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Computer-aided detection of anomalies in X-ray images is of great importance and is one of 

the essential branches of image recognition. This research is focused on designing a deep 

learning (DL) architecture, DenseNet, by integrating parallel structures, utilizing humerus 

and shoulder X-ray datas from the MURA dataset. For detecting anomalies, AlexNet, 

ResNet, DenseNet, Parallel DenseNet, and the newly Mofified DenseNet (MDN) models of 

DL are employed, and the analysis results for the humerus and shoulder are compared. A 

total of 628 healthy and 643 anomalies X-ray images for the humerus, along with 1505 

healthy and 1530 anomalies X-ray images for the shoulder, were utilized to train the models 

DL. The statistical analysis for the humerus revealed that the Modified DenseNet model was

the most successful, achieving a test accuracy of 78.65%. The next most successful model

was AlexNet, with a test accuracy of 72.4%. The statistical analysis for the shoulder

indicated that the most effective model, based on test accuracy, was the Modified DenseNet

model with a score of 68.42%, followed by AlexNet with a score of 67.54%. In anomaly

identification using musculoskeletal humerus and shoulder X-ray datas, the DenseNet-based

MDN architecture was more successful in test accuracy than the traditional DenseNet model.

This success in test accuracy rates will support those studies in this field.
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1. INTRODUCTION

Bones are among the most crucial components of the human 

body. In the human body, bones facilitate movement and allow 

individuals to carry out various life functions. Additionally, 

bones provide the first line of protection for the body's soft 

tissues through structures like the rib cage, skull, and other 

components. Bones are the densest natural structures in terms 

of composition. However, any change in the composition of 

the structure and shape of bones tends to render them unable 

to perform human functions in their natural form [1]. 

Fractures, a common type of orthopedic trauma, can affect 

individuals of all ages. These injuries often result from high-

impact incidents such as severe falls, car accidents, or 

prolonged load-bearing stress on otherwise healthy bones [2]. 

Therefore, this change is called an anomaly. The primary 

causes of these anomalies include genetic factors, direct 

injuries, and infections affecting the bone and muscle 

structures [1]. X-ray images of the musculoskeletal system are 

vital for anomaly classification. Generally, when a patient 

experiences an accident or suspects a fracture, they visit the 

emergency room, where the doctor initially takes an X-ray to 

identify any fractures. X-ray images can be misclassified in the 

emergency department. This is because the process is fast, and 

the emergency room doctor classifying the X-ray is not an 

experienced radiologist, which can lead to an unexpected 

misdiagnosis [3]. As a result, a doctor's experience may lead 

to missed detection of various anomalies, such as fractures, 

hardware, subluxations, degenerative joint disease and lesions 

[4]. In the classification of X-ray images, having an automatic 

classifier can be very helpful to the doctor and reduce the error 

rate [3]. The computer processing and analysis of X-ray 

images involve image formation, image acquisition, image-

based visualization, and image analysis. X-ray image 

processing has expanded to encompass pattern recognition, 

computer vision, image mining, and various aspects of 

machine learning. DL is a commonly employed approach for 

image classification. [5]. DL for medical image classification 

typically relies on well-annotated datasets for training, which 

strongly motivates research institutions and hospitals to 

develop medical datasets [6]. 

When studies on the detection of musculoskeletal anomalies 

in humans are examined, X-ray datas of patients are used as 

data sets. DL algorithms operate with these data sets. 

Avcı and Alzabaq [7] applied a DL approach using a 

Convolutional Neural Network (CNN) on a radiography 

dataset to identify COVID-19. The proposed system 

comprises multiple stages, beginning with preprocessing, 

followed by feature reduction using various techniques, and 

concluding with classification based on the proposed model. 

Urakawa et al. [8] utilized transfer learning for anomaly 

classification on cropped front-view hip radiographs using the 

pre-trained VGG16 classification model. Harini et al. [9] 

compared the results using Xception, VGG-19, Inception V3, 
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MobileNet, and DenseNet DL methods using the MURA 

(Musculoskeletal Radiographs) dataset's finger, wrist, and 

shoulder X-ray images. Barhoom et al. [1] modified the VGG-

16 DL method for anomaly detection in all parts of the MURA 

dataset.  

Nguyen et al. [10] used a YOLOV4-based DL method for 

anomaly detection in X-ray datas. In addition to using some 

data augmentation techniques during training, they also 

showed the effect of image contrast algorithms on 

performance. Faster-Recurrent Convolutional Neural 

Networks (RCNN)-based classification has been reported to 

give better results. Alzubaidi et al. compared a new transfer 

learning model with traditional DL methods using shoulder X-

ray datas in the MURA dataset and stated that they got better 

results in their proposed model [11].  

Manoila et al. [12] presented a flexible MRI analysis 

framework with various DL models with preset parameters for 

automatically identifying the knee joint region. Spotlights a 

promising CNN designed for knee bone segmentation 

alongside a novel weighted subsampling technique to enhance 

image processing. 

Interpretation of medical imaging examinations is a 

complex cognitive and psychophysiological process with a 

high potential for error. A trained radiologist has an error rate 

of approximately 4% in the image interpretation process. Since 

approximately 1 billion radiologic imaging evaluations are 

performed annually, this equates to approximately 40 million 

radiologist errors annually [13]. 

Kazemi et al. [14] analyzed medical images, especially 

those used to diagnose brain diseases, with CNN, one of the 

DL methods. Their proposed method is a profound parallel 

convolutional neural network model that includes AlexNet and 

VGGNet networks. The layer structures of these two networks 

are different, and the features are combined at one point and 

classified using the SoftMax function. This proposed parallel 

structure achieved better results than existing models.  

Rezaoana et al. [15] used parallel layers using VVG DL 

algorithms for skin cancer detection in their study. Their 

proposed method obtained more successful results than the 

classical VVG DL algorithm. The DenseNet method was 

prone to adding parallel blocks, and successful predictions 

would be made in X-ray images. 

In the literature studies, the DenseNet has successful results, 

is DL method, in human musculoskeletal disorders. There are 

DL algorithms with multi layers. For collections containing 

numerous X-ray images, like the MURA dataset, the 

performance evaluation of parallel layers and the impact of 

increasing the number of layers remain underexplored. In this 

study, a parallel and multilayerstructure is hypothesized based 

on existing literature to enhance accuracy performance and is 

tested by implementing it within the traditional DenseNet 

framework. The layers of the traditional DenseNet DL model 

were modified into parallel connections as blocks. 

Performance analysis of test accuracy values was conducted 

compared to the AlexNet, ResNet and other DenseNet models.  

The study suggests that the MDN model should be applied 

in a way that allows the detection of musculoskeletal 

anomalies when compared to the traditional DenseNet model. 

This study was designed and organized as follows:  

Part 2 provides information on DL architecture and 

technical procedures used. The modified models, processes, 

and evaluation criteria are explained in Part 3. Experimental 

analysis and results are detailed in Part 4, and concluding 

comments and recommendations are in Part 5. 

2. METHODOLOGY 

 

2.1 Deep learning (DL) 

 

DL is a categorized under machine learning that focuses on 

algorithms designed to represent high-level abstractions in 

data through a series of non-linear transformations. These 

transformations are constructed using sophisticated structures, 

notably neural network structures [16]. The algorithm used in 

DL is a neural network with multiple hidden layers [17]. 

Inspired by the human brain, it has emerged due to studies to 

produce more intelligent systems. In the 1940s, S. McCulloch 

and Walter H. Pitts discussed that the activity or inactivity of 

neurons in the brain depends on a threshold value. They 

suggested that neurons in the brain could be connected to form 

a circuit, and decisions could be made with this circuit. The 

weighted total is obtained by multiplying the neurons' inputs 

by specific coefficients. The result is compared to a threshold 

value. If the result is below the threshold value, it will not 

move to the next layer, but if it exceeds the threshold value, it 

will move to the next layer. This structure mainly illustrates 

the working principle of artificial neural networks [18]. The 

concept of multilayer artificial neural network structure led to 

the development of CNN by increasing the number of layers. 

Computer technology advances have also significantly 

contributed to the resurgence of artificial neural networks [19]. 

DL can be performed as supervised, unsupervised, semi-

supervised, or reinforcement learning. The learning process is 

called deep because artificial neural networks in this structure 

typically consist of multiple input, output, and hidden layers. 

Through these layers, information is accessed by processing 

the data. DL needs a vast dataset for training to ensure precise 

predictions. 

Unlike traditional machine performance, DL is more 

efficient at more complex operations on machines with high-

end hardware. Another difference from machine learning is 

that the output of DL does not have to be a classification or a 

numerical value. In addition to producing a numeric value at 

the output layer, it can produce multi-format outputs such as 

audio and text. DL can be used in many different sectors. 

Examples of the most common areas of use are image 

processing classification, audio signal classification or noise 

reduction, sentiment analysis, chatbots, self-driving vehicles, 

automatic recommendations for services, making predictions 

to help diagnosis and treatment in the medical sector, etc. [20, 

21]. 

We can classify commonly used DL structures today as 

follows: Deep Auto-Encoders, Generative Adversarial 

Networks (GAN), Convolutional Neural Networks (CNN), 

Recurrent Neural Networks (RNN), Hybrid Architectures 

(HA) and Deep Belief Networks [22]. Since the MURA 

dataset consists of images, the CNN model will be used 

because it is successful in image processing. 

 

2.2 Models 

 

CNN, a DL method, is one of the leading algorithms used 

in image recognition in healthcare due to its robust feature 

extraction capability [23]. Convolutional Neural Networks 

excel in image recognition tasks due to their ability to capture 

and learn hierarchical features from input data [24]. This study 

used AlexNet, ResNet and DenseNet DL methods, which are 

famous for training with CNNs, to train humerus and shoulder 

X-ray images.  
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2.2.1 AlexNet model 

The AlexNet model, widely used in transfer learning 

applications, was developed by Alex et al. [25]. This DL 

model was developed by training over 1 million images across 

1000 diverse classes (including animals, plants, etc.) from the 

ImageNet database. The image input dimensions are specified 

as 227×227×3. The model comprises 25 layers, with 

approximately 60 million parameters computed. The model 

uses five convolutional layers, three pooling layers, 7 ReLU 

(Rectified Linear Unit) activation function layers, and three 

fully connected layers. Using transfer learning methods from 

AlexNet, pre-trained parameters enable better classification of 

smaller datasets [26]. The structural design of AlexNet is 

shown in Figure 1. 

 

2.2.2 ResNet model 

The Residual Network (ResNet) structure is a crucial DL 

approach known for its effectiveness in handling complex 

tasks like image classification with high performance. This 

type of network is designed to create deeper and more complex 

structures. Due to their multilayer structure, deep neural 

networks can face the "vanishing gradient" problem. This 

means the network gradient approaches zero, slowing the 

learning process. Since the gradient is multiplied at each layer 

during backpropagation, in deep networks, this gradient can 

quickly drop to zero. To contribute to the learning process, a 

shortcut called a "skip connection" is added. This connection 

helps to pass information from one layer to another more 

efficiently and allows data to bypass the standard 

convolutional neural network flow. ResNet has many variants 

with different number of layers. For example, ResNet18, 

ResNet34, ResNet50, ResNet101 and ResNet152. In our 

study, the ResNet18 model was used to keep the training time 

short. Figure 2 shows the ResNet18 structure. 

 

 
 

Figure 1. The structural design of the AlexNet DL model [27] 

 

 
 

Figure 2. The structural design of the ResNet DL model [28] 

 

ResNet18 consists of 18 layers with a core size of 7×7. Each 

layer contains two residue blocks, each with two weight layers. 

The input dimension is set to (224, 224, 3), representing the 

images' width, height, and RGB (red, green, blue) channels. 

An additional layer was incorporated at the end of ResNet18 

to enhance the model's accuracy. This layer includes a linear 

(512, 512) layer, a ReLU activation function, a dropout (0.2) 

layer, and finally, a structure that results in SoftMax [29]. 

 

2.2.3 DenseNet model 

DenseNet, improved by Yan et al. [30], builds on the 

hypothesis that dense connections between initial and 

subsequent layers in CNN models can significantly enhance 

accuracy and efficiency. DenseNet consists of fully connected 

layers, where each layer is connected to every subsequent layer 

in contrast to the traditional CNN model. In a regular k-layer 

CNN, there are k connections, whereas in the DenseNet model, 

each layer is connected to each subsequent layer, so there is 

k(k+1)/2 connections. In the In the DenseNet DL model, every 

layer takes the feature maps from all previous layers as input, 

and its own feature maps are subsequently forwarded to the 

next layers [31]. In this way, DenseNet aims to address the 
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gradient issue, promotes the reuse of features, enhances 

feature propagation, and substantially minimizes the number 

of parameters [32]. There are types of DenseNet with 121, 169, 

201, and 264 layers [33]. Figure 3 illustrates the structural 

design of the DenseNet model. The structures vary based on 

the different types of DenseNet, and these variations are 

presented in Table 1. These differences are due to the different 

number of layers of DenseNet types. 

In Figure 4, the structure of the DenseNet block expansion 

is shown. This densely connected structure of DenseNet makes 

it possible to create deeper networks with fewer parameters, 

thus increasing the model's generalization ability and 

accelerating the learning process.  

Figure 5 shows the structure of the DenseNet transition 

layer expansion. Transition layers are critical components that 

make DenseNet an efficient and powerful model. These layers 

ensure a balanced and controlled flow of information between 

dense blocks. 

DenseNet-264 improves information flow and gradient 

propagation thanks to its densely connected structure, which 

enables deeper networks to learn more efficiently and 

effectively. This structure is ideal for achieving high 

performance on large and complex datasets. The traditional 

DenseNet model, DenseNet-264, was utilized in the study to 

analyze radiography images in the MURA dataset. 

 

 
 

Figure 3. The structural design of the traditional DenseNet DL architecture [34] 

 

Table 1. Structures of DenseNet. (convl = Batch Normalization (BN)+ReLU+Convolution layers [35] 

 
Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264 

Convolution 112×112 (stride 2), 7×7 conv  

Pooling 56×56 (stride 2), 3×3 max pool 

1. Dense Block 56×56 
1×1 convl 

3×3 convl 
×6 

1×1 convl 

3×3 convl 
×6 

1×1 convl 

3×3 convl 
×6 

1×1 convl 

3×3 convl 
×6 

1. Transition Layer 
56×56 1×1 convl 

28×28 (stride 2), 2×2 average poo 

2. Dense Block 28×28 
1×1 convl 

3×3 convl 
×12 

1×1 convl 

3×3 convl 
×12 

1×1 convl 

3×3 convl 
×12 

1×1 convl 

3×3 convl 
×12 

2. Transition Layer 
28×28 1×1 convl 

14×14 (stride 2), 2×2 average pool 

3. Dense Block 14×14 
1×1 convl 

3×3 convl 
×24 

1×1 convl 

3×3 convl 
×32 

1×1 convl 

3×3 convl 
×48 

1×1 convl 

3×3 convl 
×64 

3. Transition Layer 
14×14 1×1 convl 

7×7 (stride 2), 2×2 average pool 

4. Dense Block 7×7 
1×1 convl 

3×3 convl 
×16 

1×1 convl 

3×3 convl 
×32 

1×1 convl 

3×3 convl 
×32 

1×1 convl 

3×3 convl 
×48 

Classification 

Layer 

1×1 7×7 global average pool 

 1000D fully-connected and softmax 

 

       
 

Figure 4. DenseNet block expansion [36]                              Figure 5. DenseNet transition layer expansion [36]         
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3. MODIFIED MODEL AND SUGGESTED STEPS 

 

The Dense Block is at the centre of the DenseNet model and 

ensures that all layers are interconnected. In this way, the 

outputs of the previous layers are used as inputs to all 

subsequent layers. These dense connections minimise the 

information loss of the model and ensure that important 

features are captured efficiently. However, optimization is 

possible, as the arrangement of the different functional layers 

within the Dense block module could be made more efficient. 

In the CrodenseNet structure, improved results in diagnosing 

COVID-19 have been obtained by employing various parallel 

structures [37]. Yin et al. [38] achieved favorable results by 

applying parallel layers to the traditional DenseNet model, 

using the image datasets. Unlike Yin et al. [38], who employed 

three parallel blocks by decreasing the number of traditional 

DenseNet blocks, this study utilized four parallel DenseNet 

blocks. Therefore, by removing, adding, and adjusting 

convolutional layers and adding parallel blocks, the DenseNet 

DL method has been improved. When more convolution layers 

are superimposed on the receiver field, which is more 

significant, it can enable more prosperous feature extraction 

and over computational efficiency. Unlike Yin et al. [38], the 

improved DenseNet models of DL use a 3×3 convolution layer 

instead of a 1×1 layer to capture or extract features from larger 

regions. The 3×3 convolution layer analyzes each pixel along 

with the pixels in a 3×3 window surrounding it. 

DenseNet uses a single convolutional filter to extract 

features from the input image. Then, these features are 

forwarded to the dense block module. This leads to a relatively 

simple structure, which may result in the loss of image 

information [38]. A novel dilated convolution block, was 

developed in parallel to maximize the utilization of current 

features without significantly increasing the number of 

parameters. Subsequently, multi-path Dense blocks are 

integrated to merge diverse feature maps originating from 

various paths. Hence, facilitates the harmonization of channel 

features and enables robust feature extraction. 

In this research, to improve a DL model utilizing X-ray 

radiography from the dataset of MURA, a new model named 

'Canonical Parallel DenseNet' was created by incorporating 

Dense blocks in parallel with the traditional DenseNet 

structure. Implementing parallelism in the DenseNet structure 

resulted in improved classification performance [37, 38]. This 

Parallel DenseNet structure underwent optimization, leading 

to the creation of the 'Modified DenseNet' model. The 

DenseNet models in this study are trained and subsequently 

employed for image recognition process. Furthermore, the 

accuracy of this MURA X-ray image detection is assessed by 

analyzing the results with the labeled dataset. 

 

3.1 Canonical Parallel DenseNet model 

 

Inside the canonical parallel DenseNet architecture created 

using the traditional DenseNet 264 model, the layer 

configuration and the number of repetitions are preserved. The 

transition layers are identical to those depicted in Figure 5. The 

structural design of the parallel DenseNet DL model is 

illustrated in Figure 6.  

As illustrated in Figure 6, additional Dense blocks, 

mirroring the layers and features of the traditional Dense 

blocks, are integrated in parallel to the existing structure of the 

traditional DenseNet structure. These Dense block numbers 

can be increased and decreased [38]. Parallel blocks retain the 

same characteristics as those in the traditional DenseNet 

structure. These blocks are interconnected using transition 

layers. Due to the parallel connections, Dense blocks are 

connected by merging their feature maps, and feature 

extraction is performed. In the last layer, the 'Pooling-Full 

Connection' layers are linked to classify 'Anomaly - Healthy.' 

Due to a decrease in performance with a 10% drop in test 

accuracy in analyses conducted by three parallel modules, the 

number of parallel Dense modules was changed to be four.  

 

 
 

Figure 6. The structural design of the parallel DenseNet DL model 

 

 
 

Figure 7. The structural design of the MDN DL model 
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3.2 Modified DenseNet model 

 

Inside the MDN architecture, the layers and iteration count 

from the traditional DenseNet-264 structure were replicated 

exactly. Transition layers are the identical to given in Figure 

5. In the modified architecture, an structure is formed by 

connecting enhanced Dense blocks with discrete Dense blocks 

in parallel, as shown in Figure 7. 

Traditional DenseNet structure consists of successively 

added layers. In the MDN structure, parallel modules were 

linked using transition layers that retain the equivalent 

characteristics as those in the traditional DenseNet, as 

illustrated in Figure 7. Dense modules integrate feature maps 

from different ways and then assist in feature extraction. The 

improved DenseNet architecture description is given in Figure 

8. 

As given in Figure 8, different from the traditional 

DenseNet block (Figure 4), to preserve the information in the 

X-ray, in the improved DenseNet block expansion, the 

convolution layers are used as 3×3 instead of 1×1. The 

traditional DenseNet block has a 6-layer structure, and the 

blocks are connected in series. In contrast to the traditional 

Dense block, layers consisting of Batch Normalization, ReLU, 

and Convolution have been sequentially incorporated. 

 

 
 

Figure 8. Expansion of the improved DenseNet block 

 

 
 

Figure 9. Discrete DenseNet block expansion 

Figure 9 illustrates the expansion of the discrete DenseNet 

block. With the developed DenseNet block, the number of 

layers was increased to 10. The purpose of increasing the 

number of layers is to enable DenseNet to learn and perform 

effectively. As the depth of the model increases, the 

combination of components optimizes the learning and 

generalization ability. 

In the MDN structure, as depicted in Figure 9, the parallel-

connected Discrete DenseNet block expansion employs 3×3 

convolution layers instead of 1×1 to preserve image 

information, unlike the traditional Dense block shown in 

Figure 4. Additionally, a Batch Normalization layer is 

included to facilitate normalization. Prior to the classification 

layer, in contrast to the traditional DenseNet structure, 

'Anomaly-Healthy' classification is achieved through the use 

of Batch Normalization, ReLU, Convolution, and dropout 

layers. 

In the parallel DenseNet model, the traditional DenseNet 

block layers in Figure 4 were connected in parallel. In the 

MDN model, improved (Figure 8) and discrete DenseNet 

(Figure 9) blocks were connected in parallel. 

The parallel structure of the MDN model is qualify the fact 

that every layer is linked to all preceding layers. This enables 

each layer to reuse and preserve features from all previous 

layers. This connection model allows the network to learn 

more efficiently and perform better. This structure of the MDN 

is realized through structures that connect all layers directly 

when the sizes of the feature maps match. This minimizes 

information loss and allows gradients to flow better, even in 

the deeper layers of the network. 

 

3.3 Dataset and image preprocessing 

 

The MURA dataset is a large dataset consisting of X-ray 

images collected from a wide range of patients over an 

extended period. The MURA dataset comprises images 

sourced from the Picture Archive and Communication System 

(PACS) of Stanford Hospital, ensuring compliance with 

Health Insurance Portability and Accountability Act (HIPAA) 

standards [39]. The dataset consists of seven types of bones, 

including forearm, elbow, wrist, humerus, hand, fingers, and 

shoulder. This massive dataset has been collected from 12,173 

patients, containing 40,561 X-ray images with multiple views 

of different anatomical positions [40]. Radiologists manually 

labeled the entire data set as healthy or anomalous [41]. The 

distribution of the dataset by regions is presented in Table 2. 

 

Table 2. MURA dataset distribution [42] 

 

Region 
Train Validation 

Healthy Anomaly Healthy Anomaly 

Wrist 5765 3987 364 295 

Shoulder 4211 4168 285 278 

Forearm 1164 661 150 151 

Humerus 673 599 148 140 

Finger 3138 1968 214 247 

Elbow 2925 2006 234 230 

Hand 4059 1484 271 189 

 

Anomaly detection involves a binary classification process 

to distinguish between healthy studies and those with 

anomalies. Identifying whether an X-ray image is healthy or 

anomaly is crucial because it can help rule out the need for 

additional, procedures, diagnostic tests, and interventions for 

patients. The causes of the anomaly are listed as various 
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abnormalities, such as degenerative joint diseases, hardware, 

fractures, lesions, and subluxations [43]. Figures 10 and 11 

present the humerus and shoulder regions of the X-ray MURA 

dataset. 

 

 
 

Figure 10. MURA dataset humerus region (a) healthy, (b) 

anomaly dataset example [44] 

 

 
 

Figure 11. MURA dataset shoulder region (a) healthy, (b) 

anomaly dataset example [44] 

 

The MURA dataset image sizes vary between 512×512 

pixels and 97×512 pixels, and the file extension is '.png' [45]. 

In DL, to minimize input data loss and ensure uniformity of 

pixel values, all changeable-sized X-ray datas were image 

adjusted to 320×320 pixels [46]. After the pixel change, '.png' 

images were centered and aligned by cropping out excess 

space or edges, as shown in Figure 10 and Figure 11. This 

process was performed to remove empty or unnecessary areas 

on the edges to bring the image closer to the region of interest 

or focal point. The images in the MURA dataset have a bit 

depth ranging from 8 to 24. The study converted the input 

image data’s bit depth to 8 for more efficient training [47].  

The input image data was randomly rotated vertically and 

horizontally between -300 and +300 and projected in both x-y 

axes [4]. Additionally, the input X-ray was scaled between 0,9 

and 1,1 to increase the number of input data [48].  

The number of X-ray image data used for experimental 

analysis is given Table 3. 

 

Table 3. The number of MURA X-ray image data used in the 

study 

 
Study Region Healthy Anomaly 

Our study Humerus 628 643 

Madan et al. [49] Humerus 389 338 

Chawla and Kapoor [50] Humerus 821 739 

Our study Shoulder 1505 1530 

Kavitha et al. [51] Shoulder 4394 4349 

Reddy and Cutsuridis [52] Shoulder 170 164 

 

 

3.4 Evaluation criteria 

 

In the MURA dataset, the performance of models for 

healthy anomaly detection was evaluated using clinically 

significant statistical metrics such as accuracy, precision, 

recall, specificity, F1-score, Cohen's kappa score, and 5-fold 

cross-validation. These metrics are briefly defined as follows: 

 

3.4.1 Accuracy 

Accuracy is calculated by the formula is: 

 

Accuracy = (TN + TP) / (FN  + FP +  TN+ TP) (1) 

 

In this context, respectively; TN: denotes the count of true 

negative cases accurately estimated by the architecture, TP: 

denotes the count of true positive cases accurately estimated 

with the architecture, FN: denotes the count of false negative 

cases incorrectly estimated by the architecture, FP: denotes the 

count of false positive cases incorrectly estimated by the 

architecture.  

 

3.4.2 Precision 

The proportion of the samples that we predict are positive, 

and how many of them are correctly predicted? The formula is 

as follows. 

 

Precision  =  TP / (FP + TP ) (2) 

 

3.4.3 Recall 

Recall indicates how many of the samples that should be 

predicted positive are proportionally correctly estimated. The 

formula is as follows. 

 

Recall = TP / (TP+FN) (3) 

 

3.4.4 Specificity 

The proportion of correctly identified negative instances out 

of all actual negative instances. 

 

Specificity  =  TN / (TN+FP) (4) 

 

 
 

Figure 12. Confusion matrix 
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3.4.5 F1-Score 

F1 score combines recall and values and precision reduces 

them to a single number. We use the F1 score to select the best 

model when we have the precision and Accuracy of multiple 

models. The formula is as follows [53, 54]. 

 

F1-Score = 2(PrecisionxRecall) / (Precision+Recall) (5) 

 

The confusion matrix is shown in Figure 12. 

 

3.4.6 Cohen’s Cappa statistic 

Cohen’s Cappa statistic (κ) is a measure used to determine 

the degree of harmony between two raters scoring at the 

classification level. (κ) value is shown formula 7 [55]. 

 

𝑃𝑒 =
(𝐹𝑃 + 𝑇𝑃)𝑥(𝐹𝑁 + 𝑇𝑃) + (𝐹𝑁 + 𝑇𝑁)𝑥(𝐹𝑃 + 𝑇𝑁)

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)2
 (6) 

 

κ = (Accuracy-Pe) / (1-Pe) (7) 

 

3.4.7 K-fold cross-validation 

K-fold cross-validation means the data is randomly divided 

by k numbers, and a different set of data is used as test data 

each time. In this way, all data is ensured to be used as training 

and test data [56]. This method, which helps to prevent the 

overfitting problem, is generally used in the literature for k = 

3, 5, and 10 values [57]. In the study, the k value was selected 

as 5. 

 

 

4. EXPERIMENTAL RESULTS  

 

The experiments run with a laptop with a 2.30 GHz 12th 

Gen Intel(R) i7-12650H Core(TM) processor, running 

Windows 11 Pro, an NVIDIA GeForce RTX 4060 Laptop 

GPU and equipped with 16 GB of memory utilizing MATLAB 

for implementation. 

The parameter configurations for the experiment are as 

follows: All networks used consistent settings, with a learning 

rate of 0.001, a minibatch size of 128, and 250 epochs. The 

ADAM (Adaptive Moment Estimation) algorithm was 

employed to minimize the error between the model's output 

and the actual values using the categorical cross-entropy 

function. This approach aimed to reduce the discrepancy 

between the model's predictions and the true values. The 

dataset was divided into 80% for training, 15% for testing and 

5% for validation, with randomized allocation of images 

across these categories. 

The MURA X-ray image dataset used 628 healthy and 643 

anomaly images for the humerus region. The confusion matrix 

for the test data obtained using the AlexNet model of the 

humerus region is depicted in Figure 13. 

The AlexNet model for the humerus region using, 73 out of 

102 images labeled as anomalies were correctly identified as 

true positives (TP), while 29 were incorrectly identified as 

false negatives (FN). Among 90 images labeled as healthy, 24 

were misidentified as false positives (FP), and 66 were 

correctly identified as true negatives (TN). 

The confusion matrix for the test data obtained using the 

ResNet model of the humerus region is depicted in Figure 14. 

The ResNet model for the humerus region using, 68 out of 

113 images labeled as anomalies were accurately identified as 

true positives (TP), while 45 were incorrectly identified as 

false negatives (FN). Among 79 images labeled as healthy, 29 

were misidentified as false positives (FP), and 50 were 

correctly identified as true negatives (TN). 

 

 
 

Figure 13. AlexNet confusion matrix of the humerus region 

 

 
 

Figure 14. ResNet confusion matrix of the humerus region 

 

The confusion matrix for the test data obtained using the 

DenseNet model of the humerus region is depicted in Figure 

15. 

 

 
 

Figure 15. DenseNet confusion matrix of the humerus region 
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The DenseNet model for the humerus region using, 58 out 

of 84 images labeled as anomalies were correctly identified as 

true positives (TP), while 26 were incorrectly identified as 

false negatives (FN). Among 108 images labeled as healthy, 

39 were misidentified as false positives (FP), and 69 were 

correctly identified as true negatives (TN). 

The confusion matrix for the test data obtained using the 

Parallel DenseNet model of the humerus region is depicted in 

Figure 16. 

 

 
 

Figure 16. Canonical Parallel DenseNet confusion matrix of 

the humerus region 

 

The canonical parallel DenseNet model for the humerus 

region using, 63 out of 87 images labeled as anomalies were 

accurately identified as true positives (TP), while 24 were 

incorrectly identified as false negatives (FN). Among 105 

images labeled as healthy, 34 were misidentified as false 

positives (FP), and 71 were correctly identified as true 

negatives (TN). 

The confusion matrix for the test data obtained using the 

MDN model of the humerus region is depicted in Figure 17. 

The MDN model for the humerus region using, 77 out of 98 

images labeled as anomalies were correctly identified as true 

positives (TP), while 21 were incorrectly identified as false 

negatives (FN). Among 94 images labeled as healthy, 20 were 

misidentified as false positives (FP), and 74 were correctly 

identified as true negatives (TN). 

Table 4 presents the comparation of DL models humerus 

region. 

 

 
 

Figure 17. MDN confusion matrix of the humerus region 

 

Table 4. Comparative performance of DL models for the humerus region 

 

Models 
Accuracy 

(%) 

Specificity 

(%) 

Recall 

(%) 

 F1-Score 

(%) 

Precision 

(%) 
Kappa Score 

5-fold 

Accuracy (%) 

Training Time 

(min) 

AlexNet 72.40 73.33 71.57  73.37 75.26 0.4476 70.76 21 

ResNet 61.46 63.29 60.18  64.76 70.10 0.2277 59.04 245 

DenseNet 66.15 63.89 69.05  64.09 59.79 0.3238 64.86 67 

Parallel 

DenseNet 
69.79 67.62 72.41 

 
68.48 64.95 0.3964 67.45 254 

MDN 78.65 78.72 78.57  78.97 79.38 0.5728 77.25 333 

 

According to Table 4, the MDN model has the highest 

accuracy rate (78.65%), while the ResNet model has the 

lowest accuracy rate (61.46%). The AlexNet model (72.4%) 

has a better test accuracy rate compared to DenseNet (66.15%) 

and Parallel DenseNet (69.79%). When the MDN architecture 

model test accuracy value is compared, the AlexNet model has 

a low value. 

The MURA X-ray dataset used 1505 healthy and 1530 

anomaly images for the shoulder region. The confusion matrix 

for the test data obtained using the AlexNet model of the 

shoulder region is depicted in Figure 18. 

The AlexNet model for the shoulder region using, 187 out 

of 292 images labeled as anomalies were accurately identified 

as true positives (TP), while 105 were incorrectly identified as 

false negatives (FN). Among 164 images labeled as healthy, 

43 were misidentified as false positives (FP), and 121 were 

correctly identified as true negatives (TN). 

The confusion matrix for the test data obtained using the 

ResNet model of the shoulder region is depicted in Figure 19. 

 
 

Figure 18. AlexNet confusion matrix of the shoulder region 
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Figure 19. ResNet confusion matrix of the shoulder region 

 

 
 

Figure 20. DenseNet confusion matrix of the shoulder region 

 

 
 

Figure 21. Parallel DenseNet confusion matrix of the 

shoulder region 

 

The ResNet model for the shoulder region using, 136 out of 

249 images labeled as anomalies were accurately identified as 

true positives (TP), while 113 were incorrectly identified as 

false negatives (FN). Among 207 images labeled as healthy, 

94 were misidentified as false positives (FP), and 113 were 

correctly identified as true negatives (TN). 

The confusion matrix for the test data obtained using the 

DenseNet model of the shoulder region is depicted in Figure 

20. 

The DenseNet model for the shoulder region using, 162 out 

of 302 images labeled as anomalies were accurately identified 

as true positives (TP), while 140 were incorrectly identified as 

false negatives (FN). Among 154 images labeled as healthy, 

68 were misidentified as false positives (FP), and 86 were 

correctly identified as true negatives (TN). 

The confusion matrix for the test data obtained using the 

Parallel DenseNet model of the shoulder region is depicted in 

Figure 21. 

The canonical parallel DenseNet model for the shoulder 

region using, 178 out of 312 images labeled as anomalies were 

correctly identified as true positives (TP), while 134 were 

incorrectly identified as false negatives (FN). Among 144 

images labeled as healthy, 52 were misidentified as false 

positives (FP), and 92 were accurately identified as true 

negatives (TN). 

The confusion matrix for the test data obtained using the 

MDN model of the shoulder region is depicted in Figure 22. 

 

 
 

Figure 22. MDN confusion matrix of the shoulder region 
 

The MDN model for the shoulder region using, 152 out of 

218 images labeled as anomalies were accurately identified as 

true positives (TP), while 66 were incorrectly identified as 

false negatives (FN). Among 238 images labeled as healthy, 

78 were misidentified as false positives (FP), and 160 were 

correctly identified as true negatives (TN). 

Table 5 presents comparation of DL models shoulder region. 

According to Table 5, the MDN model has the highest 

accuracy rate (68.42%), while the DenseNet model has the 

lowest accuracy rate (54.39%). The AlexNet model (67.54%) 

has a better test accuracy rate compared to ResNet (54.61%) 

and Parallel DenseNet (59.21%). When the MDN architecture 

model test accuracy value is compared, the AlexNet model has 

a low value. 
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Table 5. Comparative performance of DL models for the shoulder region 

 

Models 
Accuracy 

(%) 

Specificity 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Kappa 

Score 

5-fold Accuracy 

(%) 

Training Time 

(min) 

AlexNet 67.54 73.78 64.04 71.65 81.30 0.3493 65.42 50 

ResNet 54.61 54.59 54.62 56.78 59.13 0.0914 51.88 585 

DenseNet 54.39 55.84 53.64 60.90 70.43 0.0851 53.47 182 

Parallel 

DenseNet 
59.21 63.89 57.05 65.68 77.39 0.1816 55.21 644 

MDN 68.42 67.23 69.72 67.86 66.09 0.3687 67.32 841 

 

 

5. CONCLUSION AND DISCUSSION 

 

With the CNN models used in DL, the MURA dataset was 

classified as healthy and anomalous using X-ray datas of the 

humerus and shoulder. In this study, the traditional DenseNet 

model was improved, and its test results were evaluated 

against those of alternative models. 

Using the AlexNet model, Yang and Ding [58] achieved a 

classification accuracy of 73.34% for the humerus region in 

their study. In their study, Yang et al. [59] achieved 

classification accuracy of 71.92% for the humerus region 

using the AlexNet model. These numbers are nearly match the 

72.4% value obtained due to the AlexNet evaluation in this 

study. In their study, Kandel et al. [60] succeed a classification 

accuracy of 54.28% for the humerus region using the 

ResNetNet model. The results are similar to the 61.46% 

accuracy obtained from the ResNet evaluation in this study. 

The Kappa score (κ) of 0.5728 achieved by the MDN model 

demonstrated superior performance compared to all other 

models. During evaluations employing the 5-fold cross-

validation technique, the MDN model achieved a superior 

accuracy of 77.25%, surpassing other models. The results test 

accuracy for the humerus region, the highest value (78.65%) 

was recorded with the MDN model, whereas the lowest 

accuracy (61.46%) was observed with ResNet. When we 

compared our AlexNet model (72.4%) results with DenseNet 

and canonical parallel DenseNet models, we found that we 

obtained a more successful result. 

Yang and Ding [58] reported a classification accuracy of 

68.31% for the shoulder region using the AlexNet model in 

their research. Similarly, Yang et al. [59] in their study 

achieved a classification accuracy of 67.55% for the shoulder 

region using the AlexNet DL model. These results are similar 

to the 67.54% accuracy obtained from the AlexNet analysis in 

this study. In their work, Kandel et al. [60] achieved a 

classification accuracy of 50.11% for the shoulder region 

using the ResNet model. In this study, this is similar to the 

54.61% accuracy obtained from the ResNet analysis. The 

Kappa score (κ) of 0.3687 for the MDN architecture indicates 

better performance compared to other architectures. During 

the evaluations using the 5-fold cross-validation method, the 

MDN model demonstrated superior performance with an 

accuracy rate of 67.32%. According to the statistical analysis 

for the shoulder region, while the ResNet model had the lowest 

accuracy rate of 54.39% the MDN model achieved the highest 

test accuracy rate of 68.42%. 

Furthermore, for the shoulder region, the AlexNet model 

(67.54%) demonstrated better performance compared to the 

DenseNet and Parallel DenseNet models. While Kandel et al. 

[60] reported an accuracy of 70.54% for the humerus region 

using the traditional DenseNet model, the test accuracy of the 

MDN architecture in our study was higher at 78.65%. 

Furthermore, Harini et al. [9] achieved an accuracy of 52.75% 

for the shoulder region using the traditional DenseNet model, 

whereas the MDN model in our study achieved a higher test 

accuracy of 68.42%. When comparing Kappa statistic values 

and 5-fold cross-validation accuracy, the MDN architecture 

outperformed the traditional DenseNet model for both the 

humerus and shoulder regions. In our study, it is also evident 

from the results that the feature extraction process in the MDN 

model works better than traditional DenseNet models. The 

parallel structure of the MDN model enables each layer to 

reuse and preserve features from all previous layers. This 

connectivity model minimizes information loss, allowing the 

network to learn more efficiently and perform better. 

Therefore, it outperformed other DL methods used in the 

study. Based on the results obtained, we recommend using the 

MDN model instead of the traditional DenseNet. The 

drawback of the MDN model is that it requires more training 

time compared to other models.  
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