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 Driver drowsiness is one of the main causes of serious traffic accidents and a significant risk 

factor, especially for long journeys and heavy vehicle drivers. To prevent drowsiness-related 

accidents, it is of great importance to develop accurate and reliable systems for the detection. 

This study makes an innovative contribution by proposing a hybrid system that uses both 

physiological data (ECG) and in-vehicle data (CAN-Bus) to detect driver drowsiness. Aim 

is to provide higher accuracy detection by combining two different data sources. ECG and 

CAN-Bus data were collected from real drivers under various environmental and traffic 

conditions, and these data were analyzed using machine learning algorithms. A three-class 

drowsiness detection model was developed and this model classified drivers into low, 

medium and high drowsiness levels. The results obtained showed that the model was 

successful in drowsiness detection with an accuracy rate of 85%. This rate offers a 

significant improvement compared to previous studies based on only ECG data. Developed 

system is designed for real-world driving environments and has the potential for industrial 

implementation, offering an impactful solution to increase driver safety and prevent 

drowsiness-related accidents. 
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1. INTRODUCTION 

 

Turkey road network frequently faces with severe traffic 

accidents, resulting in thousands of fatalities, injuries, and 

material damage annually. According to TSI 2022 – Road 

Traffic Accident Statistics [1], a total of 1,232,957 traffic 

accidents occurred, of which 235,176 led to deaths or injuries. 

These accidents resulted with 288,696 injuries and 5,229 

deaths (the death toll includes those who passed away from 

their injuries within 30 days following the incident). These 

alarming statistics once again highlight significant issues 

related to traffic safety. Based on TSI 2022 – Road Traffic 

Accident Statistics [1], it was reported that driver errors caused 

87% of such accidents in 2022. Although no specific study has 

been conducted for Turkey, it is generally known that 

drowsiness while driving contributes to 3% to over 30% of 

accidents [2]. According to data from the National Highway 

Traffic Safety Administration (NHTSA) in the United States, 

drowsiness is reported as the most common critical cause 

among non-performance-related faults, which account for 7% 

(±1.0%) of driver-related accidents [3]. Therefore, it is crucial 

to examine accidents caused by driver drowsiness and discuss 

the solutions developed to address these issues. 

Drowsiness can be simply defined as the tendency to fall 

asleep. Sleep is generally divided into three phases: 

wakefulness, non-rapid eye movement (NREM) sleep, and 

rapid eye movement (REM) sleep. The NREM phase can be 

further subdivided into three stages such as: Transition from 

wakefulness to sleep; Light sleep and Deep sleep. According 

to Sahayadhas et al. [4], NREM sleep is the first stage that is 

commonly referred to be "driver drowsiness." According to 

reports of the National Highway Traffic Safety Administration 

(NHTSA) in the United States, drowsiness in the drivers can 

lead to slowed reaction time; reduced attention and decreased 

brain processing capacity [5]. Therefore, it has become 

essential to monitor drivers during their journeys to prevent 

accidents caused by driver drowsiness. 

The topic of driver drowsiness has gained significant 

attention in academic literature. A bibliometric analysis of 

publications from 1998 to 2023 indicates that a substantial 

portion of this research is related to computer science 

disciplines, reflecting the growing interest in sensor 

technologies, data mining, deep learning, and facial 

recognition, especially after 2010 [6]. 

In the literature on driver drowsiness studies, the 

measurement methods developed for driver monitoring are 

categorized into three groups as vehicle-based, behavioral and 

physiological measurements [4, 7-13]. In vehicle-based 

measurements, driver drowsiness is assessed through various 

metrics during driving, such as lane position deviations, 

steering wheel movement, driving speed, accelerator pedal 

pressing, and vehicle yaw angle [14, 15]. These studies can be 

conducted using data collected from real drivers or through 

driving simulators. However, studies using simulators may 

provide misleading results as they do not fully replicate real-

life conditions. For instance, when driving in bad weather or 
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on poorly maintained roads, a driver may deviate from their 

lane more frequently. Similarly, a vehicle driven over rough 

terrain may exhibit greater variance in steering wheel 

movements than a simulator. As a result, it can be argued that 

the findings from simulator research may not accurately 

represent driving situations in real life and could therefore lead 

to inaccurate conclusions [10]. Behavioral measurements 

mostly rely on facial recognition technologies. Although the 

measurements obtained from these methods are generally 

reliable, the accuracy of results can vary depending on the 

quality of the equipment used and specific characteristics of 

the driver. For instance, results can be misleading when typical 

real-world variables like the use of sunglasses or masks, facial 

hair, and race-specific facial features may lead to misleading 

results. Eye closure analysis [13, 16, 17], Blink rate [18], 

Yawning analysis [19], and Facial expression analysis [11, 13, 

20, 21], are frequently employed in research utilizing 

behavioral measurements. The physiological measurements 

used to assess drowsiness are most commonly based on the 

Electroencephalography (EEG) [22], Electrocardiography 

(ECG) [23], Electrooculogram (EOG) [24], Electromyogram 

(EMG) [25], Galvanic Skin Response (GSR) [26], and Skin 

Temperature [27].  

Drivers' degrees of drowsiness can be accurately assessed 

using physiological measures. It is crucial to take into account 

the high cost of the tools needed for these measurements, how 

challenging it is to utilize them in everyday tasks, and the 

possibility of inaccurate data resulting from external factors.  

Hybrid approaches that incorporate behavioral, 

physiological, and vehicle-based measures are also observed 

in the literature. In particular, several researches have 

combined ambient factors, EEG, and drowsiness detection 

with driver monitoring using a camera while gathering 

vehicle-based measures [28, 29]. However, there are currently 

numerous more studies on this topic due to recent 

developments in sensor and large data analysis techniques. 

Despite this, there are still gaps in the literature regarding 

hybrid studies. On the other hand, errors that may occur in 

each method can be mitigated by hybrid methods that combine 

multiple approaches [10]. Therefore, the primary motivation 

of this study is to create a highly reliable drowsiness 

measurement system that can be easily applied to real-life 

drivers and makes use of various parameters derived from the 

vehicle. 

The research questions for this study are: 

Research Question 1: Is it possible to quickly and 

accurately collect physiological data from drivers during 

driving? 

Research Question 2: Can a drowsiness measurement be 

proposed that simultaneously considers both physiological 

data and vehicle-based measurements of drivers? 

Research Question 3: Besides the parameters identified in 

previous studies on vehicle-based measurements, are there 

other parameters that influence driver drowsiness? 

Regarding Research Question 1, physiological data will be 

collected through ECG data from drivers. ECG measures the 

bioelectrical activity of the heart. The ECG signal is the result 

of very low-level electrical voltages generated on the body's 

surface due to the depolarization of heart muscles during 

heartbeats. There are specific names for the waves and 

parameters observed in an ECG output, such as Q, R, S, T, QT, 

ST, RR, and QRS [30]. However, for fatigue detection, HRV 

(Heart Rate Variability) derived from ECG data should be 

considered. HRV measures the variation in time intervals 

between heartbeats, which reflects the regulation of the 

sympathetic and parasympathetic nervous systems (PSNS) 

and has been used in previous studies to detect fatigue [31]. 

HRV characteristics are examined by looking at the series of 

peak points of the R wave and the intervals between the RR 

waves. Physiological measurements will be conducted by 

extracting HRV values from the gathered ECG data in order to 

answer this research question. 

To precisely determine the degree of driver drowsiness, 

gathering data from both physiological and vehicle-based 

sources while driving is the main goal in addressing Research 

Question 2. The study intends to use advanced classification 

algorithms to combine data from two different sources in order 

to create a system that more accurately models and predicts 

driver drowsiness. Because electrocardiogram (ECG) data is 

readily available and dependable, it will be used for 

physiological measures. Concurrently, information regarding 

to the vehicle will be gathered through the use of CAN-Bus 

(Controller Area Network - Bus), a communication standard 

found in vehicles that enables instantaneous communication 

between different electrical parts, including the engine, brakes, 

and sensors. The integration of vital vehicle components is 

guaranteed by CAN-Bus, which improves overall 

performance and safety. The present study seeks to close the 

current gap in the literature by utilizing a hybrid methodology 

for both data gathering and analysis. 

To address Research Question 3, the research will 

collaborate with an automotive company to gather CAN-Bus 

data from actual drivers, which will be used to create new 

drowsiness detection parameters. Machine learning techniques 

will be employed to examine this data with the aim to find 

factors that exhibit a significant association with driver 

drowsiness. 

The originality of this study lies in its potential to address 

gaps in the literature and contribute to driving safety. It 

provides a practical and applicable solution in real-life 

circumstances via rendering it straightforward to collect 

drivers' physiological data while minimizing error rates. The 

accuracy of techniques for identifying driver drowsiness will 

also be improved by the inclusion of additional parameters and 

the enrichment of vehicle-based measurements. Road safety 

will be significantly improved as a result of the development 

of more effective accident prevention strategies.  

This study is being carried out using real-time data gathered 

from a broad set of drivers in a variety of environmental 

situations in partnership with the R&D center of a leading 

automotive company in Turkey. The focus of this study is on 

real-time data collecting from real drivers, which distinguishes 

it apart from previous studies in the literature that frequently 

use data from driving simulators. The study intends to yield 

more significant and accurate findings by including drivers 

from a variety of age groups and collecting data in a range of 

environmental circumstances. Consequently, the assessment 

outcomes are anticipated to provide more practical and 

effective solutions for real-world applications. Furthermore, 

the alert algorithm developed in this study will detect 

drowsiness—categorized into three classes—by analyzing 

specific parameters in CAN-Bus data, triggering appropriate 

warning systems. The findings of this study will be directly 

applied by the partnering R&D center to enhance driver safety 

technologies. 

To identify the gap in the literature regarding driver 

drowsiness detection based on ECG values, the most recent 

articles from the Web of Science database, published between 
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2020 and 2024, have been thoroughly examined (Table 1). The 

results of the studies examined from the WOS database and 

presented in detail are assessed in the discussion section with 

the findings obtained from this study. 

In the first part of the study, driver drowsiness and 

measurement methods were explained, and research questions 

were determined. Then, previous studies related to the 

research questions were reviewed and the gap in the literature 

was revealed. In the second part of the study, data 

characteristics and methods were included. The third part 

included the results of the study, and the fourth part included 

the discussion. The last part of the study consisted of the 

conclusion. 

 

Table 1. Literature regarding driver drowsiness detection using ECG values 

 

Author Data 
Measure Type Performance Aim 

Vehicle Behavioral Physiological   

Chang et al. 

[32] 

Simulated 

driving with 

21 individuals 

 

 

States of the eyes (blinking, 

closing, opening)  

Head Movements (vertical, 

horizontal, and rotating) 

ECG 97.97% 
Detecting driver 

drowsiness using ECG 

Tjolleng and 

Jung [33] 

Simulated 

driving with 

67 individuals 

  ECG 

training accuracy at 

99 ± 0.8% and 

testing accuracy at 

95 ± 3.7% 

Using ECG signal to 

identify user having 

cognitive overload or 

drowsiness 

Sukumar et al. 

[34] 

Simulated 

driving with 

13 individuals 

 

Steering wheel sensors 

Accelerometer for head 

movements 

ECG; EMG; 

GSR 
97.30% 

Detection of driver stress 

level and drowsiness 

Arefnezhad, et 

al. [35] 

Simulated 

driving with 

92 individuals 

 

Video recordings to analyze 

yawning, long blinks, and 

head nodding 

ECG 

77% and 79% in the 

manual and 

automated modes 

Detecting driver 

drowsiness using ECG 

Esteves et al. 

[36] 

Simulated 

driving with 

13 individuals 

Dynamic signals 

such as 

acceleration and 

braking, are 

obtained directly 

from the 

simulator 

Face video ECG  

Advancing the state-of-

the-art in driver 

drowsiness monitoring 

Ebrahimian et 

al. [37] 

Simulated 

driving with 

30 individuals 

  
ECG, 

Respiration 

three-level and five-

level classifications 

of drowsiness can be 

achieved with 91 

and 67% accuracy 

Multi-level classification 

of drowsiness with three 

and five levels and 

proposing a method 

applicable for industrial 

use 

Murugan et al. 

[38] 

Simulated 

driving with 

10 individuals 

  ECG 

normal–drowsy, 

normal–visual 

inattention, normal–

fatigue and normal–

cognitive inattention 

is 100%, 93.1%, 

96.6% and 96.6% 

respectively. 

58.3% for five-class 

detection 

Detection of driver 

hypovigilance (drowsi- 

ness, fatigue, visual 

inattention and cognitive 

inattention) using 

physiological signals 

from ECG 

Babusiak et al. 

[39] 
   

ECG 

Oximeter 

Photoplethysmo

graphy 

 

Development of a 

platform on steering 

wheel in detecting 

specific cardiovascular 

diseases (especially atrial 

fibrillation) and 

drowsiness 

Perkins et al. 

[40] 

DROZY 

database 

containing 

data of 14 

individuals 

 
Video recordings of drivers' 

faces and behavior 

ECG; EEG; 

EMG; EOG 
93.10% 

Development of a hybrid 

model to detect driver 

drowsiness 

Fujiwara et al. 

[41] 

Simulated 

driving with 

20 individuals 

  
ECG; EEG; 

EOG 
89% 

Detecting driver 

drowsiness using ECG 

(R-R Interval) 

Kundinger et al. 

[42] 

Simulated 

driving with 

30 individuals 

 Face video 

Heart rate using 

wrist band 

ECG 

97.37% in user 

dependent tests, 

78.94% in user 

independent tests 

Detecting driver 

drowsiness using wrist-

worn wearable device 

Wolkow et al. 

[43] 

59 heavy 

vehicle 

In vehicle 

monitoring 
 

Heart rate using 

wrist band 
 

Detecting driver 

drowsiness using wrist-
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drivers system: harsh 

braking and harsh 

acceleration 

events collected 

worn wearable device 

and warning drivers to 

prevent harsh brakes and 

accelerations 

Muramatsu and 

Sasaki [44] 
   

ECG: using 

conductive 

electrodes on 

steering wheel, 

capacitive 

electrodes on 

seat 

 

Detecting driver 

drowsiness using the 

conductive/capacitive 

hybrid ECG R peak 

measurement system 

Linschmann et 

al. [45] 

Simulated 

driving with 

20 individuals 

  

Capacitive 

ECG using 

portable 

cushion (heart 

and respiratory 

rates) 

 

Developing a portable 

cushion to monitor 

driver's vital signs 

Seok et al [46] 

Experiment 

with 11 

individuals 

(press a push-

button switch 

when a 

stimulus (3 × 

3 mm black 

square) 

appeared on 

the screen) 

  ECG; EEG >90% 
Detecting low vigilance 

using ECG & EEG 

Du et al. [47] 

Simulated 

driving with 

50individuals 

  
ECG using 

palm and chest 
85.32% - 96.49% 

Detecting driving fatigue 

by measuring ECG 

through intelligent 

steering wheel 

Sedik et al. [48] 

DROZY 

database 

containing 

data of 14 

individuals 

 
Video recordings of drivers' 

faces and behavior 

ECG; EEG; 

EMG; EOG 

 

96% 

Development of a model 

to detect driver 

drowsiness based on 

ECG, EEG, EMG and 

EOG 

Yang et al. [49] 

797 data 

(single 

subject) 

  

BCG signal 

(similar to 

ECG); EEG 

Heart rate accuracy: 

88.49%, Respiratory 

rate accuracy: 

88.37% using BCG 

Development of a Non-

Contact Biosignal 

Measurement Method for 

Monitoring Drivers’ 

Heart Rates similar to 

ECG 

Devarajan et al. 

[50] 
 

Sensors for 

detecting vehicle 

parameters 

(steering wheel 

angle (SWA) 

sensor, grip force 

sensor, radar 

sensor, IR sensor) 

Face video ECG; EEG  

Developing a hybrid 

system enabling driver, 

vehicle and road 

monitoring 

 

 

2. METHODOLOGY 

 

2.1 Data characteristics 

 

In this study, a comprehensive dataset comprising 10 hours 

of data collected from both drivers and their vehicles was 

meticulously assembled to classify and assess driver fatigue 

levels. The dataset includes signals from ECG readings from 

drivers and CAN-Bus communication signals from the 

vehicles. The data was gathered from drivers of different 

genders and age groups. Drivers between the ages of 18 and 

45, of different genders, were asked to use their vehicles for 

various lengths of time depending on their preferences during 

the data collection process. There were no restrictions on the 

duration of vehicle use; drivers were free to drive as much as 

they wished while recordings were collected. The 

characteristics of the drivers are detailed in Table 2. 

 

Table 2. Driver characteristics 
 

Driver # Gender Duration of Drive (min) Age 

Driver_1 Male 120 38 

Driver_2 Male  130 28 

Driver_3 Male 130 29 

Driver_4 Male 25 25 

Driver_5 Female 25 43 

Driver_6 Male 25 44 

Driver_7 Female 40 41 

Driver_8 Female 45 35 

Driver_9 Female 60 34 

 

Different types of machine learning algorithms, such as 

Random Forest, XGBoost, Decision Trees, K-Nearest 
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Neighbors (KNN), and Support Vector Machines (SVM), 

were used and compared. The machine learning algorithms 

utilize ECG data that is simultaneously collected from the 

drivers and signals from the test vehicles as their dependent 

and independent variables, respectively. These signals include 

the following: steering angle, steering speed, steering torque, 

throttle gradient, engine torque, vehicle speed, throttle position, 

throttle on/off status, brake application status, and sudden 

braking responses. The CANalyzer software is used to process 

the signals that have been gathered. The names and brief 

descriptions of the signals read from the vehicle's CAN-Bus 

communication network are presented in detail in Table 3. 

 

Table 3. Signal characteristics 

 
Signal Name Description 

Steering Angle It indicates the steering wheel angle. (Counterclockwise is positive) 

Steering Speed It indicates the steering wheel speed. (Counterclockwise is positive) 

Steering Column Torque 
It detects the torque force applied by the driver to the steering wheel from the Electric Power Steering 

module 

Engine Torque It indicates the engine torque 

GasPedal Action 
It indicates whether the driver is pressing the accelerator pedal. It takes a value of 0 or 1(0 is Not_Pressed, 1 

is Pressed) 

GasPedal Gradient 
It indicates the rate of change of the accelerator pedal position over time, measured in percentage per second 

(%/s) 

Engine Speed It indicates the engine speed (RPM) 

Gas Pedal Position It indicates the positions of the accelerator pedal at the moment the driver presses it. (From 0% to 100%) 

Transmission Status It indicates whether the transmission is in neutral or not 

BrakePedal Switch Status 
It provides information on whether the brake pedal is pressed or not. The signal takes a value of 1 when the 

pedal is not pressed and 0 when it is pressed 

ABS Active Status A signal that controls whether the ABS system is activated or not 

Brake Intervention Status 
Brake responses other than those from the driver, such as ACC (Adaptive Cruise Control), ESC (Electronic 

Stability Control), and ASR (Acceleration Slip Regulation) 

Emergency Braking System 

Status 
It indicates whether the emergency braking system is activated or not 

ESC Active Status A signal that checks whether the ESC (Electronic Stability Control) system is activated or not 

Vehicle Speed It indicates the vehicle speed  

Lateral Acceleration It represents the lateral acceleration of the vehicle (X-axis, Figure 1(a)) 

Longitude Acceleration A signal that shows the forward-backward acceleration (Y-axis, Figure 1(a)) 

Z Acceleration 
It represents the vehicle’s acceleration along the Z-axis. The rollover sensor checks the vehicle’s rollover 

status and other related conditions (Figure 1(a)) 

Steering Angle It indicates the steering wheel angle (Counterclockwise is positive) 

 

 
 

Figure 1. Coordinate systems of a vehicle and data collection equipment 

 

2.2 Method and data collection 
 

The simultaneous collection of ECG data and CAN-Bus 

signals was carried out by using the blue PiraT Mini device, as 

shown in Figure 1(b). The blue PiraT Mini allows for the 

simultaneous reading of both analog data and CAN data. The 

ECG data from the drivers was collected using the MaM Sense 

ECG module, as shown in Figure 1(c).  

Figure 2 illustrates an electrocardiogram (ECG) module-

based system for tracking a driver's physiological condition. 

Electrodes positioned on the chest allow the ECG module, 

which is powered by a 9V battery, to record the electrical 

activity of the heart. The "blue PiraT Mini" processing unit 

receives the data gathered by the ECG module alongside 

process the ECG signals. The processed data can track the 

driver's health and affect how the vehicle operates. For 

example, if the driver's heart activity suggests they are 

distressed or sleepy, the car issues an alert or implements 

control mechanisms. 
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Figure 2. Diagram of the ECG module and blue PiraT Mini 

 

The number of classes for the dependent variable "driver 

drowsiness" is required to be determined considering the main 

objective of this study is to measure driver drowsiness based 

on ECG and CAN-Bus data. Hence, to identify the class types 

of the algorithms and analyze the ECG data, machine learning 

algorithms, Kubios Software, and MATLAB programs were 

utilized. 

The Amplitude-Based Technique (ABT) was utilized to 

identify the R waves of the electrocardiogram (ECG) signal. 

The R waves have significance because they form a part of the 

QRS complex, which is crucial to comprehending cardiac 

rhythms [51]. The ABT method seeks for ECG signal intervals 

where the amplitude is higher than the preset threshold. These 

intervals are thus assumed to be likely QRS complexes, 

representing the electrical activity associated with the 

ventricles' depolarization throughout each heartbeat. The three 

primary deflections that comprise the QRS complex are the Q, 

R, and S waves [51]. The most prominent of them is the R 

wave, which is necessary for a precise assessment of heart rate. 

The method then concentrates on figuring out each complex's 

peak after recognizing the QRS complexes. The R peak, which 

is the QRS complex's maximum amplitude point, is a crucial 

signal for more investigation. Accurate R peak detection is 

essential for assessing heart rate variability and locating 

potential arrhythmias [51]. For this study, the R-R interval 

distances were computed using a sample dataset. Calculated 

R-R intervals, which quantify the intervals between 

consecutive R-wave peaks in ECG signals, are included in the 

data along with corresponding values that represent the 

measurement or uncertainty for each interval. To illustrate the 

precision or error in the measurements, the R-R intervals, for 

instance, range from 0.28 to 23.19 seconds, and the associated 

values, from 0.51 to 1.50. 

Once the R-R interval distances were established, the data 

were processed using Kubios software for HRV (Heart Rate 

Variability) analysis. The HRV analysis program Kubios was 

utilized to evaluate the variability in the heartbeat intervals. 

This analysis has to be carefully considered in order to identify 

the classes that were used in the machine learning phase of the 

study. The classes were classified as 0, 1, and 2 based on the 

calculation of the PNS (Parasympathetic Nervous System) and 

SNS (Sympathetic Nervous System) index in the frequency 

domain, which was acquired from the R-R interval values 

analyzed using Kubios software.  

The estimated signal's power frequency distribution (low 

frequency (LF), high frequency (HF), and LF/HF) is known to 

have an impact on the estimation of frequency-domain 

characteristics. When under stress, the heart rate (HR) is 

lowered by the parasympathetic (vagus) nervous system and 

elevated by the sympathetic nervous system [52]. In this 

instance, increased parasympathetic activity is associated with 

higher PNS index values, indicating better autonomic function 

and a more relaxed state [53]. However, other studies have 

explored the idea that a high LF/HF ratio denotes sympathetic 

dominance, which may be associated with fatigue [54]. 

The LF/HF ratios were computed every three minutes using 

standard HRV analysis techniques. To accelerate the 

classification process and prevent the creation of an excessive 

number of categories, the resulting SNS index values were 

rounded to the nearest integer (e.g., 2.55 rounded to 3; 4.37 to 

4). 

Although drowsiness is typically associated with declining 

vigilance and cognitive performance, physiological studies 

have shown that sympathetic nervous system (SNS) activity 

may increase during the early or intermediate stages of 

drowsiness. This phenomenon is interpreted as a 

compensatory arousal response, where the body attempts to 

maintain wakefulness despite increasing fatigue [54]. 

According to the Kubios HRV documentation, elevated SNS 

index values reflect heightened sympathetic tone, often linked 

to mental effort, stress, or alertness [Kubios HRV Blog, 2023, 

https://www.kubios.com/blog/hrv-ans-function/]. 

Based on this understanding, we categorized SNS index 

values of 0–1 as “not drowsy,” 2 as “slightly drowsy,” and ≥3 

as “drowsy,” reflecting a progressive increase in physiological 

strain as drowsiness intensifies. These categories are presented 

in Table 4. 
 

Table 4. SNS index categories 
 

Rounded Stress Value Index Class 

0 and 1 0 (Not drowsy) 

2 1 (Slightly drowsy) 

3,4, and 5 2 (Drowsy) 

 

In addition, CAN-Bus signal data were recorded at 500-

millisecond intervals. To synchronize the physiological 

labeling with vehicular data, the 3-minute LF/HF-based SNS 

classifications were mapped onto the corresponding CAN-Bus 

samples. This alignment allowed for the integration of 

objective drowsiness labels with high-resolution vehicular 

data for use in machine learning models. 

Following the pre-defined classes described in Table 4, the 

study used conventional machine learning algorithms, such as 

XGBoost, K-Nearest Neighbor (K-NN), Decision Tree, 

Support Vector Machine (SVM), and Random Forest, to detect 

driver drowsiness. 

XGBoost Algorithm: Extreme Gradient Boosting, or 

XGBoost, is a model that was initially put forth by Tianqi 

Chen and Carlos Guestrin in 2011. Many researchers have 

since followed up on this framework by continuously 

optimizing and improving it [55]. The model is an approach to 

learning that is derived from Boosting Tree models. Only the 

first derivative information is used in the conventional 

Boosting Tree models. Because the residual of the previous n-

1 trees is used for training the nth tree, distributed training is 

challenging to implement. XGBoost automatically capitalizes 

on of the CPU's multithreading capacity and expands the loss 

function by a factor of two in order to perform parallel 

computing. Moreover, XGBoost uses multiple methods to 

avoid overfitting [56]. 

K-NN (K-Nearest Neighbor) Algorithm: A simple yet 

effective machine learning approach is K-Nearest Neighbor 

(K-NN) for classification and regression applications. The 
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basic principle of k-NN is to classify or predict a data point by 

using the majority vote or average of its k nearest neighbors in 

the feature space. It operates on the tenet that comparable 

instances usually have equivalent output values or belong to 

the same class, according to the study by Cover and Hart [57]. 

The K-NN algorithm consists of several significant steps [58]. 

The initial stage of the dataset preprocessing entails scaling 

features, filling in missing values, and encoding categorical 

variables. Following that, initializing the option k specifies 

how many of the closest neighbors are to be taken into account. 

Each individual point in the training dataset and every new 

data point are measured using a selected metric, like the 

Manhattan or Euclidean distance. The majority class label can 

be found among the k nearest neighbors based on these 

distances. In cases of ties, a tie-breaking rule is applied. The 

majority class label is obtained by the new data point, and all 

the data points in the test dataset go through this process. 

Decision Tree Algorithm: Decision trees divide the feature 

space into discrete regions and apply class labels or regression 

values to these regions. They are widely used in machine 

learning for both regression and classification applications. 

The first step in the procedure is to form the tree, in which each 

internal node represents a feature, the branches stand for 

judgments made using that feature, and the leaf nodes 

represent the final class labels or regression results [59]. 

Models are fitted at each leaf in the regression process in order 

to predict continuous values. After that, the tree is optimized 

and pruned to improve generalization and decrease overfitting. 

As demonstrated by ensemble techniques like Random Forests, 

it is possible to mix many trees for better performance and 

produce a more robust prediction model [60]. 

SVM (Support Vector Machine) Algorithm: Support Vector 

Machine (SVM) is a robust supervised learning technique that 

divides data points into distinct classes for classification 

problems by identifying the optimal hyperplane in the feature 

space [61]. To maximize the margin between classes, the 

algorithm first initializes the parameters and then chooses two 

Lagrange multipliers. Next, in order to more effectively 

separate the classes, it computes the error and kernel values for 

these multipliers, updates them in light of the computed values, 

and modifies the bias term. A convergence check is part of the 

process to see if the optimization requirements are satisfied. 

Once convergence is attained, this iterative process is repeated 

to produce the final hyperplane, which maximizes the margin 

and minimizes classification errors [62]. 

Random Forest Algorithm: The Random Forest algorithm, 

as detailed by Breiman [63], involves several key steps to build 

a robust ensemble model. First, using a technique called 

bootstrap sampling, N samples are chosen at random from the 

dataset using replacement. A decision tree is built for each of 

these samples. A random subset of all the features in the 

feature set is selected at each node of the tree, and the node is 

split according to the feature that provides the best split 

criterion, like information gain or Gini impurity. To create a 

diverse forest of trees, this decision tree building process is 

repeated several times. To make predictions, the algorithm 

aggregates the outputs from all the individual trees: for 

classification tasks, it employs majority voting to determine 

the class with the highest number of votes, while for regression 

tasks, it calculates the average of the predictions from all the 

trees. This ensemble approach enhances the model's accuracy 

and reduces overfitting compared to a single decision tree [63]. 

Figure 3 illustrates the three-phase structure of the proposed 

model: (1) data collection, (2) model training, and (3) real-time 

application. In the first phase, simultaneous ECG and CAN-

Bus data are collected. The ECG signals are processed using 

the ABT (Automatic Beat Tracking) algorithm to extract R 

peaks. These peaks are used to compute the SNS (Sympathetic 

Nervous System) index, a physiological marker associated 

with alertness and drowsiness. The SNS index is then rounded 

and used to derive an objective drowsiness level, which serves 

as the target label for supervised machine learning. In the 

second phase, the CAN-Bus data is synchronized with the 

labeled drowsiness levels, and several machine learning 

models are trained to predict drowsiness based solely on 

vehicular signals. Finally, in the third phase, the trained model 

is applied in real time using only CAN-Bus data, making the 

system fully deployable without the need for physiological 

sensors in actual driving scenarios. 

 

 
 

Figure 3. The proposed approach 
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3. RESULTS 

 

This study used a variety of machine learning models to 

conduct a classification analysis on a dataset gathered for a 

driver fatigue detection system. XGBoost, K-Nearest 

Neighbor (K-NN), Decision Tree, Support Vector Machine 

(SVM), and Random Forest were among the models that have 

been tested to the test. The performance of each model was 

assessed and contrasted with the others based on the best 

possible parameter combinations. 

XGBoost Algorithm Results: Various parameter 

combinations are used in the application of the XGBoost 

algorithm. These parameters are the number of estimators, 

learning rate, maximum depth, subsample, and 

colsample_bytree (which controls the proportion of features 

used for each tree). The optimal results were obtained with 450 

estimators, a learning rate of 0.01, a maximum depth of 8, and 

a subsample and colsample_bytree both set to 0.9, yielding a 

training accuracy of 0.8077, a validation accuracy of 0.7836, 

and a cross-validation mean score of 0.7846. 

Results indicate that the model's performance for Class 0 

performs the best when compared to the other classes. Only 

390 instances of Class 0 were misclassified out of 13,928 

instances that were correctly classified. The high recall (97%) 

and precision (79%) values support this, yielding an F1 score 

of 87%. This suggests that the model is highly proficient in 

identifying and accurately categorizing Class 0. The model's 

performance for Class 1 was notably poor with 3,173 instances 

misclassified compared to 1,411 correctly classified. The 

primary issue was confusion with 2,721 instances of Class 0 

and 452 instances of Class 2, leading to a recall of 31%, 

precision of 82%, and a weak F1-score of 45%. Class 2 also 

demonstrated moderate performance, with 1,704 correct and 

1,205 incorrect classifications. The F1-score for Class 2 was 

64%, with a recall of 59% and precision of 71%, affected by 

confusion with 1,026 instances of Class 0 and 179 instances of 

Class 1. Overall, the model's macro-average precision was 

77%, recall 62%, and F1-score 65%, indicating notable 

limitations, particularly with Class 1.  

Despite an overall accuracy of 78%, the weighted average 

F1-score fell to 75% due to classification errors in Class 1 and 

Class 2. 

The learning curves for the XGBoost model are depicted in 

Figure 4, where the "Learning Curves (Score)" graph indicates 

a slight decline in training performance over time, despite the 

initial high performance. The model's successful adaptation to 

the training data is indicated by the training score, which stays 

high but gradually drops. On the other hand, with more data, 

the validation score increases dramatically from roughly 35% 

to about 80%, indicating improved generalization abilities. 

The "Learning Curves (Error)" graph illustrates how, as more 

data is added, the validation error rapidly drops, indicating 

improved model performance and generalization, while the 

training error stays low with a slight increase. 

 

 
 

Figure 4. XGBoost learning curves 

 

 
 

Figure 5. KNN learning curves 
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Figure 6. Decision tree learning curves 

 

 
 

Figure 7. SVM learning curves 

 

 
 

Figure 8. Random forest learning curves 

 

K-NN (K-Nearest Neighbor) Algorithm Results: A variety 

of parameter combinations, such as the number of neighbors, 

distance metric, p value, and weights, are used to assess the 

KNN algorithm's results. For instance, the model obtained 

some of the best results when it was trained with uniform 

weights and the Manhattan distance metric with five neighbors. 

Its accuracy values were 0.7556, 0.7556 for validation, 0.8343 

for training, and 0.7661 for cross-validation. 

According to the results, the model performed well in 

classifying Class 0, with high precision (0.79), recall (0.92), 

and an F1-score (0.85). However, due primarily to significant 

confusion with Class 0, its performance for Class 1 was 

noticeably worse, with low recall (0.36), F1-score (0.46), and 

precision (0.63). Class 2 performed moderately, with an F1-

score of 0.60, a recall of 0.57, and a precision of 0.64. With a 

precision of 0.69, recall of 0.62, and an F1-score of 0.64 
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overall, the macro-average metrics showed satisfactory results 

for Class 0 but difficulties with Class 1 and Class 2. 

The model's learning curves are shown in Figure 5. The 

"Learning Curves (Score)" graph indicates that training 

performance is high at first (about 90%), but it declines as the 

dataset grows, possibly due to overfitting. On the other hand, 

the validation score indicates improved generalization; it 

begins low (about 40%) but gets better and stabilizes at about 

80% with additional data. The "Learning Curves (Error)" 

graph illustrates how the validation error starts out high (about 

65%) but dramatically decreases to about 20% as the dataset 

grows, while the training error stays low and only slightly 

increases with more data. These patterns demonstrate how the 

model performs best on training data at first and gets better at 

generalizing to validation data as the volume of data increases. 

Decision Tree Algorithm Results: The Decision Tree 

algorithm's output is assessed using various splitters, criteria, 

and hyperparameter configurations. For instance, the model 

achieved among the highest scores of 0.911, 0.773, and 0.7834 

for the cross-validation mean score and training accuracy 

when using the Gini criterion with a maximum depth of 18, a 

minimum samples split of 9, and no restrictions on min 

samples leaf and max features. 

With 13,050 accurate classifications and only 1,268 

incorrect classifications on Class 0, the model performs well, 

yielding high precision (0.80), recall (0.93), and an F1-score 

of 0.86. Class 1 performs worse, with 2,084 accurate 

classifications but over 2,500 incorrect classifications, 

including 2,060 instances incorrectly classified as Class 0. 

Low recall (0.40), precision (0.67), and an F1-score of 0.50 

result from this, indicating difficulties in correctly identifying 

Class 1. With 1,744 correct and 1,165 misclassified cases for 

Class 2, the model's performance is average; it produces a 

precision of 0.65, a recall of 0.58, and an F1-score of 0.61. 

This suggests that Class 2 is recognized more strongly than 

Class 1 but not as strongly as Class 0. 

The model's learning curves are displayed in Figure 6, 

which also shows the model's consistent performance during 

cross-validation and training. As more samples were added, 

the model's training performance only slightly decreased to 

about 80%, as shown by the "Score" graph, indicating stable 

training success. After starting low at 30%, the validation 

score quickly increased to over 75%, indicating strong 

generalization and little overfitting. These results are further 

supported by the "Error" graph, which shows that while 

validation error initially started out high and eventually 

dropped to about 20% with additional data, training error 

remained low and only slightly increased. The model's strong 

generalization ability is highlighted by the narrow difference 

between training and validation errors. 

SVM Algorithm Results: The results of the SVM algorithm 

are assessed with various gamma settings, C values, and kernel 

types. For instance, the model achieved the best performance 

among the tested configurations with the RBF kernel, C value 

of 2, and gamma set to scale, resulting in a training accuracy 

of 0.7189, validation accuracy of 0.7153, and cross-validation 

accuracy of 0.6581. 

Model performance demonstrates remarkable performance 

in classifying Class 0 with 14,306 accurate classifications and 

only 12 incorrect classifications. Consequently, the F1-score 

is 0.82 and the recall is perfect at 1.00; however, the precision 

for Class 0 is only 0.69. On the other hand, the model does not 

work well for Class 1 or Class 2. Class 1 only has 403 correct 

classifications, a recall of 0.09, an F1-score of 0.15, and a 

precision of 0.56. Class 2 presents comparable problems, with 

271 accurate classifications, a precision of 0.73, a recall of 

0.09, and an F1-score of 0.17, demonstrating challenges in 

class distinction. Overall, there is minor class differentiation 

as evidenced by the macro-average precision, recall, and F1-

score of 0.66, 0.39, and 0.38, respectively. The weighted 

average values indicate an overall accuracy of 0.69, but the 

model's performance on Class 1 and Class 2 has lowered the 

F1-score to 0.59. 

It is evident from looking at the "Score" graph on the left 

side of Figure 7 that while the model performs better on the 

training set, its performance on the validation set is still lower 

than its training score. The validation score first rises quickly 

before decreasing at the same 70% level, while the training 

score stays stable at around 70%. The model fits the training 

data well, but it does not perform as well on the validation data, 

as shown by the difference in scores between training and 

validation. This implies that the model's ability to generalize 

beyond the validation data may be restricted. 

Random Forest Algorithm Results: The number of 

estimators, max depth, min samples split, min samples leaf, 

and max features are among the parameter configurations for 

which the Random Forest algorithm results are evaluated. For 

instance, the model achieved some of the highest performance 

metrics in the dataset, including training accuracy of 0.9725, 

validation accuracy of 0.8346, and cross-validation mean 

score of 0.8427, with 350 estimators, max depth of 20, min 

samples split of 4, min samples leaf of 2, and max features set 

to sqrt. 

The Random Forest model performs exceptionally well in 

classifying Class 0, with 13,896 correct classifications and 

only 422 misclassifications. This leads to a robust F1-score of 

0.88, high recall (0.97), and high precision (0.81). Class 1's 

F1-score is 0.53, but despite having a high precision of 0.86, 

its recall is significantly lower at 0.39, suggesting that 

misclassifications occur frequently. With Class 2, the model 

exhibits superior performance, demonstrating a balanced 

recognition ability with an F1-score of 0.68, recall of 0.65, and 

precision of 0.73. The F1-score, recall, and macro-average 

precision are 0.80, 0.67, and 0.70, respectively, indicating 

areas that require improvement, especially for Class 1. With 

precision at 0.81, recall at 0.80, and an F1-score of 0.78, the 

weighted averages indicate acceptable overall performance. 

This is indicative of the model's high accuracy but poor 

performance for Class 1. 

The Random Forest model performs exceptionally well on 

the training set, as shown in Figure 8. As more data is added, 

the model stabilizes at about 85%, indicating effective training 

data fitting. The model starts with a training score of about 

95%. The validation score, which starts out low at roughly 

30% and rises quickly to about 80%, indicates strong 

generalization. Figure 8's "Learning Curves (Error)" graph 

illustrates how validation error falls from a peak of 60% to a 

stable range of 20–25%, while training error stays low at 10%. 

These patterns suggest that there is little overfitting and good 

overall performance in the model, which fits the training data 

well and generalizes well with a small difference between 

training and validation scores. 

 

 

4. DISCUSSION 

 

In this study, five machine learning algorithms (Random 

Forest, XGBoost, k-Nearest Neighbors, Support Vector 
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Machine, and Decision Tree) were chosen due to their 

complementary strengths and proven success in related driver 

state classification tasks [64]. Random Forest and XGBoost 

are ensemble tree-based methods that handle noisy, high-

dimensional data effectively and capture complex non-linear 

feature interactions, often yielding high accuracy in 

physiological signal classification [65]. SVM is included for 

its robust performance on smaller datasets and in high-

dimensional feature spaces, which has made it a popular 

choice in ECG-based fatigue/drowsiness detection [35]. KNN 

offers a simple, instance-based learning approach that serves 

as a strong baseline and performs well in recognizing patterns 

based on feature proximity; it has likewise been employed in 

driver monitoring studies alongside other classifiers [64]. 

Lastly, a standalone Decision Tree provides an interpretable 

model for drowsiness classification, as it can model non-linear 

decision boundaries and offer insight into feature importance 

– a property leveraged in prior driver drowsiness detection 

studies [64]. The selection of these algorithms is consistent 

with the literature, where such classifiers are commonly 

applied to vehicular and physiological signal classification 

problems for driver state monitoring [35, 64]. 

Results of the machine learning algorithms—XGBoost, K-

Nearest Neighbors (KNN), Decision Tree, Support Vector 

Machine (SVM), and Random Forest—are compared in the 

Table 5 based on several performance metrics, including recall, 

precision, training accuracy, validation accuracy, and F1-score. 

In terms of robustness and balanced performance on unseen 

data, Random Forest demonstrates the highest training 

accuracy (0.8508) and validation accuracy (0.8042), along 

with strong precision (0.81), recall (0.80), and F1-score (0.78). 

In comparison to Random Forest, the Decision Tree algorithm 

performs better in terms of precision (0.75), recall (0.77), and 

validation accuracy (0.8143). However, its training accuracy 

(0.7687) is lower. When compared to Random Forest, KNN 

exhibits the highest validation accuracy (0.8049), but it has a 

lower training accuracy (0.7544), slightly lower precision, and 

recall. XGBoost exhibits a training accuracy that is lower than 

the best-performing models, but it still shows a respectable 

validation accuracy (0.7836) with balanced precision and 

recall. In comparison to the other models, the SVM model 

exhibits the lowest training (0.6894) and validation accuracies 

(0.6867), but it also has the lowest precision (0.67), recall 

(0.69), and F1-score (0.59), indicating that it has difficulty 

generalizing. This comparison shows that while Random 

Forest consistently outperforms KNN and Decision Tree in 

terms of validation performance, SVM might need more 

tweaking or adjusting to achieve better results. 

To better understand which vehicle parameters were most 

influential in the detection of driver drowsiness, we conducted 

a feature importance analysis using the Random Forest 

classifier. Figure 9 displays the top CAN-Bus signals ranked 

by their relative contribution to the model’s classification 

performance. 

The most influential signals were: 

• Engine Speed 

• Vehicle Speed 

• Engine Torque 

These signals reflect changes in engine performance and 

speed control, which are closely associated with the driver’s 

level of alertness. A decrease in engine speed or torque, for 

example, may indicate delayed reactions or reduced control 

effort, which are signs of drowsiness. 

Other highly ranked signals include: 

•  Steering Angle: Represents the rotation angle of the 

steering wheel; deviations in steering precision may reflect 

fatigue. 

• Gas Pedal Position: The position of the accelerator pedal 

at the time of pressing; irregular or reduced usage may indicate 

reduced engagement. 

• Lateral and Longitudinal Acceleration: Represent side-to-

side and forward-backward motion; reduced variability may 

indicate decreased driving activity. 

• Steering Column Torque: Measures the torque applied by 

the driver to the steering wheel; lower torque fluctuations may 

be associated with reduced steering corrections due to fatigue. 

These signals collectively provide insight into how the 

driver interacts with the vehicle under varying levels of 

alertness. Particularly, parameters like Steering Angle and 

Steering Column Torque reflect real-time steering control 

effort, making them valuable indicators in drowsiness 

detection. 

As seen in Table 1, the studies on ECG in the Web of 

Science (WoS) database [6] have been examined in detail. In 

most of the studies in the literature, ECG is generally not used 

in a hybrid way with vehicle measurement data, but rather 

integrated with behavioral measurements. In these studies, it 

is seen that face recognition and ECG data are combined and 

used for drowsiness detection. The combined use of ECG and 

face recognition methods has achieved remarkably high 

success rates in drowsiness detection. For instance, Chang et 

al. [32] achieved a 97.97% accuracy rate by combining AHP 

and machine learning techniques. Sukumar et al. [34] achieved 

a 97.30% accuracy rate. However, it is known that the face 

recognition method has some disadvantages, such as racial 

characteristics in the facial structure, the use of glasses or 

masks, etc. may prevent face recognition technology from 

always providing promising results. In addition, these studies 

in the literature generally classify drowsiness as either 

“drowsiness” or “non-drowsiness” rather than dividing it into 

different classes as in this study. Therefore, it is likely that 

these studies will reach high accuracy values. 

Additionally, many studies in the literature have actually 

focused on developing state-of-the-art driver drowsiness 

monitoring systems. For example, Linschmann et al. [45] 

designed a portable cushion to measure ECG. Wolkow et al. 

[43] tried to use a wristband for heart rate measurement. 

Muramatsu and Sasaki [44] measured ECG with conductive 

electrodes placed on the steering wheel and capacitive 

electrodes on the seat. Most of these studies are research aimed 

at improving ECG measurement technologies rather than 

measuring drowsiness performance and aimed to increase the 

accuracy of ECG measurements. 

In our study, by examining both ECG and CAN-Bus data, 

an integrated measurement classification was performed, 

unlike a system based only on ECG. In this way, drowsiness 

detection was attempted without the need for ECG data, based 

only on CAN-Bus data, and the classification performances 

were analyzed. In some studies, as in our study, drowsiness 

was measured by dividing it into different classes. For instance, 

utilizing ECG and respiratory data, Ebrahimian et al. [37] 

achieved 91% performance in three-class and 67% in five-

class drowsiness detection. However, in our study, 85% 

performance was achieved in three-class drowsiness detection 

with more parameters using both ECG and CAN-Bus data. In 
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addition, this system has a more suitable structure for 

industrial usage. Murugan et al. [38] used only ECG data to 

obtain 58.3% performance in five-class drowsiness detection. 

These findings demonstrate that, by utilizing an integrated 

strategy and additional characteristics, our study yields more 

comprehensive results. 

 

Table 5. Comparison of performance metrics of algorithms 

 
Algorithm Training Accuracy Validation Accuracy Precision Recall F1 Measure 

XGBoost  0.8077 0.7836 0.78 0.78 0.75 

KNN 0.8049 0.7544 0.74 0.76 0.74 

Decision tree 0.8143 0.7687 0.75 0.77 0.75 

SVM 0.6894 0.6867 0.67 0.69 0.59 

Random Forest 0.8508 0.8042 0.81 0.8 0.78 

 

 
 

Figure 9. Feature importances in drowsiness detection using random forest classifier 

 

 

5. CONCLUSION 

 

In contrast to existing approaches that either use 

physiological measurements or data from the vehicle, this 

study offers a more thorough and precise method of detecting 

driver drowsiness by combining both ECG data and CAN-Bus 

signals. Utilizing machine learning methods, particularly 

classification algorithms, the study was able to classify driver 

fatigue into three different categories. The system's 85% 

accuracy rate represented a substantial advance over previous 

research that relied solely on ECG data, where accuracy rates 

were frequently lower, typically less than 70% in the case of 

multi-class drowsiness detection. This indicates how well the 

hybrid technique works to improve drowsiness detection 

performance, which makes it more useful for driving in actual 

situations. 

The methodology included gathering physiological and 

vehicle-related components in real-time under a range of 

traffic and environmental circumstances from several drivers. 

Heart rate variability (HRV), a crucial indication of tiredness, 

was obtained via ECG measures, while critical vehicle metrics 

like speed, steering wheel tilt, and braking pressure were 

obtained from CAN-Bus data. The study revealed that merging 

physiological and vehicle-based factors results in a more 

robust system capable of providing prompt and reliable 

drowsiness detection by incorporating these combined data 

sources into machine learning models. By enhancing detection 

accuracy and providing up opportunities for practical 

applications in vehicle safety systems, this approach delivers 

a substantial contribution to the development of intelligent 

driver monitoring technology. 

The data collected within the scope of this study were 

collected from the participants at different times and were not 

collected under equal conditions due to traffic density. 

Although 10 hours of data collection time seems sufficient in 

the literature, it is thought that this period should be extended 

in order to increase the performance of the study and to 

generalize it. In addition, although the results obtained from 

the traditional machine learning applications used in this study 

are good results when compared to the literature, it is possible 
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to obtain better results. This can be achieved by trying 

heuristic/metaheuristic hybrid methods. 

One notable limitation of this study is the imbalance 

between drowsiness classes in the dataset, particularly the 

lower number of samples labeled as “slightly drowsy” (Class 

1). This imbalance likely contributed to reduced classification 

performance in this category. While collapsing the three 

classes into a binary structure (“drowsy” vs. “not drowsy”) 

might have improved overall model accuracy, the three-class 

framework was deliberately chosen to explore the detection of 

early-stage fatigue. Identifying partial drowsiness is 

considered critical for preventive driver safety interventions. 

Future work will aim to address this imbalance through 

targeted data collection and synthetic augmentation strategies. 

In line with these limitations, it is planned to collect more 

data in future studies and re-evaluate these data with hybrid 

methods. In future phases of this project, the proposed model 

will be tested in real vehicle environments using embedded 

computing platforms such as NVIDIA AGX Orin. Additional 

data will be collected from a more diverse group of drivers 

across different age ranges. Integration with ADAS systems 

and real-time evaluation under natural driving conditions will 

allow for more comprehensive performance assessment and 

validation of the model’s practical utility. 

Furthermore, future work will focus on optimizing the 

model for embedded platforms by addressing real-time 

inference constraints, processing power, memory limitations, 

and cost-effectiveness to ensure reliable deployment in 

production vehicles. 
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