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With the rapid growth of urbanization and the increasing number of motor vehicles, traffic 
violations have become more frequent, posing severe challenges to road safety and urban 
management. The application of high-definition (HD) imaging technology in traffic 
violation monitoring enables more accurate and efficient detection and processing of 
violations, significantly enhancing the intelligence level of traffic management and the 
effectiveness of judicial evidence collection. While existing research has made progress in 
developing and optimizing traffic violation monitoring systems, there remain significant 
shortcomings in multi-object tracking and the construction of judicial evidence chains. 
Current multi-object tracking algorithms are susceptible to occlusion and target loss in 
complex traffic environments, and existing judicial evidence chain construction methods 
heavily rely on single-image processing techniques, which limits the reliability and 
completeness of the evidence. This study focuses on two key aspects: (1) multi-object 
tracking in HD traffic violation monitoring images based on an improved DeepSORT 
algorithm and (2) judicial evidence chain construction using the Discrete Wavelet 
Transform-Singular Value Decomposition (DWT-SVD) technique. The enhanced 
DeepSORT algorithm integrates deep learning with traditional tracking methods, 
significantly improving tracking accuracy and robustness in complex traffic conditions. 
Meanwhile, the DWT-SVD technique enables multi-level analysis and evidence extraction, 
strengthening the comprehensiveness and reliability of judicial evidence. This research not 
only advances the theoretical understanding of image processing in traffic violation 
monitoring and judicial applications but also provides valuable insights for practical 
implementation and broader adoption. 
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1. INTRODUCTION

With the continuous acceleration of urbanization and the
sharp increase in the number of motor vehicles [1, 2], the 
frequent occurrence of traffic violations has brought great 
challenges to road traffic safety and urban management [3, 4]. 
In order to effectively curb traffic violations, the application 
of HD imaging technology in traffic violation monitoring has 
become increasingly important [5, 6]. By combining HD 
cameras with intelligent analysis systems [7, 8], traffic 
management departments can capture and process traffic 
violations more accurately and efficiently, thereby improving 
the scientific and intelligent level of road traffic management. 

HD imaging technology not only improves the accuracy and 
efficiency of traffic violation monitoring [6, 9] but also plays 
an important role in judicial evidence collection and violation 
determination [10]. Through HD image recording and analysis 
of traffic violations, accurate and reliable evidence can be 
provided to judicial departments, greatly enhancing the 
accuracy of violation determination and the fairness of judicial 
decisions. At the same time, the application of this technology 
also helps to enhance public legal awareness and traffic safety 
awareness [11, 12], thereby reducing the occurrence of traffic 

violations and improving the level of urban traffic 
management and road safety. 

Although a large number of studies have focused on the 
development and optimization of traffic violation monitoring 
systems [13-15], the current technical solutions still have 
certain deficiencies in multi-object tracking and judicial 
evidence chain construction [16]. Existing multi-object 
tracking algorithms, such as the traditional Kalman filter and 
simple deep learning methods [17], often perform poorly in 
complex traffic environments and are susceptible to occlusion 
and target loss [18]. In addition, most existing judicial 
evidence chain construction methods rely on single-image 
processing technology and lack integrated approaches 
combining multiple techniques, which limits the reliability and 
completeness of evidence. 

This study addresses the above issues and proposes two 
main research topics: (1) multi-object tracking in HD traffic 
violation monitoring images based on an improved 
DeepSORT algorithm and (2) judicial evidence chain 
construction for HD traffic violation monitoring images based 
on DWT-SVD. In terms of multi-object tracking, the improved 
DeepSORT algorithm enhances tracking accuracy and 
robustness in complex traffic environments by integrating 
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deep learning with traditional tracking methods. In terms of 
judicial evidence chain construction, DWT and SVD 
techniques are utilized to achieve multi-level analysis and 
evidence extraction of HD monitoring images, thereby 
enhancing the comprehensiveness and reliability of the 
evidence. This study not only enriches the theoretical research 
on image processing technology in traffic violation monitoring 
and judicial applications but also provides important reference 
value and practical significance for real-world applications. 
 
 
2. MULTI-TARGET TRACKING OF TRAFFIC 
VIOLATION HD SURVEILLANCE IMAGES BASED 
ON IMPROVED DEEPSORT ALGORITHM 

 
In the study of multi-target tracking of traffic violation HD 

surveillance images, it is first necessary to extract features 
specific to traffic scenes. HD surveillance images often 
contain complex backgrounds and diverse targets. Therefore, 
in the feature extraction stage, multiple visual attributes are 
comprehensively utilized to capture various characteristics of 
the targets. Specifically, grayscale histograms, raw grayscale 
values, and haar-like features are used to describe the 
grayscale features of the targets; color histograms are used to 
characterize the color features of the targets; and boundary 
features are extracted based on image edge changes. In 
addition, Scale Feature Transformation (SFT) and Histogram 
of Oriented Gradients (HOG) are employed to describe the 
gradient features of the targets, better handling the effects of 
complex backgrounds and lighting variations. The 
comprehensive utilization of these features effectively 
improves the accuracy of target recognition and tracking in 
traffic violations. 

 

 
 

Figure 1. Multi-target tracking algorithm process of traffic 
violation HD surveillance images 

 
After completing feature extraction, this paper proposes a 

multi-target tracking process design based on the improved 
DeepSORT algorithm. The improved DeepSORT algorithm 
combines the powerful feature extraction capability of deep 
learning with the efficiency of traditional tracking methods. 
By comparing the confidence levels of predicted bounding 

boxes, the prediction with the highest confidence is selected 
and output to the detector, thereby solving the problem of re-
tracking targets after occlusion. To achieve continuous 
tracking of targets, energy minimization and probability-based 
data association techniques are adopted, and appearance 
models and motion models are combined to predict the 
position of targets in the next frame. The Hungarian algorithm 
is used for optimal matching, effectively updating the target's 
position information and ensuring the continuity and accuracy 
of tracking. Moreover, to cope with noise interference in 
complex traffic environments, events are analyzed, and noise 
interference is denoised to obtain continuous motion 
trajectories, ensuring tracking stability and reliability. The 
algorithm process is shown in Figure 1. 

In the proposed multi-target tracking process design for 
traffic violation HD surveillance images, the fundamental idea 
of introducing the Hungarian algorithm is to effectively solve 
the target matching and tracking problem, thereby achieving 
efficient and accurate multi-target tracking. When introducing 
the Hungarian algorithm in the context of traffic violation HD 
surveillance images, this paper mainly reflects the following 
four fundamental ideas: 

(1) Constructing a Bipartite Graph Model: In multi-target 
tracking of traffic violations, constructing a bipartite graph is 
a critical step. Here, the left vertices of the graph represent all 
detected targets in the current frame, while the right vertices 
represent targets tracked in the previous frame. The edge 
weights represent the matching cost or similarity between 
targets detected in the current frame and targets tracked in the 
previous frame. The matching cost can be based on various 
features, such as position, speed, and appearance features. In 
this way, the multi-target tracking problem is formalized as a 
graph matching problem, facilitating the use of the Hungarian 
algorithm for solving it. 

(2) Initializing the Matching Relationship: After 
constructing the bipartite graph, the initial matching 
relationship is set to an all-zero state, meaning that none of the 
detected targets in the current frame are assigned to any 
tracked targets from the previous frame. In practical operations, 
this means that initially, each detected target is not matched 
with any tracked target. This approach prepares for subsequent 
maximum matching searches and matching improvements. 

(3) Finding the Maximum Matching: After setting the initial 
matching relationship, the path-finding mechanism of the 
Hungarian algorithm is used to find a maximum matching. The 
goal of maximum matching is to find a set of matchings that 
minimizes the total matching cost. Specifically, by calculating 
the matching cost between each detected target in the current 
frame and each tracked target in the previous frame, the 
matching relationship that results in the minimum total cost is 
determined. 

(4) Adjusting and Optimizing the Matching: If the obtained 
maximum matching does not meet certain conditions, an 
augmenting path is used to improve the matching relationship. 
An augmenting path is an alternating path that, by finding 
unmatched vertices in the graph and adjusting the current 
matching relationship, can further reduce the total matching 
cost or improve matching accuracy. This process is 
particularly important in traffic violation surveillance 
scenarios because real-world environments may involve 
occlusions and target loss, requiring continuous adjustment 
and optimization of matching relationships to ensure 
continuity and accuracy in target tracking. 

In the design of the multi-target tracking process for traffic 
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violation HD surveillance images, this paper introduces the 
YOLOv8 framework for two main reasons. First, traffic 
violation surveillance scenarios typically have extremely high 
real-time requirements. Traditional object detection methods 
often require long processing times, whereas YOLOv8 treats 
object detection as an end-to-end regression problem, allowing 
it to simultaneously predict object categories and bounding 
boxes within a single neural network, thereby achieving very 
high detection speed. Second, the types of targets in traffic 
violation surveillance scenarios are diverse and complex, 
including different types of vehicles, pedestrians, bicycles, etc., 
and target sizes and shapes vary significantly. YOLOv8 
enhances the model's feature extraction capability by using the 
C2f module as the backbone, enabling it to better handle object 
detection tasks in different scales and complex backgrounds. 
Additionally, YOLOv8 introduces multi-scale training and 
testing strategies, making it adaptable to object detection 
requirements of different sizes, further improving its 
applicability and detection performance in traffic violation 
surveillance scenarios. 

In the design of the detection head, YOLOv8 adopts a 
combination of an anchor-free mechanism and a Decoupled-
head structure. Traditional anchor-based mechanisms often 

require meticulous anchor design and incur high 
computational costs when dealing with diverse traffic targets. 
In contrast, the anchor-free mechanism directly predicts object 
center points and bounding boxes, simplifying model design 
and training while reducing computational complexity. The 
Decoupled-head structure separates classification and 
regression tasks, optimizing detection accuracy and robustness. 
This design provides more precise and stable detection results 
for complex object detection tasks in traffic violation 
surveillance scenarios. 

Regarding the loss function, YOLOv8 employs a 
combination of classification Binary Cross Entropy (BCE), 
regression Complete Intersection over Union (CIOU), and 
Varifocal Loss (VFL) to further improve detection accuracy. 
Classification BCE effectively distinguishes different types of 
traffic participants when handling multi-class objects. 
Regression CIOU loss function considers not only the overlap 
of object bounding boxes but also the center distance and 
aspect ratio difference, which is particularly important for 
accurately locating object bounding boxes in traffic scenes. 
VFL dynamically adjusts the weights of positive and negative 
samples, further optimizing model detection performance. 
Figure 2 presents the YOLOv8 network architecture diagram. 

 

 
 

Figure 2. YOLOv8 network architecture diagram 
 

YOLOv8 also introduces the Task-Aligned Assigner 
mechanism in the box matching strategy. This mechanism 
dynamically adjusts the allocation ratio of positive and 
negative samples and uses classification and regression scores 
as weights to select positive samples. This dynamic matching 
strategy can adaptively adjust according to real-time detection 
results, ensuring that suitable positive samples can be selected 
for training and detection in different traffic scenarios, thereby 
improving the model's generalization ability and detection 
accuracy. Suppose the allocation ratio of samples is 
represented by s, the predicted score corresponding to the 
annotated category is represented by t, the intersection over 
union (IoU) of the predicted box and the ground truth box is 
represented by w, and the weight hyperparameters are 
represented by β and α. The allocation ratio formula of the 
samples is: 

s t wβ α= +  (1) 
 

Suppose the probability that the predicted sample belongs 
to class 1 is represented by o, and the modulation factor is 
represented by ε. The global classification loss N(o,w) is 
calculated as follows: 
 

( )
( ) ( )( )

( )
log 1 log 1 , 0

,
log 1 , 0

w w o w o w
N o w

o o wεβ

− ⋅ + − ⋅ − >= 
− ⋅ ⋅ − =

 (2) 

 
The multi-target tracking task in traffic violation scenarios 

presents the following challenges: high-speed target 
movement, frequent occlusions, target appearance diversity, 
and the need for real-time processing. In the design of the 
multi-target tracking process for traffic violation HD 
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surveillance images, this paper introduces the DeepSORT 
algorithm. The DeepSORT algorithm generates initial 
detection results based on YOLOv8. Targets in traffic 
violation surveillance scenarios typically include various types 
of vehicles and pedestrians, which may exhibit significant 
appearance differences at different times and locations. Figure 
3 shows the DeepSORT process schematic diagram. In 
specific implementation steps, the DeepSORT algorithm 
mainly includes the following six aspects: 

(1) Initialize trajectories and Kalman filter: Based on the 
initial detection results of each frame, a trajectory is generated 
for each detected target, and a Kalman filter is initialized for 
each trajectory. The Kalman filter is used to predict the 
position of the target in the next frame, taking into account the 
target's motion parameters such as velocity and acceleration. 
This initialization process ensures that each target has a unique 
identifier, facilitating subsequent tracking. 

(2) Predict target position: The Kalman filter is used to 
predict each trajectory, generating the predicted bounding box 
for the target in the next frame. This step considers the motion 
state of the target and can, to some extent, compensate for 
rapid target movement, making the tracking process more 
stable and continuous. 

(3) Data association and matching: By comparing the 
detection results of the current frame with the predicted results 
of the previous frame, the IoU between them is calculated, and 
a cost matrix is constructed based on this. This cost matrix 
reflects the matching relationship between the targets detected 
in the current frame and those predicted in the previous frame. 

In traffic violation surveillance scenarios, targets often 
experience occlusions and transformations. The DeepSORT 
algorithm can effectively associate targets across different 
frames through this approach. 

(4) Linear matching using the Hungarian algorithm: The 
constructed cost matrix is input into the Hungarian algorithm 
to perform optimal matching. The Hungarian algorithm is a 
classical combinatorial optimization algorithm that can find 
the optimal matching scheme in multi-target tracking, 
ensuring that each target is correctly tracked. 

(5) Handling unmatched targets and trajectories: 
Unmatched detection results and trajectories are processed 
separately. For unmatched detection results, they may be 
newly appearing targets, requiring the initialization of new 
trajectories and Kalman filters. For unmatched trajectories, 
their status needs to be updated to determine whether they 
have truly disappeared or are only temporarily occluded. In 
traffic violation surveillance scenarios, this step is particularly 
critical because the frequent appearance and disappearance of 
targets are common phenomena. 

(6) Update trajectory information and perform cascade 
matching: After processing each frame, the Kalman filter is 
used to update the confirmed trajectories, and cascade 
matching is performed on the detection results based on 
appearance features and motion information. Here, the 
DeepSORT algorithm introduces a deep feature extraction 
network to further improve the accuracy and robustness of 
target matching. 

 

 
 

Figure 3. DeepSORT process schematic diagram 
 

The multi-target tracking task in traffic violation scenarios 
has certain particularities and complexities. The monitored 
images contain a wide variety of targets, including various 
types of vehicles and pedestrians, with significant differences 
in their sizes and shapes. In addition, the problems of high-
speed movement within the monitoring range and frequent 
occlusions impose high requirements on the real-time 
performance and accuracy of detection and tracking. Although 
YOLOv8 has high detection speed and good detection 
accuracy, it still has some shortcomings in detecting large 
targets. To improve the overall efficiency and accuracy of the 
system, we consider optimizing the DeepSORT algorithm, 
particularly by improving its target detection component. This 
paper introduces an improved K-Means nearest neighbor 

algorithm to process YOLOv8 bounding boxes to address the 
current issues of detection speed and accuracy. 

The traditional K-Means algorithm uses Euclidean distance 
as the similarity measurement criterion during clustering. 
However, Euclidean distance is susceptible to interference 
when processing large bounding boxes, leading to suboptimal 
clustering results. Suppose the distance between a certain 
bounding box y and the cluster center z is represented by f(y,z), 
and the IoU between the bounding box and the cluster center 
is represented by U(y,z), then the Euclidean distance 
measurement formula is: 
 

( ) ( ), 1 ,f y z U y z= −  (3) 
 

1010



By improving the K-Means nearest neighbor clustering 
method, the matching between anchor boxes and actual 
bounding boxes is enhanced, thereby improving the IoU value. 
The specific optimization steps are as follows: 

(1) Data preprocessing stage: A large amount of target 
bounding box data from traffic violation HD surveillance 
images is collected. These data contain the actual bounding 
box positions and category information of the targets, denoted 
as (ak, bk, qk, gk), where (ak, bk) represents the center 
coordinates of the bounding box, qk and gk represent the width 
and height of the bounding box, respectively, and V is the 
number of target bounding boxes. 

(2) Initializing J cluster centers: Each cluster center contains 
a width and height (Qk,Gk). The initialization of these cluster 
centers is based on a preliminary analysis of the collected data 
to ensure that the cluster centers can represent the 
characteristics of different target categories. The purpose of 
this step is to determine characteristic anchor boxes for 
different target categories through clustering, thereby 
optimizing the detection process. 

(3) Clustering process: The improved distance formula is 
used to calculate the distance between each actual target 
bounding box and each cluster center. Through this method, 
each target bounding box is assigned to the cluster center with 
the smallest distance, thereby improving the accuracy of 
clustering. Suppose the distance between two bounding boxes 
is represented by F1, then the calculation formula is: 
 

( ) ( )( )
{ } { }

1 1 , , , , , , , ,

1, 2,..., , 1, 2,...,
k k k k k k k kF U a b q g a b Q G

k V u J

= −

∈ ∈
 (4) 

 
(4) Recalculating cluster centers during each iteration of the 

clustering process: During the update process, the specific 
characteristics of the targets within each cluster are considered, 
and the cluster center positions are updated using a weighted 
average method. This step ensures that the cluster centers can 
dynamically adapt to data changes, thereby continuously 
improving the matching between anchor boxes and actual 
bounding boxes. Suppose the updated width of the u-th cluster 
center is represented by q'u, the number of actual target 
bounding boxes in the u-th cluster is represented by Vu, the 
updated height of the u-th cluster center is represented by G'u, 
the width assigned to the u-th cluster center is represented by 
qu, and the height of all bounding boxes assigned to the u-th 
cluster center is represented by gu, then the updated width and 
height of the u-th cluster center are: 
 

( ) ( )' '1 / , 1 /u u u u u uQ V q G V g= =∑ ∑  (5) 

 
(5) When the number of iterations reaches the preset value 

or the cluster center changes are no longer significant, the 
clustering process ends. At this point, optimized anchor boxes 
are obtained, which can still match actual bounding boxes well 
under low-light conditions. For practical applications in multi-
target tracking in traffic violation HD surveillance images, we 
improve the association mechanism of the DeepSORT 
algorithm. Specifically, we introduce a dynamic allocation 
mechanism that adjusts the weights of appearance features and 
motion information in real time. This improvement takes into 
account the detection instability caused by lighting changes. 
Through dynamic adjustment, more accurate associations of 
detected bounding boxes can be achieved under low-light 

conditions. To this end, we define a matching variable s(l) to 
evaluate the matching degree between the currently detected 
bounding box l and the reference bounding box. This variable 
comprehensively considers the IoU value of the bounding box, 
appearance features, and motion information, and dynamically 
adjusts the weight of each part according to the actual lighting 
conditions. Suppose the areas of the target and occlusion 
detection bounding boxes are represented by TX and TY, and 
the currently detected bounding box number is represented by 
l, then the matching variable s(l) is calculated as follows: 
 

( )

10,
5

11,3 ,
5

X Y

Y

X Y X Y

Y Y

T T
T

s l
T T T TMIN

T T

 <
=    × ≥   



 

 (6) 

 
 
3. CONSTRUCTION OF JUDICIAL EVIDENCE CHAIN 
FOR HD TRAFFIC VIOLATION SURVEILLANCE 
IMAGES BASED ON DWT-SVD 

 

After completing the multi-object tracking study of HD 
traffic violation surveillance images, this paper further 
conducts research on the construction of a judicial evidence 
chain for HD traffic violation surveillance images. From a 
legal perspective, the collection of evidence for traffic 
violations must have a high degree of authenticity and be 
tamper-proof to ensure its legality and validity in judicial 
procedures. As an intuitive form of evidence, the completeness, 
authenticity, and verifiability of HD surveillance images are 
key factors for their acceptance in court. Specifically, this 
paper introduces the DWT-SVD algorithm, which 
decomposes the image into different frequency subbands 
through wavelet decomposition and then embeds watermark 
information into these subbands. Since SVD has strong anti-
attack capability and robustness, this method ensures that even 
if the image undergoes common operations such as 
compression, cropping, or rotation, the embedded watermark 
information can still be effectively extracted and verified. This 
technical approach provides strong evidence assurance, 
ensuring that the image maintains its legality and validity in 
judicial proceedings. 

To further achieve the construction of the judicial evidence 
chain, it is necessary to establish a systematic evidence 
management and tracking mechanism based on image 
watermark embedding. The specific approach includes the 
following: First, by embedding a digital watermark containing 
information such as time, location, and device ID into HD 
surveillance images, each frame of the image is ensured to 
have a unique identifier. This information can be automatically 
generated and embedded at the time of image acquisition to 
ensure the integrity of the original data. Second, an evidence 
management system should be established to record and 
manage the entire process of collecting, transmitting, storing, 
and using each traffic violation surveillance image. This 
system should have strong logging capabilities to track every 
operation and access, ensuring that each step is traceable. 
Finally, in judicial trials, the authenticity of images is verified 
by extracting the watermark information embedded in the 
images, and the entire evidence chain is systematically 
presented to the court to support judicial decisions. Figure 4 
illustrates the construction process of the judicial evidence 
chain for HD traffic violation surveillance images. 
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Figure 4. Judicial evidence chain construction process for 
HD traffic violation surveillance images 

 
The optimal signal for HD traffic violation surveillance 

images should possess the following characteristics: good 
randomness, long period, high linear complexity, and balance. 
These characteristics ensure that the signal, when embedded 
in the surveillance image, can maintain image quality while 
providing a highly reliable verification mechanism. 
Specifically, good randomness prevents watermark 
information from being easily predicted or tampered with; a 
long period ensures the reusability and durability of the signal; 
high linear complexity enhances the signal's resistance to 
attacks; and balance ensures that the embedded signal does not 
cause significant visual impact on the image. These 
characteristics work together to ensure that the embedded 
watermark signal can still be effectively extracted and verified 
under various common attacks, thereby safeguarding the 
integrity and authenticity of the image. 

The optimal binary array is a typical form of signal. In 
traffic violation surveillance, to ensure that image signals can 
serve as effective judicial evidence, the array design of the 
transmitting and receiving ends must meet specific application 
site requirements. Even if their specific array structures are 
different, as long as certain conditions are met, these array 
pairs can still achieve optimal performance. In an array pair, 
the cross-correlation function of the two arrays is defined as 
the autocorrelation function. This method allows for the 
precise design and optimization of various forms of new 
optimal HD traffic violation surveillance image signals. In 
practical applications, this means that attention must not only 
be paid to the performance of a single array but also to the 
cooperative operation between the transmitting and receiving 
arrays to ensure complete transmission and accurate reception 
of signals. Specifically, let A = [a (t1, t2, …, tv)] and B = [b (t1, 
t2, …, tv)] be two v-dimensional arrays of order V1×V2×…×Vv, 
where 0≤tu≤Vu-1 and 1≤u≤v. The cyclic cross-correlation 
function of arrays A and B is given by: 
 

( ) ( )

( )

1 2

1 2
1 2

11 1

1 2, , ,...,
0 0 0

1 1

, ,...,

* ,...,

v

v
v

VV V

vA B
a a a

v v

E a t t t

b t t

π π π

π π

−− −

= = =

= ⋅

+ +

∑ ∑ ∑

 (7) 

 
In the above equation, tu+πu=(tu+πu) MOD Vu. If A=B, then 

EA,B (π1, π2,…,πv) is called the cyclic autocorrelation function 

of array A, i.e., the autocorrelation function of array A. If this 
function satisfies the following equation, then array A is called 
an optimal v-dimensional binary array of order V1×V2×…×Vv: 
 

( )
( ) ( )

( ) ( )1 2

1 2
, , ,...,

1 2

0, , ,..., 0,0,...,0

0, , ,..., 0,0,...,0v

v
A A

v

R
E π π π

π π π

π π π

≠ == 
=

 (8) 

 
Furthermore, let A=[a (t1, t2, …, tv)] and B=[b (t1, t2, …, tv)] 

be two v-dimensional arrays of order V1×V2×…×Vv, where 
0≤tu≤Vu-1 and 1≤u≤v. If they form v-dimensional array pair, 
denoted as (A, B), then N=V1V2…Vv is called the volume of the 
array pair. If the elements of A and B take values of ±1, then 
(A,B) is called a v-dimensional binary array pair. A one-
dimensional array pair is called a sequence pair. Let A and B 
be two matrices of order L×V, where the elements of A and B 
are ±1. If they satisfy the equation AB T=zUL, where UL is the 
identity matrix of order L, and BT is the transpose of matrix B, 
then (A,B) is called a binary orthogonal matrix pair. 

DWT, as a multi-resolution analysis tool, is selected as the 
basis for watermark embedding due to its conformity to human 
visual characteristics and good frequency domain 
decomposition capability. Through DWT, an image can be 
decomposed into sub-images of different frequency bands, 
achieving fine analysis of image content. A one-level wavelet 
decomposition divides the image into one low-frequency 
region and three high-frequency regions. The low-frequency 
region contains the main energy and important features of the 
image, while the high-frequency regions mainly contain the 
image’s edge and texture details. A further two-level wavelet 
decomposition decomposes the low-frequency region of the 
one-level decomposition again, obtaining a new low-
frequency region and multiple high-frequency regions. 
Embedding the watermark in the low-frequency region can 
enhance the robustness of the watermark, ensuring that it can 
still be effectively extracted and verified after various common 
image processing operations, although this may affect the 
watermark's invisibility. Based on these considerations, this 
paper adopts the Haar wavelet basis for wavelet 
decomposition, as it is simple, effective, and suitable for image 
watermark embedding. 

Let X∈Rl×v, where Rl×v is the l×v real field. Assume that the 
orthogonal matrix is represented by I and N, and a matrix with 
all off-diagonal elements being 0 is represented by T=diag (δ1, 
δ2, …, δe), where e=MIN (l, v). Then the SVD of matrix X is as 
follows: 
 

SX ITN=  (9) 
 

Let δu be the singular value of the matrix, and its diagonal 
elements satisfy: 
 

1 2 0eδ δ δ≥ ≥ ≥ ≥
 (10) 

 
Below are the detailed steps for watermark embedding 

based on the DWT-SVD method: 
(1) The Lena host image x0 is divided into blocks of size 

(v×v), with each block having a size of (u,k=l/v). Then, each 
block is multiplied by the signal Lx, achieving the time-domain 
mixing of the host image. This step ensures the integration of 
the host image and the traffic monitoring image signal, 
forming a time-domain mixed image of the sub-blocks, and 
recombining them into a new image Z of size L×L. 

(2) The Haar wavelet basis is applied to perform a two-level 
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DWT on the combined image Z, resulting in six high-
frequency sub-bands and one low-frequency sub-band X2, 
with the size of the low-frequency sub-band being L/4×L/4. 
This step utilizes the multi-resolution analysis advantage of 
the wavelet transform, decomposing the image into different 
frequency components, which provides the foundation for 
subsequent watermark embedding. 

(3) Low-frequency sub-band blocking: Since the watermark 
image selected is a binary image of size l×l, the low-frequency 
sub-band X2 is divided into blocks of size Y=round(L/4l), 
resulting in l×l sub-blocks Yuk, where u,k=1, 2, …, l. This step 
ensures that the block division of the low-frequency sub-band 
matches the size of the watermark image, preparing for the 
next step of SVD. 

(4) Perform SVD on each sub-block Yuk to obtain three 
matrices: I, T, and N. The diagonal elements of each matrix T 
are sorted in descending order to ensure that the first diagonal 
element δuk of each T matrix is the maximum value. The use 
of SVD is to extract and process important image features, 
providing a stable carrier for embedding the watermark 
information. 

(5) Watermark embedding: Set the embedding strength 
factor w, and let c=MOD (δuk, w). According to the set rules, 
embed the watermark into the first element δuk of each T matrix. 
The specific rule is determined based on actual requirements 
and algorithm design. By adjusting the embedding strength 
factor, the robustness and concealment of the watermark can 
be effectively controlled. Let MARK be the watermark signal 
to be embedded, then: 
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(6) Inverse SVD and Inverse Wavelet Transform: Perform 

the inverse operation on the matrix T' formed by the embedded 
watermark δ’

uk, i.e., Y’
uk=IT'NT. Then, recombine the sub-

blocks, and perform an inverse wavelet transform on the 
combined matrix to obtain the watermark-embedded mixed 
image x1. This step converts the image with the embedded 
watermark back to the time-domain form, ensuring the 
integrity and visibility of the image. 

(7) Time-domain mixing recovery: Divide the mixed image 
x1 into blocks according to the size of the optimal traffic 
violation HD surveillance image signal Lx, and multiply each 
block by Lx again to achieve the time-domain mixing recovery 
of the host image, resulting in the final mixed image Z2 with 
the embedded watermark. This step ensures that the image 
with the embedded watermark is integrated with the original 
monitoring signal, forming an image evidence with legal 
validity. 

Below is the detailed description of the watermark 
extraction process based on the DWT-SVD method: 

(1) First, divide the potentially attacked watermark-
embedded image L1 (of size L×L) into blocks according to the 
size of the optimal traffic violation HD surveillance image 
signal Lx (of size v×v). Assume that the size of each sub-block 
is L/v × L/v. Then, multiply each sub-block by the signal Lx for 
time-domain mixing. This step ensures that the local features 
of the embedded watermark image remain consistent with the 
original image through integration with the original 
monitoring signal, forming a time-domain mixed image of the 

sub-blocks and recombining them into a new image Z1 of size 
L×L. This processing method guarantees that even if the image 
is attacked, its local features maintain a certain internal 
relationship. 

(2) Next, apply the Haar wavelet basis to perform a two-
level DWT on the combined image Z1, resulting in multiple 
high-frequency sub-bands and one low-frequency sub-band 
X4. The size of the low-frequency sub-band is L/4 × L/4. 
Divide the low-frequency sub-band X4 into blocks of size 
Yuk=round (L/4l), resulting in l×l sub-blocks Yuk. Then, 
perform SVD on each sub-block Yuk, i.e., Yuk=ITNT, obtaining 
the singular value matrix T. This step utilizes the multi-
resolution analysis advantage of the wavelet transform, 
decomposing the image into different frequency components 
and extracting the image's important features through SVD, 
providing a stable carrier for the subsequent watermark 
extraction. 

(3) In the singular value matrix T of each sub-block, find the 
maximum value δuk on the diagonal. According to the set 
embedding strength factor w, calculate c=MOD (δuk, w). Based 
on the pre-established rules, organize the extracted 
information into the watermark image. This process, through 
precise calculation and processing of the singular values, can 
effectively extract the embedded watermark information from 
the attacked image, thereby verifying whether the image has 
been tampered with. This step is particularly crucial because it 
directly determines the accuracy and robustness of the 
watermark extraction. Specifically, let the extracted 
watermark information be represented by q, and the watermark 
extraction rule is: 
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(4) Perform quality evaluation for both the watermark-

embedded image and the extracted watermark image. The 
watermark-embedded image is objectively evaluated using 
PSNR to reflect the algorithm's performance in terms of 
invisibility. A higher PSNR value indicates better image 
quality after watermark embedding, with the watermark being 
harder to detect. The extracted watermark image is objectively 
evaluated using NC, which is the cross-correlation coefficient 
between the extracted watermark and the original watermark. 
The closer the NC value is to 1, the higher the similarity 
between the extracted watermark and the original watermark, 
and the stronger the robustness of the watermark. These two-
evaluation metrics comprehensively verify the effectiveness of 
the watermark algorithm and the image's integrity. The PSNR 
calculation formula is: 
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The NC calculation formula for the cross-correlation 

coefficient between the extracted watermark and the original 
watermark is as follows: 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

By performing detection and tracking on videos from the 
test set, Figure 5 demonstrates the multi-target detection effect 
of the improved DeepSORT algorithm in a complex traffic 
environment. Specifically, the experimental results show that 
the improved algorithm can accurately identify and detect 
multiple traffic targets in the video, significantly improving 
detection accuracy. This result validates the effectiveness and 
applicability of the improved algorithm in handling traffic 
violation HD surveillance images, especially when dealing 
with multiple targets such as vehicles and pedestrians, while 
still maintaining efficient detection performance. Further 
analysis of the results in Figure 6 shows that under a tracking 
rate of 15.5 frames/s, the improved DeepSORT algorithm 
achieves rapid tracking of traffic targets. This not only 
indicates that the algorithm has high application potential in 
terms of real-time performance but also demonstrates its 
robustness in complex dynamic environments. 

As shown in Figure 7, the results of the ablation experiment 
demonstrate that, in terms of tracking performance for 
different types of targets, the proposed method exhibits 
significant advantages compared to the other three methods. 
Taking motor vehicles, non-motor vehicles, and pedestrians as 
examples, the P-R curve of the proposed method shows 

generally higher precision at the same recall rate. Especially 
when the recall rate approaches 1.0, the precision remains high, 
indicating stronger tracking stability across various targets. In 
contrast, methods such as YOLOv7 and YOLOv8 show a 
more pronounced drop in precision as recall increases. While 
the YOLOv8 + traditional K-Means method achieves some 
optimization, it still fails to balance tracking precision and 
recall for complex targets, falling short of the proposed 
method. The experimental results show that the proposed 
method effectively optimizes the multi-object tracking process 
by introducing an improved K-Means neighbor algorithm for 
YOLOv8 bounding box handling, in combination with the 
improved DeepSORT algorithm. The overall performance in 
the ablation experiment suggests that this improvement 
strategy significantly enhances tracking performance across 
all categories, with a larger area under the P-R curve, 
indicating a better balance between precision and recall. In 
contrast, other comparison methods are limited by the 
traditional K-Means' shortcomings and the base algorithm's 
inadequacies in feature association, which makes precise 
tracking difficult in complex multi-object scenarios. This 
further confirms the effectiveness of the improvements in 
bounding box handling and tracking algorithm enhancements 
in the proposed method. 

 
 

  
  

Figure 5. Video detection Figure 6. Object tracking detection 
 

  
1) YOLOv7 2) YOLOv8 

1014



  
3) YOLOv8+ traditional K-Means 4) The Proposed Method 

 
Figure 7. Ablation experiment results of the multi-object tracking method for traffic violation HD surveillance images (P-R 

Curve) 
 

 
1) YOLOv7                                              2) YOLOv8 

 
3) YOLOv8+ traditional K-Means              4) The Proposed Method 

 
Figure 8. Training process of the multi-object tracking method for traffic violation HD surveillance images 

 
As shown in Figure 8, the mAP@0.5 and mAP@0.8 curves 

of the training process demonstrate significant training 
advantages for the proposed method. In terms of convergence 
speed, the curve of the proposed method has a steeper upward 
slope, allowing it to quickly approach high mAP values in 
fewer iterations. In contrast, the curves for YOLOv7 and 
YOLOv8 rise more gradually, and even after 400 iterations, 
the final mAP values are still noticeably lower than those of 
the proposed method. Even YOLOv8 + traditional K-Means 
shows less improvement during training, highlighting the dual 
advantages of the proposed method in training efficiency and 

performance. Both mAP@0.5 and mAP@0.8 metrics show 
that the proposed method achieves higher precision in a shorter 
training cycle, validating the optimization effect of the 
improvement strategy on model training. A deeper analysis of 
the ablation experiment results shows that the advantages of 
the proposed method stem from the synergistic effect of the 
improved modules. On one hand, the improved K-Means 
neighbor algorithm optimizes the quality of YOLOv8 
bounding box generation, making the detection boxes more 
closely fit the target features and providing more precise input 
for subsequent tracking. On the other hand, the improved 
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DeepSORT algorithm enhances feature association and 
trajectory management in multi-object tracking, enabling the 
model to learn target motion patterns and appearance features 
more efficiently during training. In comparison, the base 
frameworks of YOLOv7 and YOLOv8 lack targeted 
optimization, and the limitations of traditional K-Means also 
restrict the improvement potential of the YOLOv8 + 

traditional K-Means method. The dual improvements in 
bounding box handling and tracking algorithms of the 
proposed method significantly enhance both model training 
convergence speed and final performance, fully validating the 
effectiveness and complementarity of the improvements in the 
ablation experiment. 
 

 
Table 1. PSNR and NC values of different watermarking techniques 

 
 PSNR NC 
 Traditional Proposed Traditional Proposed 

White Noise 45.2356 41.2356 1.1215 1.1021 
Gaussian Lowpass 36.2584 35.2016 0.9856 1.021 
JPEG Compression 41.2036 37.5269 0.9562 0.9752 

Shear 37.2356 35.2016 0.9874 1.0012 
Rotation 12.3205 12.3256 0.9236 0.9236 

White Noise 12.2658 12.0236 0.9125 0.9125 
 

Table 2. Correlation coefficients of extracted watermarks and original watermarked images under different optimal image signal 
forms 

 

Best Image Signal Form 4th Order Hadamard 
Matrix 

8th Order Hadamard 
Matrix 

16th Order Hadamard 
Matrix 

Best Binary Sequence 
Constructed 4th Matrix 

White Noise NC 0.9512 0.8845 0.9521 0.9541 
Gaussian Lowpass NC 0.9536 0.9326 0.8569 0.9452 
JPEG Compression NC 0.9684 0.8124 0.9841 0.9786 

Shear NC 0.9235 0.9236 0.9236 0.9235 
Rotation NC 0.7152 0.6659 0.9125 0.8562 

 
Table 1 shows the comparison of Peak Signal-to-Noise 

Ratio (PSNR) and Normalized Correlation (NC) values for 
different watermarking techniques under various attack 
conditions, comparing traditional watermarking techniques 
with the proposed DWT-SVD-based watermarking method. 
The data indicates that although traditional watermarking 
techniques achieve higher PSNR values under white noise 
interference (45.2356) compared to the proposed method 
(41.2356), the NC values of the proposed method are generally 
higher under other attack conditions, especially under 
Gaussian low-pass (1.021) and JPEG compression (0.9752), 
suggesting superior watermark integrity and robustness. In 
shear and rotation attacks, the NC values of the proposed 
method are 1.0012 and 0.9236, respectively, showing better 
resistance to attacks. Even with slightly lower PSNR, the 
proposed method still effectively maintains watermark 
correlation and detectability. The experimental results confirm 
that the DWT-SVD-based method exhibits higher robustness 
and reliability in constructing the judicial evidence chain for 
HD surveillance images, ensuring that more comprehensive 
and reliable evidence can be extracted for traffic violation 
handling. 

Table 2 displays the correlation coefficients (NC values) 
between the extracted watermark and the original 
watermarked image under different optimal image signal 
forms. From the data, it can be seen that under white noise 
attack, the best binary sequence constructed 4th matrix 
performs the best with a correlation coefficient of 0.9541, 
while the 16th-order Hadamard matrix also demonstrates high 
correlation (0.9521). Under Gaussian low-pass filter attack, 
the 4th-order Hadamard matrix (0.9536) and the best binary 
sequence constructed 4th matrix (0.9452) show better 
robustness. Under JPEG compression attack, the 16th-order 
Hadamard matrix achieves the highest correlation coefficient 
(0.9841), followed by the best binary sequence constructed 4th 

matrix (0.9786), indicating superior performance under 
compression. In shear attack, all matrices show relatively 
consistent correlation coefficients (around 0.9235), 
demonstrating uniform resilience. However, under rotation 
attack, the 16th-order Hadamard matrix performs well with a 
correlation coefficient of 0.9125, while the 8th-order 
Hadamard matrix shows the lowest correlation coefficient 
(0.6659). The analysis suggests that different optimal image 
signal forms exhibit varying performances under different 
attack types, emphasizing the importance of selecting 
appropriate signal forms to enhance watermark robustness. 
The best binary sequence constructed 4th matrix performs 
excellently under multiple attack conditions, especially white 
noise and Gaussian low-pass, proving its superiority in 
maintaining watermark integrity. Meanwhile, the 16th-order 
Hadamard matrix excels in JPEG compression and rotation 
attacks, showcasing its advantage in handling specific attacks. 
 
 
5. CONCLUSION 

 
This paper studied the application of HD image technology 

in traffic violation monitoring and judicial processing, 
proposing two main research contributions: first, an improved 
DeepSORT algorithm for multi-object tracking in traffic 
violation HD surveillance images, and second, a judicial 
evidence chain construction based on DWT-SVD. In terms of 
multi-object tracking, the improved DeepSORT algorithm, 
combining deep learning and traditional tracking methods, 
significantly enhances tracking accuracy and robustness in 
complex traffic environments, addressing the tracking loss and 
misjudgment problems encountered by traditional methods. 
For judicial evidence chain construction, the use of DWT and 
SVD technologies allows for multi-layer analysis and 
evidence extraction from HD surveillance images, greatly 
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enhancing evidence comprehensiveness and reliability, 
enabling efficient and accurate evidence collection and 
identification for traffic violations. 

Based on the research findings and results, the following 
conclusions can be drawn: through the improved DeepSORT 
algorithm and DWT-SVD technology, this paper effectively 
improves the performance of traffic violation monitoring 
systems and the reliability of judicial evidence, with 
significant practical application value. However, there are 
some limitations in the research process. First, the improved 
DeepSORT algorithm may still face challenges when handling 
extremely complex traffic environments. Second, the DWT-
SVD technology requires substantial computational resources 
and processing time for evidence chain construction. Future 
research directions may include further optimization of the 
DeepSORT algorithm to handle more complex environments 
and scenarios while reducing computational resource 
consumption. Additionally, more efficient image processing 
and watermark extraction techniques can be explored to 
enhance the speed and precision of evidence chain 
construction, providing more comprehensive and efficient 
technical support for traffic violation monitoring and judicial 
processing. 
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