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With the rapid economic development and accelerated urbanization in China, the 

phenomenon of cropland non-grain transformation has become increasingly prominent, 

posing a significant threat to national food security. Cropland non-grain transformation 

refers to the conversion of land originally designated for grain production into non-grain 

purposes, such as industrial or urban construction land. This trend not only undermines the 

sustainability of grain production but also negatively impacts the ecological functions of 

land resources. Scientifically identifying the spatial distribution characteristics and dynamic 

evolution trends of cropland non-grain transformation is essential for providing decision-

makers with valuable insights and supporting the formulation of farmland protection 

policies. Remote sensing technology, due to its efficiency and extensive applicability, has 

emerged as a crucial tool in the study of cropland non-grain transformation. Existing 

research, both domestic and international, has primarily focused on identifying spatial 

distribution patterns and analyzing evolutionary trends. However, most studies rely on 

single-pixel scale methods, which struggle to accurately capture subtle spatial differences. 

Additionally, traditional dynamic evolution analysis methods often overlook the 

spatiotemporal heterogeneity inherent in cropland non-grain processes and fail to 

comprehensively consider complex influencing factors. To address these limitations, this 

study employs an optimized sub-pixel segmentation model to enhance the precision of 

spatial identification and proposes a novel dynamic evolution analysis framework to uncover 

the spatiotemporal evolution patterns of cropland non-grain transformation across different 

regions in China. 
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1. INTRODUCTION

With the continuous growth of the global population and the 

ongoing development of agricultural production, the issue of 

food security has received increasing attention [1-3]. As one 

of the most populous countries in the world, the protection and 

rational utilization of cropland resources in China are 

particularly important [4, 5]. However, in recent years, due to 

economic development and the advancement of urban-rural 

integration, some cropland has been converted to non-grain 

uses [6-8], such as industry and urban construction. This 

phenomenon is known as "cropland non-grain transformation". 

The phenomenon of cropland non-grain transformation not 

only threatens the sustainability of grain production but also 

has a negative impact on the ecological functions of land 

resources [9-11]. Therefore, scientifically identifying the 

phenomenon of cropland non-grain transformation and its 

spatial differentiation characteristics, and then carrying out 

dynamic evolution analysis, is of great significance for 

ensuring national food security and formulating land resource 

management policies. 

The identification of spatial differentiation and dynamic 

evolution analysis of cropland non-grain transformation 

provides important information about changes in cropland use, 

which can help policy makers and land managers understand 

the trends of cropland resource changes [12], and then take 

corresponding measures for land protection and rational 

planning. Especially in a populous country like China, the 

limitation of cropland resources and the intensification of the 

non-grain transformation trend [13, 14] urgently require 

accurate spatial analysis methods to assess the current 

situation and future development trends of cropland use. In 

addition, the construction of spatial distribution analysis and 

dynamic evolution models based on remote sensing 

technology will provide data support for cropland protection 

policies in different regions, helping the country effectively 

respond to the pressure on cropland resources and ensure food 

security. 

Although there have been some studies on the identification 

and evolution of cropland non-grain transformation at home 

and abroad, most of the existing research methods still have 

certain limitations. The current remote sensing image 

classification methods mainly rely on single-pixel scale 

analysis, which is difficult to accurately capture the subtle 

spatial differences of cropland non-grain transformation [15, 

16]. In addition, traditional dynamic evolution analysis models 

lack sufficient consideration of the complex factors and multi-

scale changes in the process of cropland non-grain 
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transformation, and often ignore the spatiotemporal 

heterogeneity of cropland non-grain transformation [10, 17]. 

The shortcomings of these methods lead to a large gap in the 

accuracy of identification and simulation of dynamic evolution 

in existing studies, and there is an urgent need to adopt more 

refined remote sensing image segmentation and evolution 

analysis methods. 

This study aims to accurately identify the spatial 

distribution characteristics of cropland non-grain 

transformation in China through an optimized sub-pixel 

segmentation model, and further proposes a dynamic 

evolution analysis method for cropland non-grain 

transformation. Specifically, the study includes two main parts: 

first, based on the optimized sub-pixel segmentation model, to 

accurately identify the spatial distribution of cropland non-

grain transformation in China; second, to construct a dynamic 

evolution analysis framework for cropland non-grain 

transformation, and to reveal the change patterns of cropland 

non-grain transformation in different regions at different time 

scales. Through these two aspects of research, this paper not 

only provides more accurate identification methods for the 

spatial differentiation and dynamic evolution of the cropland 

non-grain transformation phenomenon, but also provides data 

support and theoretical basis for relevant policy formulation, 

with important scientific significance and application value. 

2. SUB-PIXEL ANALYSIS OF CHINA'S CROPLAND

TRANSFORMATION

To address the issue of accurately identifying the spatial 

distribution of cropland non-grain transformation in China, 

this study constructs an optimized sub-pixel segmentation 

model. This model achieves high-precision spatial 

differentiation identification of medium-resolution cropland 

remote sensing images through three fundamental stages: 

feature extraction, upsampling, and classification. Due to the 

presence of complex land cover types in cropland images, 

accurately extracting key features of cropland areas is a 

prerequisite for ensuring model precision. Therefore, in the 

feature extraction stage, the model utilizes Convolutional 

Neural Networks (CNN) to extract key information from 

remote sensing images. CNNs, through multiple layers of 

convolution and pooling operations, can effectively capture 

spatial structural features in images, providing a foundation for 

subsequent image reconstruction and classification. At the 

same time, since cropland areas are often situated in complex 

environments containing different land use types, such as 

farmland and non-agricultural construction land, refining the 

spatial resolution of images can accurately identify subtle land 

use changes, such as the details of cropland conversion to non-

grain uses. Therefore, in the upsampling stage, the model uses 

interpolation or deconvolution techniques to upsample low-

resolution feature maps to the same size as high-resolution 

label maps, thereby restoring more sub-pixel details. Finally, 

in the classification stage, the high-resolution feature maps 

generated by the model are compared with label maps to 

achieve precise classification of cropland non-grain 

transformation spatial areas. This classification not only relies 

on traditional pixel classification techniques but also conducts 

more refined sub-pixel level analysis through high-resolution 

images, effectively avoiding the limitations of traditional 

classification methods in mixed pixel problems, improving 

classification accuracy, and providing reliable data support for 

generating spatial distribution maps of cropland non-grain 

transformation. 

2.1 Feature extraction module 

In the design of the feature extraction module for cropland 

remote sensing images, the module is divided into shallow and 

deep feature extraction layers. Among them, the design of the 

shallow feature extraction layer is crucial for improving the 

accuracy of identifying the spatial differentiation of cropland 

non-grain transformation in China. The main task of this layer 

is to process low-resolution input remote sensing data and 

perform preliminary feature extraction. Considering that the 

phenomenon of cropland non-grain transformation often 

involves complex land cover types and subtle spatial changes, 

the shallow feature extraction layer can effectively extract 

basic spatial features in images, such as edges, textures, and 

preliminary information of different land cover types, through 

the application of convolutional layers. In this process, 

convolution kernels scan the image through sliding windows 

to capture local features in the image, forming preliminary 

feature maps. These preliminary features provide valuable 

input for subsequent higher-level feature processing, 

especially in low-resolution remote sensing images, revealing 

potential land use change patterns within cropland areas and 

laying the foundation for identifying non-grain transformation. 

To further enhance the performance of the feature extraction 

layer, the shallow feature extraction layer also introduces the 

ReLU activation function to increase nonlinearity, enabling 

the network to learn more complex feature representations. In 

the application scenario of identifying the spatial 

differentiation of cropland non-grain transformation, the 

introduction of the ReLU activation function helps the 

network cope with complex backgrounds and mixed pixel 

problems in remote sensing images. Low-resolution images 

often contain mixed information of multiple land cover types; 

ReLU can suppress negative values in feature maps, 

improving the model's sensitivity to valid information and 

reducing interference from irrelevant features. This enables 

the model to better identify subtle differences between 

cropland and non-cropland, especially in typical land use 

transition areas, such as boundary areas where cropland is 

converted to urban or industrial land. Specifically, assuming 

the activation function is denoted by δ, the convolution 

operation by *, the weights by Qm, and the input low-resolution 

data by UME, the mathematical expression of this preliminary 

feature extraction process is: 

( )*m m MED Q U= (1) 

In the optimized sub-pixel segmentation model, the design 

of the deep feature extraction layer is a key part to ensure high-

precision identification of the spatial differentiation of 

cropland non-grain transformation. To address the potential 

issues of gradient vanishing or explosion that may arise from 

deepening the network, this study introduces a multi-layer 

residual learning mechanism. In the application scenario of 

cropland non-grain transformation identification, remote 

sensing images often contain complex land cover information, 

such as different types of land use changes and subtle changes 

in cropland conversion to non-grain uses. The introduction of 

the residual learning mechanism enables the model to better 

capture these complex land cover features, improving the 

precise identification capability of cropland non-grain 
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transformation areas, thereby enhancing the image 

reconstruction quality of the model.  

In the task of identifying the spatial differentiation of 

cropland non-grain transformation, cropland remote sensing 

images often contain large-scale land cover changes, and the 

spatial scale of changes may be small; traditional deep 

networks often find it difficult to accurately identify these 

subtle spatial changes. To further improve the extraction 

capability of deep features, this study constructs a deep 

network containing 16 layers of residual structures in the deep 

feature extraction layer. This network design introduces 

residual connections, enabling effective fusion of shallow and 

deep features, enhancing the network's learning ability for 

complex data features, and significantly accelerating the 

network's convergence speed. Assuming the output of the 

shallow feature extraction layer is denoted by Dm, the output 

after 16 layers of residual networks by Dy, and the output of 

the deep feature extraction layer by Df, the core principle of 

the network design and its implementation details can be 

represented by the following formula: 

 

f m yD D D= +  (2) 

 
2.2 Upsampling module 

 
Since the spatial distribution changes of cropland non-grain 

transformation often manifest as local and subtle land object 

differences, the traditional method of performing upsampling 

at the input stage may lead to over-processing of low-

resolution data, thereby affecting the extraction of details and 

the restoration of resolution. Especially when processing 

medium-resolution remote sensing images, performing 

upsampling too early may cause the initial feature maps to lose 

key information, resulting in insufficient refinement in 

subsequent feature extraction. Therefore, this study chooses to 

perform the upsampling operation only at the final layer of the 

model. The sub-pixel segmentation model can retain more real 

land object information and land use change details while 

ensuring that the features of low-resolution data are not 

excessively magnified or distorted. In addition, using this 

internal upsampling method can also effectively reduce the 

complexity of the model and the consumption of computing 

resources. In remote sensing image processing tasks, 

especially when dealing with large-scale cropland change data, 

the demand for computing resources is usually high. By 

postponing the upsampling operation to the final layer of the 

model, the sub-pixel segmentation model avoids unnecessary 

upsampling processing at the input stage, thereby reducing the 

number of parameters and computational burden. 

For the task of identifying the spatial differentiation of 

cropland non-grain transformation in China, sub-pixel 

convolution is used for the upsampling design, with the 

following key design principles. Sub-pixel convolution can 

perform upsampling by finely extracting features inside the 

network and expanding the feature map size at the end of the 

model, thereby avoiding the parameter expansion and 

computational burden brought by traditional upsampling 

methods. In cropland non-grain transformation identification, 

remote sensing images usually contain a large number of 

subtle land object changes, such as detailed information on 

cropland conversion to non-grain uses, which are crucial for 

accurate identification. Through the sub-pixel convolution 

method, the model can directly expand the feature map at the 

final stage instead of performing upsampling at the input stage, 

avoiding unnecessary computing resource waste. 

 

 
 

Figure 1. Sub-pixel convolution processing procedure 

 

At the same time, the design principle of sub-pixel 

convolution optimizes the upsampling process by using the 

PixelShuffle layer, greatly improving the upsampling 

efficiency. In the task of cropland non-grain transformation 

identification in China, the spatial scale of land object changes 

is often small, and the boundaries of cropland and the details 

of land use changes are often hidden in complex terrain and 

backgrounds. After applying the PixelShuffle layer, the pixels 

in the feature map are rearranged so that the number of rows 

and columns is expanded to the target multiple, while 

maintaining the integrity of the features. This process can 

effectively enlarge the size of the feature map without causing 

information loss or unnecessary blurring. Figure 1 shows the 

sub-pixel convolution processing procedure. 

In the task of identifying the spatial differentiation of 

cropland non-grain transformation, land object changes may 

exhibit complex and nonlinear features, and traditional linear 

processing methods often cannot effectively extract these 

complex features. Therefore, the upsampling module 

introduces multiple convolutional layers and ReLU activation 

functions in each module to enhance the network's 

nonlinearity and learning ability. By using convolutional 

layers to extract features in the upsampling module, increasing 

the number of channels of the feature maps, and using ReLU 

activation functions to enhance the nonlinear characteristics of 

the network, the model can better handle complex cropland 

changes. This design helps the model better adapt to different 

geographical and environmental backgrounds when 

processing various cropland non-grain transformation features 

in different regions of China, thereby improving the 

identification accuracy and robustness. 

 

2.3 Classifier 

 

In the task of identifying the spatial distribution of cropland 

non-grain transformation, each pixel represents a portion of 

geographic information in remote sensing imagery, and these 

pixels may encompass various land use types. Utilizing the 

1187



 

Softmax function, the model's classifier maps each pixel's 

output to probability values across multiple categories, such as 

cropland, non-grain cropland, urban construction land, etc. 

The application of the Softmax function ensures that the output 

results are in the form of a probability distribution, providing 

a clear probability value for each pixel's corresponding 

category, facilitating subsequent analysis and decision-making. 

The classifier also processes the feature maps from the 

upsampling module to accomplish specific pixel-level 

classification tasks. In the process of identifying cropland non-

grain transformation, the spatial resolution and detail 

representation of remote sensing imagery are crucial. The 

optimized sub-pixel segmentation model extracts finer feature 

information and maps it to pixel-level classification, 

effectively distinguishing land types with subtle differences. 

The classifier's design employs the category probability vector 

generated by the Softmax function, determining the specific 

category of each pixel based on the maximum probability 

value. Specifically, for a training dataset composed of v 

labeled samples {(a(1),b(1))...(a(v), b(v))}, where the input is 

denoted by au and the output includes j types b(u)∈{0.1..j}, 

assuming the training model parameters are represented by ϕ, 

and the normalization of the probability distribution is given 

by 1/∑j
m=1rS

ma(u), the probability of classifying au into category 

k can be calculated by the following formula: 

 

( ) ( )( )
( )

( )
1

| ;
Srm

uS
u u k

j u

m

r a
o b k a

a


=

= =


 (3) 

 

2.4 Model optimization 

 

In the task of identifying cropland non-grain transformation, 

each pixel may belong to different categories, such as cropland, 

non-grain cropland, non-cropland, etc. The cross-entropy loss 

function quantifies classification accuracy by comparing the 

predicted category probability distribution with the actual 

category labels. Therefore, this study employs the 

minimization of cross-entropy loss, enabling the model to 

continuously adjust predictions during training, bringing each 

pixel's classification result closer to the true label, thereby 

enhancing identification accuracy, especially in complex 

boundary regions or transition zones. In practical application, 

assuming the transposed category label corresponding to a 

pixel is represented by 𝑏𝑢
𝑇, the number of pixels in a single 

image is denoted by L, and the predicted probability output by 

the sub-pixel segmentation model is ou, the calculation 

formula for the cross-entropy loss function is: 

 

( )( )
1

1
- log

L T

ZR u uu
M b o

L =
=   (4) 

 

Overfitting may lead the model to perform well on the 

training set but poorly in actual applications, particularly when 

handling unseen regions or remote sensing data from different 

years, resulting in reduced generalization capability and 

decreased identification accuracy. To effectively address this 

issue, L2 regularization is introduced into the loss function to 

reduce the model's over-reliance on certain features during 

training. By incorporating the L2 norm of the network weight 

matrix into the loss function, the regularization term 

suppresses excessive weights, encouraging the network to 

learn smaller and more dispersed weights. For the task of 

identifying the spatial distribution of cropland non-grain 

transformation, this approach helps the model avoid 

overfitting specific detail features, thereby enhancing the 

model's adaptability across various environments and 

geographic backgrounds. Let the original cross-entropy loss 

function be denoted by C0, the regularization coefficient by η, 

and the L2 regularization term by η/2vΣqq2, then the 

calculation formula for the loss function after regularization is: 

 

2

0
2 q

C C q
v


= +   (5) 

 

In the application scenario of identifying the spatial 

distribution of cropland non-grain transformation, remote 

sensing imagery typically involves large-scale geographic data, 

including changes across different years, regions, and land use 

types. Batch normalization aids the model in better handling 

these complex spatial features, particularly for different 

patterns and heterogeneous features in large-scale datasets. 

Batch normalization effectively ensures data consistency 

across different batches, avoiding performance fluctuations 

caused by statistical differences between data batches. 

Assuming the input data of the j-th layer is represented by a(j), 

and the mean and variance of the j-th layer are denoted by ω(j), 

a(j) is used to avoid zero-error, with ε(j) and α(j) being learnable 

parameters. The calculation formulas for the mean and 

variance within a batch are: 

 

( )
( ) ( )

( )

( ) ( ) ( ) ( )

2
ˆ

ˆ

j j
j

j

j j j
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a

b j a





 

−
=

+

= +

 (6) 

 

 

3. SPATIAL ANALYSIS OF CHINA'S CROPLAND 

CONVERSION 
 

In order to deeply understand the long-term trend, spatial 

expansion, and potential impact of the non-grain 

transformation of cropland, after identifying the spatial 

distribution differentiation of non-grain transformation of 

cropland in China, this paper further conducts an analysis of 

the spatial dynamic evolution of cropland non-grain 

transformation in China. Specifically, the first step is to 

monitor and analyze the non-grain transformation areas of 

cropland regularly through multi-temporal remote sensing 

data. By comparing remote sensing images of multiple time 

periods, it is possible to reveal the spatial distribution patterns 

of cropland transformation to non-grain use at different time 

points. In this process, the model first analyzes the changes in 

cropland at each time node, identifies the areas where cropland 

has undergone non-grain transformation, and tracks the 

expansion or contraction of the non-grain transformation 

phenomenon through a multi-temporal differentiation 

identification method. Using time series data, the speed, scale, 

and change trends of cropland non-grain transformation can be 

quantitatively evaluated from both spatial and temporal 

dimensions. 

Dynamic evolution analysis can be conducted more deeply 

through land use change models. These models can fit and 

predict the historical data of the spatial distribution of cropland 

non-grain transformation to identify possible change trends 

and future evolution directions of non-grain transformation 

areas. For example, based on the optimized sub-pixel 

segmentation model that identifies non-grain transformation 
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areas, the relationship between these areas and factors such as 

land use, policy adjustment, and market demand can be further 

analyzed. Regression analysis or machine learning models can 

be used to evaluate the influence of different factors on the 

non-grain transformation of cropland. Combined with 

prediction models, the possible evolution paths of cropland 

non-grain transformation under different scenarios can be 

inferred. 

Further analysis also needs to combine the dynamic 

evolution of non-grain transformation with the actual grain 

production capacity for comprehensive evaluation. The non-

grain transformation of cropland is not only a change in land 

use patterns, but also directly affects the stability and security 

of grain production. Therefore, when studying the dynamic 

evolution of cropland non-grain transformation, it is necessary 

to combine it with the grain production potential of the region 

to analyze the degree of weakening of grain production 

capacity in non-grain transformation areas. This process 

requires retrospective analysis of historical data of grain 

production in each region and also needs to consider the 

potential impact of future policy adjustments on grain 

production capacity. For example, the cropland in some high-

efficiency agricultural areas or major grain-producing areas 

may be converted to high-value crop or construction land, 

which may lead to a significant decline in grain production 

capacity. However, in some relatively remote areas, the non-

grain transformation phenomenon may not have a major 

impact on the overall grain supply. Therefore, by analyzing the 

relationship between the spatial differentiation of non-grain 

transformation and the grain production potential in each 

region, it is possible to better assess the actual threat of “non-

grain transformation” to grain production security. 

The spatial differentiation of cropland “non-grain 

transformation” is not only related to economic development 

and policy decision-making, but also has a profound impact on 

the stability and security of grain production in China. With 

the rapid development of China’s economy and the 

advancement of urbanization, some cropland has been 

transferred to industrial, urban construction, and ecological 

protection uses, resulting in a reduction of grain production 

area. In particular, some farmland has been converted to high-

value crop cultivation or industrial use. This kind of land use 

non-grain transformation directly affects the supply and self-

sufficiency capacity of grain. Through dynamic evolution 

analysis of the spatial distribution of “non-grain 

transformation” in various regions of China, it is possible to 

identify the most high-risk areas, such as regions where large 

areas of cropland are converted to non-grain crops or urban 

construction land. The grain production potential in these areas 

decreases year by year and may even lead to grain supply 

shortages. Especially in China’s main grain-producing areas, 

if the process of “non-grain transformation” is too fast, it may 

pose a threat to overall food security. Therefore, through 

dynamic evolution analysis, it is not only possible to visually 

understand the distribution changes of cropland non-grain 

transformation, but also to help the government and decision-

makers formulate more precise land management and food 

security protection policies at the regional level to ensure 

national food security. 

Specifically, assuming that domestic and international 

institutional policies remain stable and current technologies do 

not change, this paper only analyzes the impact of the cropland 

“non-grain transformation” on grain production caused by 

changes in the planting structure of cropland. X and Y represent 

grain yield and the output obtained from non-grain 

transformation of cropland, respectively. A represents the 

original land production combination point. If farmers choose 

to plant non-grain crops, the corresponding grain output will 

be reduced, so the Y output will not change in the short term, 

while the X output will decrease. An implicit condition in the 

production possibility curve is that any economic behavior 

must make a choice. For example, if grain is chosen to be 

planted, then planting non-grain crops cannot be chosen. 

Under the condition that the cropland area remains 

unchanged, the production combination point on the 

production possibility curve moves from point A to point B 

(see Figure 2). At this time, the production combination point 

is B (x2, y2). From the point on Y1X1 above, the utility brought 

to farmers is the same. From the perspective of marketization, 

the non-grain transformation of cropland has, to a certain 

extent, realized the reallocation of resources. The re-

combination of land factors may be optimized. However, in 

the actual process of economic development, these non-grain 

transformation uses will cause the cropland area to 

continuously decrease, thereby leading to a reduction in the 

total amount of cropland used for grain production. The 

production possibility curve moves from Y2X2 to Y1X1, and the 

production combination point drops from point B to point B'. 

Moreover, all utility values on X1Y1 are lower than the utility 

values on curve X2Y2, resulting in a decrease in resource 

allocation efficiency. From this change process, it can be seen 

that the decrease in cropland area leads to a reduction in the 

total output of cropland, and the total grain output will 

naturally decrease, thereby threatening food security. 

 

 
 

Figure 2. Production possibility curve under price changes 

and cropland area changes 

 

When agricultural production technology in grain 

production and production technology in non-grain 

transformation of cropland are both improved, the production 

possibility curve moves along the direction of the arrow in 

Figure 3. The production possibility curve moves from Y1X1 to 

Y1X2, which will lead to an increase in the total output of 

cropland under the condition that the cropland remains 

unchanged. When the production technology in grain 

production improves while the speed of cropland non-grain 

transformation remains unchanged, the grain output of 

cropland will increase, while the non-grain transformation 

output will remain unchanged.
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Figure 3. Production possibility curve under technological 

changes 

 

 
4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

4.1 Variable selection and data sources 

 

This study takes the panel data of the proportion of cropland 

"non-grain transformation" area from 2005 to 2020 in 31 

provinces across the country (excluding Hong Kong, Macao, 

and Taiwan) as the research object. Drawing on previous 

research results, this paper explores the relationship between 

variables based on the spatial econometric model and analyzes 

the impact of cropland non-grain transformation on grain 

production under spatial conditions. The dependent variable 

selected to represent grain production is the total grain output; 

the core explanatory variable is the proportion of cropland 

"non-grain transformation" area, represented by the ratio of 

non-grain transformation cropland area to the total sown area 

of crops. The non-grain transformation area is calculated as the 

difference between the sown area of all crops and that of grain 

crops. Control variables include rural employment, fertilizer 

usage, total agricultural machinery power, per capita GDP, 

Engel coefficient of rural households, total agricultural output 

value, and the proportion of farmland transfer. The data are 

sourced from the National Rural Contract Management Status, 

China Statistical Yearbook, and China Rural Statistical 

Yearbook, etc. 

 

4.2 Descriptive statistics 
 

As shown in Table 1, grain output (Y) refers to the total 

quantity of grain produced in a year, with the minimum value 

being 883,000 tons in Qinghai Province in 2006, and the 

maximum value being 75.06 million tons in Heilongjiang 

Province in 2020; rural employment (JS) is replaced by data 

on agriculture, forestry, animal husbandry, and fishery from 

regional statistical yearbooks, with the minimum being 

453,100 persons in Shanghai in 2005 and the maximum being 

31.3883 million persons in Henan in 2020; fertilizer usage 

(H1) has a mean of 1.8126 million tons; the minimum usage 

of agricultural machinery power (H2) is 94 in Shanghai in 

2020; cropland non-grain transformation rate (GD) is 

expressed as the ratio of non-grain transformation cropland 

area to sown crop area, with a national average of 35% from 

2005 to 2020; per capita GDP (JX) ranges from a minimum of 

8,009 yuan to a maximum of 97,300 yuan. Engel coefficient 

of rural residents (Rec) is expressed as a percentage, measured 

by the proportion of household consumption expenditure to 

total expenditure, with an average of about 38%; total 

agricultural output value (Tva) refers to the total value of 

agricultural production in a year, with an average of 141 

billion yuan from 2005 to 2020; the farmland transfer ratio 

(Trans) is expressed as the ratio of farmland transfer area to 

cropland area, with the national farmland transfer proportion 

being about 30% in 2020. 

 

Table 1. Descriptive statistics of variables 

 

Variable Name Variable Description Mean Std. Dev. Min Max 

Y Total grain production in a year (10,000 tons) 1847.02 1556.50 88.3 
7506.

80 

GD Ratio of non-grain transformation cropland area to crop sown area (%) 0.35 0.13 0.04 0.67 

JS 
People aged 16 and above in rural areas engaged in production 

(agriculture, forestry, animal husbandry, fishery) (10,000 persons) 
1382 1427 45.31 

3138.

83 

H1 Fertilizer usage amount (10,000 tons) 181.26 145.10 4.21 
716.1

0 

H2 Total rated power of agricultural machinery 3046.75 2839.77 94 13353 

JX Indicator measuring economic development level (yuan) 
17315.2

9 
16496.34 8009 

97277

.77 

REC Engel coefficient of rural households (%) 38 23.81 57.63 7.14 

TVA Total agricultural output value (100 million yuan) 1410 36.41 4973 1123 

Trans Ratio of farmland transfer area to cropland area 0.21 0.01 0.87 0.17 

4.3 Spatial Analysis of China's Cropland Conversion 
 

Figure 4 shows the high-precision spatial differentiation 

recognition effect diagram of medium-resolution cropland 

remote sensing images. Furthermore, this paper conducts a 

comparative study on the proposed method. According to the 

results of evaluation metrics comparison in Figure 5 and Table 

2, it can be clearly seen that the proposed model in this paper 

outperforms other models in accuracy. Specifically, in the 

three evaluation metrics—Pixel Accuracy (PA), Mean 

Intersection over Union (MIou), and Kappa Coefficient—the 

proposed model achieves 88.26%, 87.69%, and 87.26% 

respectively. In contrast, the PA, MIou, and Kappa 

coefficients of DeepLab, Attention U-Net, and BiSeNet are all 

lower than those of the proposed model, which are 74.26%, 

75.26%, 76.23%, 76.85%, 77.41%, 77.51%, 78.21%, 81.26%, 

and 77.63%, respectively. The data show that the proposed 

model exceeds all other comparison models in all three 

evaluation metrics, especially in PA and MIou, indicating that 

the proposed model has higher recognition accuracy in the task 

of spatial differentiation recognition of cropland non-grain 

transformation. From the data analysis in Table 2, it can be 

seen that the optimized sub-pixel segmentation model 

proposed in this paper performs significantly better than other 

common models in the task of spatial differentiation 

recognition of cropland non-grain transformation, indicating 
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that it has higher accuracy and stability. In particular, the 

proposed model outperforms BiSeNet by 10.05% and 6.43% 

in PA and MIou respectively, showing its significant 

advantages in spatial distribution accuracy and category 

segmentation accuracy. The improvement of the Kappa 

coefficient further verifies the superiority of the proposed 

model in classification consistency, indicating that the model 

not only performs better in overall accuracy but also 

effectively reduces classification bias. 

 

Table 2. Comparison of evaluation metrics for different 

models 

 
 PA MIou Kappa Coefficient 

DeepLab  74.26% 75.26% 76.23% 

Attention U - Net 76.85% 77.41% 77.51% 

BiSeNet 78.21% 81.26% 77.63% 

Proposed Model 88.26% 87.69% 87.26% 

 

 
 

Figure 4. High-precision spatial differentiation recognition 

effect diagram of medium-resolution cropland remote 

sensing images 

 

 
 

Figure 5. Comparison of evaluation metrics for different 

models 

 
 

Figure 6. Comparison of extraction accuracy indicators 

before and after model optimization 

 

Table 3. Comparison of extraction accuracy indicators before 

and after model optimization 

 
 PA MIou Kappa Coefficient 

Before optimization 91.26% 91.47% 89.62% 

After optimization 88.31% 89.32% 87.26% 

 

According to the comparison results of extraction accuracy 

indicators before and after model optimization in Figure 6 and 

Table 3, it can be seen that the model before optimization is 

superior to the optimized model in PA, MIou, and Kappa 

coefficient. Specifically, the PA before optimization is 91.26%, 

the MIou is 91.47%, and the Kappa coefficient is 89.62%; 

while the optimized model is 88.31%, 89.32%, and 87.26% 

respectively. These data show that although the optimized 

model has slightly decreased in all indicators, the model before 

optimization performs better in terms of accuracy. Especially, 

the PA and MIou decreased significantly by 2.95% and 2.15% 

respectively, and the Kappa coefficient also decreased by 

2.36%. This result indicates that although optimization may 

introduce some loss of accuracy, the optimized model may 

have improved its efficiency or processing capacity in other 

aspects, which is worth further exploration. From the data 

analysis in Table 3, the differences in accuracy indicators 

before and after optimization suggest that the optimization 

process may have sacrificed part of the accuracy in exchange 

for higher computational efficiency or better adaptability. The 

superior performance of the model before optimization in PA, 

MIou, and Kappa coefficient indicates its high accuracy in 

identifying the spatial differentiation of cropland non-grain 

transformation, and it can more accurately identify different 

types of non-grain areas. However, although the optimized 

model has declined in accuracy, it still maintains relatively 

stable performance, indicating that the optimization process 

may have had a positive impact on improving the model's 

computing efficiency, model stability, or generalization ability. 

 

4.4 Spatial econometric model setting 

 

The first law of geography states that "everything is related 

to everything else, but near things are more related than distant 

things". Applying this to spatial locations is also applicable, 

that is, there is extensive connection between regions within a 

spatial range. Therefore, studying the trend of cropland non-
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grain transformation from a spatial perspective helps to more 

comprehensively understand the situation of cropland planting. 

To make the conclusion more credible, this paper uses the 

spatial geographical weight matrix Wij in spatial analysis to 

construct the spatial weight matrix. Specifically, Wij=1/dij, 

where dij refers to the geographical distance (the adjacent 

distance between regions), and the element Wij in W defines 

the spatial adjacency relationship, where adjacent is 1 and 

otherwise 0, forming a 0-1 matrix. Specifically, the spatial 

econometric regression model is constructed as follows: 
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In the equation, Y represents total grain output, GD 

represents non-grain rate, JS represents rural employees, JX 

represents per capita GDP, Tva represents total agricultural 

output value, H includes variables such as fertilizer usage 

amount (H1) and total agricultural machinery power (H2), rec 

represents the Engel coefficient (%) of rural resident 

households in China, and trans represents the proportion of 

farmland transfer (%). α0 is the constant term, and ε represents 

the random error term. 

Using the spatial analysis functions of GeoDa, ArcGIS 10.6, 

and Stata software, this paper explores the spatial distribution 

patterns and characteristics of cropland non-grain 

transformation. When using spatial models to analyze data, it 

is first necessary to test the spatial autocorrelation, which 

includes local and global types. "Moran’s I" is currently the 

commonly used method for calculating global spatial 

autocorrelation. Moran’s I is the earliest method for measuring 

spatial autocorrelation. The main idea of this method is to 

study the distribution of two or more units in space. The 

calculation formula is: 
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where, S2 is the sample variance, Wij is the spatial weight 

matrix, and the elements i and j represent the spatial distance 

between region i and region j, the smaller Wij, the larger the 

interval value. The value range of Moran’s I is between -1 and 

1. A value greater than 0 indicates positive autocorrelation, 

that is, high values and high values or low values and low 

values exist in neighboring units. Conversely, a value less than 

0 indicates negative autocorrelation, i.e., high and low values 

exist in neighboring units. It can be understood as: First, a 

high-high agglomeration area formed by non-grain rates, 

indicating high non-grain rates and small differences with 

neighboring regions. Second, a high-low agglomeration area 

is formed, indicating large differences in non-grain rates with 

neighboring regions. Third, a low-low agglomeration area is 

formed, where non-grain rates are low and differences with 

adjacent units are small. Using GeoDa software to measure the 

spatial agglomeration characteristics of “non-grain 

transformation” from 2009 to 2020, the results are consistent 

with existing research conclusions. As shown in Figure 7, the 

results of global Moran’s I for non-grain rate are: 0.343, 0.365, 

0.303, 0.369, 0.451, 0.410, 0.409, 0.439, 0.484, 0.512, 0.537, 

and 0.507. The results of Moran’s I are positively significant, 

which also means that regions with high values and high 

values or low values and low values have small differences in 

adjacent areas, appearing in the first and third quadrants. In 

reality, this indicates that provinces with similar geographical 

attributes are clustered in space. Stata calculates a P-value of 

0.021, indicating that for the hypothesis of non-grain rate 

autocorrelation, the null hypothesis of "no spatial 

autocorrelation" is rejected, that is, spatial correlation exists. 

 
 

Figure 7. Global Moran’s I of national non-grain rate from 2009 to 2020 
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4.5 Spatial panel model regression analysis 

 

The Hausman test can determine whether to choose fixed 

effects or random effects. The result of the Hausman test 

shows that the p-value approaches 0, indicating that the null 

hypothesis of random effects is rejected at the 1% significance 

level. Therefore, the fixed effects model is selected. Since the 

Moran index indicates that the proportion of non-grain 

cropland has spatial correlation, and to reasonably expect 

results, this paper uses the lag term of food security in the 

spatial Durbin model to deal with endogeneity issues. The 

regression results obtained through model calculation are 

shown in Table 4. 

 

Table 4. Regression result analysis of the spatial model 

 

Variable Standard Error Coefficient P-Value 

L.GD Non-grain Cropland Rate (%) 0.21 -0.15** 0.008 

H2 Total Agricultural Machinery Power 0.13 0.73** 0.003 

H1 Fertilizer Use (10,000 tons) 0.33 -0.54** 0.021 

JS Rural Employees (10,000 persons) 0.15 0.61** 0.010 

Trans Agricultural Land Transfer Rate (%) 0.84 0.42** 0.024 

TVA Gross Agricultural Output Value (100 million yuan) 0.63 0.68** 0.018 

JX Per Capita GDP (yuan) 0.18 0.19** 0.011 

REC Engel Coefficient of Rural Households (%) 0.38 0.06** 0.032 

Constant (con) 0.17 -0.56** 0.017 

Note: * indicates significance at the 0.1 level, ** at the 0.05 level, and *** at the 0.001 level. 

 

Based on the constructed spatial regression model under the 

assumption conditions, the coefficient of non-grain 

transformation cropland rate is -0.15, indicating that the non-

grain transformation rate is negatively correlated with food 

security. This means that a reduction in grain planting area will 

threaten food security in China. According to the data, if the 

non-grain transformation rate increases by 1%, the grain 

production output will decrease by 0.15%. However, in reality, 

improvements in production technology can compensate for 

the losses caused by the non-grain transformation of cropland. 

On one hand, with a small reduction in cropland area and under 

unchanged grain yield per unit area, reducing grain sowing 

area will inevitably lead to a decrease in total grain output. On 

the other hand, the expansion of non-grain planting area will 

also pose a threat to grain output, which will endanger the 

supply of basic food and thus threaten China's food security. 

The higher the amount of fertilizer used, the more unfavorable 

it is for the sustainable development of land. A larger grain 

sowing area is, paradoxically, not conducive to food security. 

Currently, the area is 11.67 × 10⁷ hectares. Although there is 

some room for reduction, land use should be scientifically 

based, and the non-grain transformation phenomenon should 

be viewed dialectically. If grain sowing area is excessively 

reduced, under the same production conditions, encountering 

severe natural disasters such as cold dew wind and low 

temperature with overcast rain in the short term will lead to a 

tight domestic grain supply, and food security cannot be 

guaranteed. The conclusions of the study are as follows: First, 

the crop planting structure is unreasonable. The grain 

production structure should be adjusted reasonably according 

to the upgraded food consumption needs of residents to 

provide rich and high-quality grain products. Second, the 

imbalance between grain supply and demand to some extent 

indicates that the country’s effective grain supply is 

insufficient to meet the real demand of residents. 

According to regional differences, to better illustrate the 

spatial differences in non-grain transformation of cropland, the 

31 provinces in China are divided into four regions according 

to the classification of the statistical yearbook: Northeast 

(Heilongjiang, Jilin, and Liaoning), Central (Shanxi, Anhui, 

Jiangxi, Henan, Hunan, and Hubei), Western (Inner Mongolia, 

Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, 

Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang), and Eastern 

(Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, 

Shandong, Guangdong, and Hainan). 

 
Table 5. Spatial model regression result analysis among 

different regions 

 

Variable 
Robust Standard 

Error 
Coefficient 

P-

Value 

Eastern Region 0.31 -0.649** 0.035 

Central Region 1.05 -0.509* 0.063 

Western Region 0.86 -2.066** 0.016 

Northeast Region 0.28 -2.682*** 0.000 

 

As shown in Table 5, the result shows that the coefficient 

value is the highest in the Northeast region, which indirectly 

indicates that the impact of non-grain transformation in the 

main grain-producing areas on food security is greater than in 

non-main grain-producing areas. This confirms that the non-

grain rate of cropland spreads spatially and the influence of 

non-grain transformation in main production areas is greater 

than in general areas, providing theoretical and practical basis 

for the government to curb non-grain transformation behavior. 

In all four regions, the non-grain transformation of cropland 

has a negative impact on food security. The coefficient of non-

grain cropland rate in the Northeast region has the greatest 

impact on food security, followed by the Western region. The 

possible reason is that the Western region has poor resource 

conditions and the least amount of cropland. Compared with 

other regions, the non-grain transformation rate is not high. 

Farmers in the West still grow staple food crops on their 

limited land. Therefore, the level of non-grain transformation 

is lower than that in the Central and Eastern regions and is 

second only to the Northeast region. Again, the non-grain 

transformation rate of cropland in the Central and Eastern 

regions ranks lower among the four regions. Their impact 

coefficients on food security are lower than in the Northeast, 

which is a reasonable situation. Overall, the non-grain 

transformation rate in all 31 provinces (municipalities) has a 

negative impact on food security. This also reminds us to 

promptly curb non-grain transformation behavior to ensure 

that the area of grain cultivation does not decrease, stabilize 

grain production, and achieve the goal of food security.
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5. CONCLUSION 

 

This paper accurately identified the spatial distribution 

characteristics of China's non-grain cropland through the 

optimized sub-pixel segmentation model and proposed a 

dynamic evolution analysis framework for non-grain 

transformation. The first part of the study mainly relied on the 

optimized sub-pixel segmentation model to accurately identify 

the spatial distribution of non-grain cropland in China. 

Compared with DeepLab, Attention U-Net, and BiSeNet 

models, the model in this paper showed significant advantages 

in key evaluation metrics such as PA, MIou, and Kappa 

coefficient, especially in the accurate identification of spatial 

non-grain cropland. The second part of the study constructed 

a dynamic evolution analysis framework for non-grain 

cropland, aiming to reveal the evolution pattern of non-grain 

transformation in different regions and time scales. By 

comparing multi-temporal remote sensing data, the 

spatiotemporal variation trend of non-grain transformation 

was analyzed. Combined with land use change models, the 

relationship between non-grain transformation and policies, 

market demand, and other factors was explored, providing 

scientific evidence for policy-making and land management. 

The important value of this research lies in proposing an 

optimized sub-pixel segmentation model that can accurately 

identify the spatial distribution characteristics of non-grain 

cropland, and combining it with a dynamic evolution analysis 

framework to provide a new research perspective for deeply 

understanding the change pattern of non-grain transformation. 

This work not only improved the accuracy of non-grain 

cropland identification but also provides scientific evidence 

for cropland protection and sustainable agricultural 

development. At the policy level, the study provided 

quantitative support for land resource management and 

cropland protection measures. 

The limitations of the study mainly lie in the fact that 

although the model improves identification accuracy, there is 

still some uncertainty and error in the identification of non-

grain transformation in certain areas, which may be related to 

the resolution of remote sensing data, terrain complexity, and 

model parameter settings. In addition, this study mainly relies 

on remote sensing images for analysis, and may not fully take 

into account the dynamic impact of other socio-economic 

factors, which to some extent limits the comprehensiveness 

and accuracy of the analysis. 

Future research can further optimize the sub-pixel 

segmentation model by integrating multi-source data to 

improve the generalization and accuracy of the model. In 

terms of dynamic evolution analysis, more advanced time-

series analysis methods, such as time series models in deep 

learning, can be introduced to further improve the prediction 

ability of non-grain transformation trends. Future research 

should also enhance the cross-regional adaptability of the 

model, especially in validation across different geographic 

environments, to ensure the universality and reliability of the 

research results nationwide. Finally, considering the close 

relationship between non-grain transformation of cropland and 

food security, ecological environment, etc., future research can 

expand this into broader land use change and sustainable 

development research, providing stronger decision-making 

support for food security and environmental protection under 

global change. 
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