combination 4, the data points are most concentrated around 

the diagonal line, indicating a relatively high degree of fit 

between the inverted wind speed and the actual wind speed. 

Overall, different feature combinations have a significant 

impact on wind field inversion accuracy. Combination 4 

performs the best in wind field inversion, with the inverted 

wind speed being closer to the actual wind speed, thus more 

accurately reflecting the real wind speed situation. 

According to the data shown in Table 1, the experimental 

results reveal the performance of infrared hyperspectral image 

feature value fitting under different combinations. Specifically, 

combination 1 and combination 4 show relatively high 

Pearson correlation coefficients, at 0.936 and 0.948 

respectively, indicating that these two combinations can more 

accurately capture the linear relationship between wind speed 

and infrared hyperspectral image features. In addition, the 

RMSE of combination 1 and combination 4 are 2.14 and 1.78 

respectively; the lower RMSE indicates that these 

combinations have smaller prediction errors in the fitting 

process. In terms of MRE, combination 1 and combination 4 

also perform well, at 2.68 and 2.56 respectively, further 

proving their effectiveness in accurately predicting wind speed 

and health risks. In contrast, combination 2 and combination 3 

perform worse in terms of Pearson correlation coefficient, 

RMSE, and MRE, especially combination 2, whose MRE is as 

high as 7.89, showing greater uncertainty during the fitting 

process. Through the analysis of experimental results, it can 

be concluded that the feature combinations of combination 1 

and combination 4 perform better in wind speed recognition 

and health risk warning applications. This is because they can 

more effectively capture the correlation between wind speed 

changes and relevant thermal source areas through the 

selection of hyperspectral image features, especially in 

complex environments of urban residential areas, enabling 

more accurate identification and prediction of wind speed 

changes. Moreover, the lower RMSE and MRE of 

combination 1 and combination 4 indicate their higher stability 

in practical applications, making them suitable for real-time 

wind speed monitoring and health risk warning. On the 

contrary, the relatively high errors and low correlation 

coefficients of combination 2 and combination 3 suggest that 

they are less applicable to the current wind speed recognition 

tasks and thus require further optimization of feature selection 

and fusion methods. 

Figure 8 shows an example of the simulation experiment of 

the wind environment and fine particulate matter 
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concentration and flow field distribution in the equal-height 

model. The wind environment part visualizes wind field 

characteristics through color, while the fine particulate matter 

concentration part combines flow field arrows and 

concentration color scales to show distribution. In models such 

as MD1-1 and MD2-1, the flow field arrows show the flow 

direction of the wind, and the concentration distribution is 

reflected by the depth of color; areas with high concentrations 

are closely related to the flow field morphology, reflecting the 

accumulation and diffusion characteristics of fine particulate 

matter under different wind field conditions. This simulation 

experiment verified the effectiveness of the wind environment 

and pollutant diffusion model in the health risk warning 

system. Wind field characteristics directly affect the diffusion 

paths and concentration distribution of fine particulate matter. 

In areas with larger wind speeds or smooth flow fields, the 

concentration of fine particulate matter is lower, indicating 

that the wind promotes pollutant diffusion; in areas with 

smaller wind speeds or complex flow fields, fine particulate 

matter easily accumulates, and the concentration is higher. 

This shows that through wind field visualization and wind 

speed recognition, pollutant distribution can be accurately 

predicted, providing reliable evidence for health risk warning, 

and proving the practicality and scientific value of the model 

in revealing the relationship between wind environment and 

pollutant diffusion and assisting health risk assessment. 

 

 

5. CONCLUSION 

 

This study proposed a city residential area wind field 

visualization and wind speed recognition system based on 

image fusion technology, aiming to provide technical support 

for accurate monitoring of urban wind fields and health risk 

warning by combining infrared hyperspectral images and 

image feature values. First, the study successfully realized the 

visualization of wind fields in urban residential areas by using 

infrared hyperspectral image fusion technology, accurately 

depicting the wind speed distribution under different wind 

speed conditions. This process, through the extraction and 

fusion of multidimensional feature data from hyperspectral 

images, can comprehensively and intuitively display the 

spatial distribution of wind speed changes. In addition, the 

study proposed an efficient wind speed recognition method 

combined with infrared hyperspectral image feature values, 

which can not only accurately recognize wind speed changes 

but also further predict health risks caused by wind speed 

changes. The experimental results show that through image 

fusion technology and feature value combinations, the 

accuracy of wind speed recognition has been significantly 

improved, providing a feasible technical path for health risk 

prediction in urban environments. 

Through the wind speed recognition system in the main text, 

it helps in wind environment control during residential area 

planning and form design, can reduce the diffusion of 

atmospheric pollutants, intervene in health risks such as 

respiratory diseases and heat stress among residents, and 

shows its potential in public health warning, assisting healthy 

city and residential area construction. Establishing the linkage 

mechanism among city residential wind field visualization - 

wind speed recognition system - health risk warning can 

provide accurate technical support for healthy community and 

healthy city planning and design, offering practical decision-

making tools for urban planners. Jiaxing belongs to the hot 

summer and cold winter area, and currently, the urban 

residential areas are mainly medium-density residential areas. 

The analysis of wind field visualization and wind speed 

recognition system and its health risk warning potential based 

on image fusion will provide a scientific basis for wind 

environment optimization in urban residential areas, assisting 

Jiaxing in developing towards "low-density high-quality, 

medium-density with good supporting facilities, high-density 

with strong vitality" healthy communities. 

However, although this study has achieved good results in 

wind speed recognition and health risk warning, there are still 

certain limitations. First, the study relies on the quality and 

resolution of hyperspectral images, and the acquisition of these 

images may be affected by equipment, environment, and 

shooting conditions, thus affecting the accuracy of wind speed 

recognition. Secondly, the current models and methods are 

mainly targeted at some typical urban residential areas and 

lack adaptability to wider urban environments or extreme 

weather conditions. Therefore, future research can focus on 

how to further optimize image fusion algorithms and feature 

extraction methods to improve adaptability and robustness 

under different urban areas and weather conditions. In addition, 

integrating more sensor data for multi-source information 

fusion can improve the accuracy and real-time performance of 

wind speed recognition and health risk warning. Future 

research should also consider how to achieve real-time 

deployment of the system and establish an intelligent urban 

wind field monitoring and health risk warning platform to help 

improve the quality of life of urban residents and reduce the 

negative impact of wind speed changes on health. 
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