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In this research, our essential objective is to evaluate the availability of parking spaces within 

port/marine/fisher shelters employing a novel computer vision-based approach. Therefore, 

we collected a new dataset and developed a ResNet50-based image classification model to 

detect parking status. Initially, we collected a new image dataset using an unmanned aerial 

vehicle (UAV) from over 200 fisher shelters and the collected image dataset contains two 

classes which are parking available or not (full). To automatically detect parking available 

fisher shelters, a new ResNet50-based deep feature engineering (DFE) approach has been 

recommended. In the recommended DFE approach, we introduced a novel semi-overlapped 

patch division strategy to extract local features like transformers. To implement this model, 

we first trained the ResNet50 approach on our collected training dataset and a trained 

ResNet50 model has been obtained. Subsequently, deep features have been derived using 

the proposed semi-overlapped patch division approach and the global average pooling 

(GAP) layer of the trained ResNet50. Nine feature vectors have been generated using 

patches and a feature vectors has been extracted from the whole image. By using this 

strategy, we have generated both local and global features and these features have been 

merged to create the ultimate feature vector. To select informative features from the 

generated ultimate feature vector, iterative neighborhood component analysis (INCA) 

feature selector has been applied. The chosen features by INCA were employed as input of 

the support vector machine (SVM), is a shallow classifier, classifier to create classification 

results. The used ResNet50 convolutional neural network (CNN) attained 100% training 

accuracy and 94.23% validation accuracy. Subsequently, the recommended DFE model was 

assessed on test images, achieving a test classification accuracy of 97.27%. Furthermore, we 

utilized Grad-CAM and feature analysis to provide interpretable results for the presented 

model. The achieved classification performance and the explanatory outcomes 

demonstrably illustrate the capability of the proposed model for automatic detection of 

parking availability in fisher shelters. These findings support the utility of computer vision 

as a viable solution for this application. 

Keywords: 

deep feature engineering, feature selection 

with INCA, marine engineering, parking 

availability detection for ships, ResNet50, 

semi overlapped patch division 

1. INTRODUCTION

The maritime industry is a sector that is constantly 

expanding and actively trading. Ports, marinas and fisher 

shelters are needed for the continuity and effective 

management of this sector. Especially the efficient use of these 

areas will ensure the continuity of trade and transportation. 

One of the issues of efficient use is the correct identification 

of parking areas and planning according to these parking areas 

[1, 2]. The management methods used in this field (the 

shipping/maritime industry) are generally divided into two 

main branches: human control/command-based models and 

sensor network models. Even though systems under human 

control are old and simple, human errors are frequently 

encountered. Sensor network systems provide automatic 

control using multiple sensors. Although this is a more modern 

and efficient method, it is more expensive and complex to 

install and maintain [3]. Along with developing deep learning 

(DL) models, computer vision-based automatic systems have

the potential to provide important solutions for the usability of

parking areas [4].

DL models/networks are very effective for image 

classification and segmentation. Moreover, DL networks have 

changed the basics of computer vision due to their high 

performance and findings [5-7]. There's a missing piece in the 

puzzle when it comes to applying DL to specific tasks, like 
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figuring out parking spots for large ships [8]. Current/existing 

methods for detecting parking for marine vessels have their 

downsides/limitations. To overcome these limitations, most 

research focuses on Internet of Things (IoT) systems [9, 10]. 

However, the lack of publicly available data on 

maritime/shipping industry and the nature limitations of IoT 

systems (complex and costly) make it difficult to develop the 

next generation of advanced models [11]. 

We have aimed to address this limitation by proposing a DL 

model. Our proposal is built on a curated image dataset and a 

novel deep feature engineering (DFE) approach. This study 

demonstrates the potential of DL for maritime parking 

optimization. Moreover, we have presented a new patch-

division technique for DFE and this patch-division technique 

is named semi-overlapped patch division. We have presented 

an innovative approach to contribute computer vision. 

 

1.1 Related works 

 

Machine learning (ML) techniques are used in literature for 

different disciplines [12-14]. In this section, we have surveyed 

literature about to maritime industry and ML and the surveyed 

papers have been outlined in Table 1.

 

Table 1. ML-based studies using image dataset for ship detection classification and marine parking availability  

 

Study Method Classifier Data 
Number of 

Class 

Data 

Augmentation 
The Results 

Kim et al. [15] Faster region-based CNN Softmax 7000 (75:25) 7  No 
The mean average 

precision: 93.92 

Escorcia-

Gutierrez et al. 

[16] 

Mask regional CNN, 

Colliding 

body’s optimization 

Weighted extreme 

learning machine 
2000 (80:20) 2  Yes 

Accuracy: 98.75 

F1: 98.75 

Precision: 98.60 

Recall: 98.90 

Ma et al. [17] CNN Softmax 
1. 3210 (79:21) 

2. 1727 (32:30:38) 

1. 8  

2. 6  

1. Yes 

2. No 

1. Overall accuracy: 

95.20 

2. The mean 

average precision: 

93.92 

Feng et al. [18] CNN Softmax 

1. 1061 images in the 

HRSC2016 dataset 

(41:17:42) 

2. 934 MWC (80:20) 

1. 19 

2. 11 
Yes 

1. Overall accuracy: 

84.50 

2. Average 

precision: 87.10 

Huang et al. 

[19] 

The regressive deep CNN 

based on YOLOv2/v3 
Softmax 4200 (80:20) 7  No 

The mean average 

precision: 92.09 

Recall: 98.18 

Shi et al. [20] CNN Softmax 

1. 800 images in BCCT200-

resize dataset 

2. 2865 images in VAIS 

dataset 

1. 4 2. 6  No 

Accuracy 

1. 98.33 

2. 88.00 

Chang et al. [21] YOLOv2 YOLOv2 

1. 1160 images in SSDD 

(70:20:10) 

2. 1174 images in DSSDD 

(70:20:10) 

1. 

Unspecified 

2. 

Unspecified 

No 

Accuracy 

1. 90.05 

2. 89.13 

Zhang et al. [22] YOLOv5 YOLOv5 
7000 

(60:20:20) 
6  No Accuracy: 71.60 

Wang et al. [23] 
Faster 

R-CNN 
Softmax 12650 (Unspecified) 3  No 

The mean average 

precision: 74.26 

Leclerc et al. 

[24] 
Deep CNN Softmax 

9216 (89:11) images in 

Marvel dataset 
26 No Accuracy: 78.73 

Shao et al. [25] CNN Softmax 
31455 (split ratio: 

unspecified) 
7  Yes 

The mean average 

precision: 92.40 

Zhang et al. [26] 

Regional-based 

convolutional neural 

network 

Softmax 2152 (80:10:10) 2  Yes 
Precision: 95.79 

Rec: 96.46 

Pan et al. [27] 
Target attitude 

angle-guided network 
Softmax 

116 (81:19) 

 
11  No 

The mean average 

precision: 73.91 

Yu and Shin 

[28] 
YOLOv5 YOLOv5 

1.1160 

2. 5604 (65:35) 

1. 

Unspecified 

2. 

Unspecified 

No 

The mean average 

precision: 

1. 95.02 

2. 85.11 

 

Table 1 section showcases existing ship detection models, 

which mainly focus on general ship classification using CNNs 

and object detection approaches like Faster R-CNN and 

YOLO. Although these models perform well in identifying 

various ship types, they do not specifically address the 

challenge of parking availability detection. In addition, IoT-

based solutions, though effective, are costly and complex, 

making them less practical for widespread use. 

The introduced ResNet50-based DFE model overcomes 

these limitations by specifically targeting parking availability 

detection. By using the semi-overlapping patch splitting 

technique, it captures both local and global features that are 

important for identifying parking spaces. 

The introduced approach provides a novel and effective 

solution to the specific challenge of parking availability 

detection. 
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Table 1 has summarized a wide range of methods that 

combine marine vessels with ML. Table 1 has presented the 

characteristics of the datasets utilized by these methods, as 

well as the classification/detection performances achieved. 

Table 1 demonstrates the diversity of current research and the 

performance of various approaches in the field of ship 

detection and classification. Most of the studies listed achieved 

high accuracy rates by utilizing various DL architectures. For 

example, the study by Kim et al. [15] employed a faster region-

based CNN to attain a mean average precision of 93.92%. 

Another study by Escorcia-Gutierrez et al. [16], which used a 

mask regional CNN and Weighted extreme learning machine, 

achieved an accuracy of 98.75%. These studies illustrate the 

effectiveness of DL techniques in applications within the 

maritime domain. However, a research by Zhang et al. [22], 

which utilized YOLOv5, listed a relatively lower performance 

with an accuracy of 71.60%. This indicates significant 

performance disparities across research due to the variety of 

methods and datasets used. This table also shows that some 

studies applied data augmentation, suggesting that enhancing 

the model's generalization capability can be achieved through 

this technique. Overall, Table 1 demonstrates the successful 

application of ML and DL techniques in ship detection and 

classification. The results of these studies highlight the 

potential of these technologies for significant applications in 

the maritime industry, including determining the availability 

of parking spaces. These contributions provide insights that 

could serve as a foundation for future research.  

 

1.2 Literature gaps 

 

The following gaps have been identified according to the 

literature review:  

• There is a notable scarcity of research papers specifically 

focused on ship parking detection. Most existing studies rely 

on IoT-based systems, which are complex and expensive to 

implement, limiting their practicality in large-scale marine 

environments. 

• Current methods emphasize IoT systems, but there is a 

pressing need for more mobile and cost-effective solutions to 

detect parking availability for ships. Such systems could 

provide greater flexibility and scalability in diverse marine 

environments. 

• The lack of open-access datasets for ship parking 

detection presents a significant barrier to developing and 

benchmarking new models, particularly those using advanced 

computer vision and DL techniques. This hinders the progress 

of next-generation solutions in the field. 

 

1.3 Motivation and study outline  

 

Ship parking detection is a critical task in marine 

environments such as ports, marinas, and fishing ports to 

ensure smooth operations and minimize congestion. However, 

existing solutions in this area are mostly based on IoT systems, 

which are often complex and costly to implement. These 

systems are typically expensive. Moreover, there is a 

significant lack of research specifically focused on ship 

parking detection, which further limits the development of 

innovative, automated solutions. Additionally, the scarcity of 

open-access datasets poses a major obstacle to the 

advancement of computer vision and DL models that could 

address these challenges more efficiently. Given the urgent 

need for cost-effective alternatives, this research aims to fill 

the gaps in the literature by proposing a novel DL-based 

approach for ship parking detection. 

The literature review highlights a scarcity of automated 

systems for detecting ship parking availability despite the 

potential of DL models to address various computer vision 

challenges. Our primary goal is to address the parking 

availability issue in marines, ports, and fisher shelters, among 

other areas. To this end, we have compiled a new dataset using 

an unmanned aerial vehicle (UAV) divided into two categories: 

'full' and ' parking available.' 

The proposed ResNet50-based DFE model is inspired by a 

popular image transformers (ViT) [29], which demonstrate the 

effectiveness of fixed-size patch division for extracting 

features from local areas. However, the patch-based feature 

extraction approach is a complex approach. For example, ViT 

uses patch sizes such as 14 × 14, 16 × 16 and 32 × 32, and 

using these sizes, 256, 196 and 49 fixed-size patches are 

obtained from a 224 × 224 image, respectively. To obtain a 

more linear method and use the effectiveness of fixed-size 

patch division, we proposed a new patch division approach, 

the semi-overlapped patch division technique. In this work, we 

used 112 × 112 patches with a stride of 56 and the created 9 

patches have been employed to extract local features. 

Additionally, we used the entire image to extract global 

features. At this stage, we used trained ResNet50 as feature 

extractor. We generated the ultimate feature vector by 

combining the obtained local and global features. Then, we 

employed iterative neighborhood component analysis (INCA) 

[30] to choose the most meaningful/valuable features to solve 

the problem in the ultimate feature vector. 

Classification results have been obtained using a shallow 

classifier, specifically a support vector machine (SVM) [31]. 

Additionally, a Bayesian optimizer [32] has been employed to 

tune the optimal hyperparameters for the utilized SVM 

classifier to attain higher classification performance. 

 

1.4 Novelties and contributions 

 

We have presented a parking availability detection model 

for marine vehicles and as our surveyed literature, we are the 

first team is to present a solving for parking availability 

detection for marine vessels using computer vision. 

Novelties: 

• We have gathered a novel image dataset using an UAV to 

create a testbed for parking availability detection. 

• The semi-overlapped patch division technique has been 

presented to extract local features from the local areas using 

less complexity in this research. 

Contributions: 

• Addressing the parking availability issue for ships is a 

prevalent and economically significant problem, especially 

considering its implications for port congestion. By compiling 

a new dataset from fisher shelters and marines specifically for 

parking availability detection, we contribute to refining the 

methodology for parking availability analysis. 

• We propose a novel DFE model inspired by ViT. This 

model employs semi-overlapped blocks to extract local and 

global deep features effectively. The DFE model has 

demonstrated a test classification accuracy of 97.27% on the 

marine image dataset, underscoring its capability to detect 

parking availability for ships accurately. This result shows that 

DL can be useful for real-world problems in marine logistics. 

It also supports the use of ML for detecting ship parking 

availability. 
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2. THE COLLECTED IMAGE DATASET  

 

In this study, images were collected from over 200 fisher 

shelters with varying vessel capacities along the coasts of the 

Mediterranean, Black Sea, Marmara, and Aegean Seas in 

Turkey. Figure 1 provides a visual overview of the data 

collection locations. 

 

 
 

Figure 1. The data collection locations 

 

The images were captured using a DJI Mavic 3 Enterprise 

UAV equipped with a 56x zoom camera, a 4/3 CMOS 20MP 

sensor, and a mechanical shutter. The data were recorded in 

4K resolution video format, and the UAV was capable of 

capturing images with a 0.7-second interval between shots. To 

ensure the robustness of the dataset, images were collected 

under varying environmental conditions, including different 

lighting (morning, afternoon, and evening) and weather 

conditions (clear, cloudy, and rainy days). This diversity helps 

to capture a wide range of visual scenarios, testing the model's 

ability to generalize across different situations. 

The collected dataset was separated into training and test 

subsets. The details are presented in Table 2. The dataset 

consists of two classes: "Full" (indicating no parking available) 

and "Parking available." In total, 3,687 images were collected, 

with 2,772 allocated for training and 915 for testing, 

maintaining a roughly 75:25 split. However, the dataset is 

imbalanced, with more images of "Parking available" than 

"Full." The gathered dataset is partitioned into train and test 

folders and the distribution of the collected image dataset is 

demonstrated in Table 2. 

As can be highlighted from Table 2, we have used an 

imbalanced dataset and training and test split ration is 

approximated 75:25. 

The dataset's variations in lighting, weather, and time of day 

contribute to its robustness and ensure that the approach is 

exposed to a wide variety of conditions. This diversity allows 

the model to better generalize to real-world situations. 

 

Table 2. ML-based studies using image dataset for ship 

detection classification and marine parking availability 

 
No. Class Train Test Total 

1 Full 1063 350 1413 

2 Parking available 1709 565 2274 

Total 2772 915 3687 

 
 

3. THE INTRODUCED RESNET50-BASED DEEP 

FEATURE ENGINEERING APPROACH 

 

We introduce a novel DFE approach based on ResNet50, 

employing one of the most prominent CNNs in our research. 

ResNet50 is renowned for utilizing residual blocks to mitigate 

the vanishing gradient problem, a key feature that enhances its 

performance for DL tasks. The proposed model aims to detect 

ship parking availability. To achieve this goal, we gathered a 

new dataset and designed a ResNet50-based exemplar DFE 

approach. The schematic overview of the recommended 

approach is demonstrated in Figure 2. 
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Figure 2. The general block diagram of the recommended approach 

 

The dataset was collected using a UAV to capture images 

of various ship parking areas, and labeling was performed after 

the dataset was collected. ResNet50, a widely used CNN, was 

selected as the base feature extractor for the approach. 

Leveraging the pre-trained version of ResNet50 allowed us to 

benefit from transfer learning, reduce the need for large 

amounts of training data, and increase model efficiency. The 

ResNet50 architecture includes residual connections to avoid 

the vanishing gradient problem, which enables the approach to 

perform well even with deeper networks. 

A novel semi-overlapping patch splitting strategy was used 

to improve feature extraction. The images were split into 112 

× 112 × 3 patches with a stride of 56 steps. After patch splitting, 

both local features from the patches and global features from 

the entire image were extracted using the GAP (Global 

Average Pooling) layer of the pre-trained ResNet50 approach. 

This step reduced the complexity of the feature maps while 

preserving important information. In total, nine feature vectors 

were created from the patches and one global feature vector 

from the entire image, and these were combined to form a 

comprehensive feature representation of the image. 

INCA was then implemented to the combined feature vector 

to choose the most informative features. The chosen features 

were passed through the SVM. Bayesian optimization was 

used to fine-tune the hyperparameters of the SVM, improving 

the classification accuracy by minimizing the misclassification 

rate. 

In this research, the used CNN is ResNet50. Therefore, the 

core architecture of ResNet50, along with the mathematical 

formulation of the recommended approach, is detailed in 

Figure 3. 

We present a schematic representation of the main block of 

ResNet50 in Figure 3. The mathematical framework 

underpinning ResNet50 is detailed in the following sections. 

 

𝐹: (256,512,1024,2048), 𝑅: (3,4,6,3) (1) 

 

Herein, F: number of filters and R: number of repetitions.  

 
 

Figure 3. The block design of the ResNet50 

 

Utilizing ResNet50, we trained the collected image dataset 

and created a pretrained ResNet50 CNN alongside a DFE 

model. This DFE model comprises three main phases: 

Feature extraction: In this phase, semi-overlapped patch 

division and the GAP layer of the pretrained ResNet50 were 

used to generate local and global features. 

Feature selection: The INCA method was employed to 

obtain the most informative results. 

Classification: The SVM classifier was implemented in this 

phase. Furthermore, a Bayesian optimizer was applied to the 

SVM classifier to determine the optimal hyperparameters. 

Through these phases, we implemented the introduced 

ResNet50-based DFE approach. A graphical overview of the 

presented ResNet50-based approach is outlined in Figure 4. 

The details of the introduced ResNet50-based DFE 

approach are given as below step by step.  

Step 1: Train the ResNet50 by implementing the training 

image dataset.  

Step 2: Employ semi-overlapped patch division to each test 

image. 

 

𝑃𝑘 = 𝐼𝑚(𝑖: 𝑖 + 111, 𝑗: 𝑗 + 11, : ),  
𝑖 ∈ {1,57, … ,113}, 

𝑘 ∈ {1,2, … ,9}, 𝑗 ∈ {1,57, … ,113} 

(2) 
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Herein, P: fixed-size patch, Im: image. Herein, the size of 

the used patch is equal to 112 × 112 × 3 and stride is 56. In this 

step, we have generated nine fixed-size patches. 

The semi-overlapping patch splitting technique was used to 

overcome the limitations of traditional fixed-size patch 

splitting methods, such as those used in Vision Transformers 

(ViT). Traditional patch splitting usually relies on non-

overlapping patches, which can result in the loss of important 

contextual information between adjacent patches. 

Additionally, to minimize this issue, the complexity of the 

model is often increased by using too many patches. In 

contrast, the semi-overlapping approach allows partial overlap 

between patches, preserving more local information, ensuring 

continuity between regions, and enabling more meaningful 

information to be extracted with larger patch sizes (fewer 

patches). This approach is especially important in marine 

parking spot detection, where small details such as ship edges 

or parking boundaries need to be captured accurately.  

Step 3: Generate global features from all images by 

implementing the GAP layer of the pretrained ResNet50.  

 

𝑓1 = 𝑅𝑒𝑠𝑁𝑒𝑡50(𝐼𝑚, 𝐺𝐴𝑃) (3) 

 

Herein, 𝑓1  defines the created feature vector as having a 

length of 2048, and this feature vector represents the global 

feature vector. 

Step 4: Extract local features from the generated patches 

implementing the GAP layer of the pretrained ResNet50.  

 

𝑓𝑘+1 = 𝑅𝑒𝑠𝑁𝑒𝑡50(𝑃𝑘 , 𝐺𝐴𝑃) (4) 

 

where, f(2-10): the local features and the length of each of them 

is 2048. 

Step 5: Concatenate the derived feature vectors. 

 

𝐹 = 𝑚𝑒𝑟𝑔𝑒(𝑓1, , 𝑓2, … , 𝑓10) (5) 

 

where, F: the derived feature vector with a length of 20,480 (= 

2048 × 10). 

 

 
 

Figure 4. The introduced DFE approach based on the ResNet50 

 

Step 6: Implement the INCA to the merged feature vector.  

 

𝑖𝑑𝑥 = 𝑁𝐶𝐴(𝐹, 𝑦) (6) 

 

𝑆𝑟−99(𝑑, 𝑖) = 𝐹(𝑑, 𝑖𝑑𝑥(𝑖)), 𝑖 ∈ {1,2, … , 𝑟}, 

𝑟 ∈ {100,101, … ,1000} 
(7) 

where, F: the derived feature vector with a length of 20,480 (= 

2048×10), idx: the qualified indices, y: actual output, S: 

selected feature vector, and r: range of the iteration. Above 

(see Eqs. (6) and (7)), the iterative feature selection process 

has mathematically been explained, and INCA chooses 901 

(=1000-100+1) feature vectors. Among these 901 feature 

668



 

vectors, the best one has been selected using a greedy 

algorithm according to the loss values. We have used the SVM 

classifier to compute loss values. The best feature vector 

selection process is specified below.  

 

𝑙𝑜𝑠𝑠(𝑟 − 99) = 𝑆𝑉𝑀(𝑆𝑟−99, 𝑦) (8) 

 

[𝑚𝑖𝑛𝑖, 𝑖𝑛𝑥] = min (𝑙𝑜𝑠𝑠) (9) 

 

𝑆𝑒𝑙𝐹𝑒𝑎𝑡 = 𝑆𝑖𝑛𝑥 (10) 

 

Herein, loss: misclassification rate, mini: minimum loss rate, 

inx: index of the minimum loss rate, and SelFeat: the ultimate 

chosen feature vector by INCA. Herein, the length of the 

optimal selected feature vector is 111.  

Step 7: Optimize the hyperparameters of the SVM classifier 

by implementing a Bayesian optimizer.  

Step 8: Classify the choose features by deploying the fine-

tuned SVM classifier.  

 

𝑃𝑟𝑒𝑑 = 𝑆𝑉𝑀(𝑆𝑒𝑙𝐹𝑒𝑎𝑡, 𝑦) (11) 

 

where, Pred: predicted vectors and we have used this predicted 

vector to compute the classification results. 

 

 

4. EXPERIMENTAL RESULTS 

 

This section explains the results derived from the introduced 

ResNet50-based DFE approach. The MATLAB programming 

environment was utilized for the implementation of this model. 

Specifically, the MATLAB Deep Network Designer was 

employed to deploy ResNet50, which was pre-trained using 

the ImageNet1K dataset. Subsequently, our collected dataset 

was trained using ResNet50 on a personal computer (PC) 

equipped with 32 gigabytes of RAM, a 3.1 gigahertz CPU, and 

a GeForce RTX 4090 GPU. The training of ResNet50 was 

conducted with the following parameters: 

Solver: Stochastic Gradient Descent with Momentum 

(SGDM), 

Learning Rate: 0.01, 

L2 Regularization: 0.0001, 

Epochs: 30, 

Mini-batch Size: 32, 

Training and Validation Split: 75:25. 

The training and validation curves obtained with the 

aforementioned parameters are illustrated in Figure 5. 

The ResNet50 approach attained a training accuracy of 

100%, a validation accuracy of 94.23%, and a validation loss 

value of 0.3877. Utilizing this trained ResNet50 model, we 

evaluated the test classification performance using several 

metrics, including classification accuracy, sensitivity, 

specificity, F1-score and the geometric mean. These 

performance metrics were calculated based on the confusion 

matrix derived from the test results depicted in Figure 6. 

Based on the confusion matrix presented in Figure 6, the 

calculated test classification accuracies of the ResNet50 

approach are outlined in Table 3. 

Table 3 reveals that the ResNet50 approach attained a test 

accuracy of 96.39% and a test geometric mean of 96.59%. To 

enhance these results with a reduced feature set, we introduced 

a ResNet50-based DFE approach with the following initial 

configurations: 

• Feature Extraction: 

Patch Division Method: Patches sized 112 × 112 × 3 with a 

stride of 56, 

Number of Patches: 9, 

Feature Extraction Function: GAP layer of the trained 

ResNet50. 

• Feature Selection: 

Range of INCA: [100,1000], 

Loss Value Calculation: SVM with 10-fold cross-validation, 

Length of Selected Feature Vector: 111. 

• Classification: 

Bayesian Optimizer: 100 iterations, focusing on minimizing 

the misclassification rate. 

SVM Configuration: Kernel function is Gaussian, Kernel 

scale is set to 1.4484, Box constraint is 3.1192, 

Standardization is not applied, Coding strategy is One-vs-One, 

and Validation is conducted through 10-fold cross-validation. 

Utilizing these settings, the ResNet50-based DFE model 

was implemented. The calculated test confusion matrix is 

depicted in Figure 7. 

Figure 7 outlines the test results obtained from the 

implemented DFE model in Table 4. 

Table 4 shows that the proposed DFE model achieved a 

classification accuracy of 97.27% and a geometric mean of 

97.40% on the test image dataset. Furthermore, the DFE model 

demonstrated enhanced test classification performance using 

only 111 features in conjunction with a shallow classifier. 

 

 
 

Figure 5. Training and validation curve of the ResNet50 for 

the gathered image dataset 

 

Table 3. The classification performance metrics 

 
Performance Metric Class Result (%) 

Classification accuracy 

Full - 

Parking available  - 

Overall 96.39 

Sensitivity 

Full 97.43 

Parking available  95.75 

Overall 96.59 

Specificity 

Full 95.75 

Parking available  97.43 

Overall 96.59 

F1-score 

Full 95.43 

Parking available  97.06 

Overall 96.25 

Geometric mean 

Full - 

Parking available  - 

Overall 96.59 
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Figure 6. Test confusion matrix of ResNet50 for ship 

parking available dataset. 1: Full, 2: Parking available 

 

 
 

Figure 7. The confusion matrix of the proposed DFE 

 

Table 4. Results of the presented DFE model 

 
Performance Metric Class Result (%) 

Classification accuracy 

Full - 

Parking available  - 

Overall 97.27 

Sensitivity 

Full 98.00 

Parking available  96.81 

Overall 97.41 

Specificity 

Full 96.81 

Parking available  98.00 

Overall 97.41 

F1-score 

Full 96.51 

Parking available  97.78 

Overall 97.15 

Geometric mean 

Full - 

Parking available  - 

Overall 97.40 

5. DISCUSSION 

 

In this study, a novel DFE model based on ResNet50 was 

introduced, and when implemented to the collected image 

dataset, it achieved a test accuracy of over 97% (97.27% and 

see Table 4 for more details) utilizing this ResNet50-based 

DFE model. 

To design the proposed model, we tested the well-known 

CNNs and these are (1) SqueezeNet [33], (2) EfficientNetB0 

[34], (3) DenseNet201 [35], (4) DarkNet53 [36], (5) AlexNet 

[37], (6) VGG19 [38], (7) GoogLeNet [39], (8) ConvNeXt 

[40] (a CNN designed by us), (9) MobileNetV2 [41], and (10) 

ResNet50 [42]. These CNNs were trained using our collected 

image dataset to obtain validation accuracies. Herein, we 

selected the training and validation separation ration as 70:30. 

Herein, we aimed to use the best CNN to extract features. 

Therefore, we used a greedy-based the most suitable CNN 

selection strategy and the computed validation results of these 

10 CNN architectures have been illustrated in Figure 8. 

 

 
 

Figure 8. Comparison of the CNNs 

 

Figure 8 has demonstrated that the best-performing CNN 

among these 10 CNNs is the 10th CNN, which is ResNet50, 

since this CNN attained a 94.23% validation accuracy. The 

second CNN, according to validation accuracy, is the 3rd CNN 

(DenseNet201), which reached a 93.22% validation accuracy. 

Therefore, we selected ResNet50 (ResNet50 has been 

employed as a feature extractor in our DFE) to create our 

presented DFE model. 

By using ResNet50 and a semi-overlapped patch division 

technique, we designed the feature extraction method for the 

suggested DFE model. 

To choose the best features from the generated feature 

vector, INCA (it is an effective iterative feature selector) 

feature selector has been used. 

The last phase of the presented approach is the classification. 

To choose the most effective shallow classifier for the 

recommended DFE model, we tested eight shallow classifiers 

and these are: Decision Tree (DT) [43], Linear Discriminant 

Analysis (LDA) [44], Quadratic Discriminant Analysis (QDA) 

[45], Naïve Bayes (NB) [46], SVM [31], k-Nearest Neighbors 

(kNN) [47], Bagged Tree (BT) [48], and Multilayer 

Perceptron (MLP) [49]. We selected the best accurate 

classifier for our proposed DFE model and the computed 

classification accuracies by using these classifiers have been 

depicted in Figure 9. 
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Figure 9. The classification accuracies of the employed 

classifiers 

 

According to Figure 9, the SVM (accuracy: 96.83%) is the 

most accurate classifier for the parking space availability 

detection problem. To set the parameters of the SVM, we 

applied Bayesian optimization. With the fine-tuning obtained 

through the Bayesian optimizer, the test classification 

accuracy increased from 96.83% to 97.27%. 

Above, we have summarized the story of the presented DFE 

model and highlighted that a cognitive approximation was 

utilized to create the proposed model. In the second step of the 

discussion, we explained the explainable results of our model. 

To present XAI results, we used feature vector analysis and 

activations. 

The presented DFE model has used a semi-overlapped patch 

division model, and nine patches have been generated by 

deploying the presented patch division technique. By 

deploying patches, the local features have been extracted, and 

the whole image has been used to extract global features. To 

evaluate the effectiveness of each created patch and the local 

and global features, we have employed the findings of the 

INCA feature selector. The INCA has selected the best 111 

features. Here, we have analyzed the source of these features 

by using a sample image, and this analysis has been illustrated 

in Figure 10. 

 

 
 

Figure 10. The number of the chosen features according to 

the employed input 

 

Figure 10 has illustrated that 50 out of the selected 111 

features were generated from the whole image. Therefore, 

these 50 features are termed global features, and the remaining 

61 features were generated from the patches. In this aspect, 

these features are considered local features. The most valuable 

patches are the 4th and 5th, since 20 features were generated 

using the 4th patch, and 20 features were selected from those 

generated by the 5th patch. 

Furthermore, Gradient-weighted Class Activation Mapping 

(Grad-CAM) has been employed to provide more explainable 

results about the proposed model, and we have used sample 

images to give visually explainable results. These 

visualizations are shown in Figure 11. In this figure, we have 

demonstrated heatmaps of the sample images and selected 

sample images from both classes. The used Grad-CAM model 

shows how ResNet50 focuses on the region of interest (ROI). 

 

  
(a) Parking available 

 

  
(b) Full 

 

Figure 11. Heatmap images by generating Grad-CAM 

 

Figure 11 illustrates that the proposed ResNet50-based 

model can easily focus on the ROI.  

The findings obtained using Grad-CAM allow the model to 

highlight specific areas of interest, such as parking areas or 

ship locations, during decision-making. This capability is 

critical for practical deployment in the maritime industry, as it 

helps port managers trust the model and easily integrate it into 

their workflows. 

Grad-CAM also ensures the reliability of the model by 

verifying that the model focuses on relevant features, avoiding 

noise or irrelevant parts of the image. It helps troubleshoot and 

improve the model, identify areas for improvement, and 

reduce misclassifications. The explainability offered by Grad-

CAM increases user confidence, making it more feasible to 

deploy in real-world applications such as port congestion 

management and ship tracking. Grad-CAM findings improve 

the transparency and robustness of the model, facilitating 

deployment in dynamic environments and enabling data-

driven, interpretable decisions. 

These results (see Figure 9 and Figure 10) clearly highlight 

the explainability of the presented ResNet50-based model. 

By using these results and findings, the findings, advantages, 

limitations and future directions of the presented research are 

discussed below. 

Findings: 

• The best CNN among the tested CNNs is ResNet50 (see 
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Figure 7). Therefore, we have used it as a feature 

extractor in the proposed model). 

• SVM is the best classifier among the tested classifiers. 

Thus, we tuned the parameters of this classifier. 

• The length of the chosen feature vector is 111, and this 

feature vector contains both global and local features. 

According to the feature analysis, 50 of them are global, 

while 61 are local features. 

• Figure 10 demonstrates that the presented model can 

focus on the ROI. 

Advantages: 

• We have introduced a novel solution for detecting ship 

parking space availability, employing computer vision 

as our proposed solution. 

• This study unveils a new patch division model termed 

semi-overlapped patch division. 

• A cognitive model has been introduced to attain high 

classification performance. 

• The proposed DFE approach attained over 97% test 

accuracy on the collected image dataset for parking 

availability detection. 

• In this research, we have provided both classification 

results and explainable outcomes. 

Limitations: 

• The dataset includes images from over 200 fisher 

shelters in Turkey and focuses on parking space 

availability. However, the dataset may have regional or 

seasonal biases that could affect generalizability. 

• The dataset may also contain class imbalances, 

potentially skewing model performance in 

underrepresented scenarios. 

• UAV-collected data could be influenced by external 

factors such as weather or lighting conditions, 

impacting model accuracy. 

Future directions: 

• We will collect a larger, more diverse dataset using 

UAVs and internet images. This will address biases 

related to region, season, and lighting for better 

generalization. 

• We plan to extend the model to detect ship congestion, 

dock occupancy, and vessel types, beyond parking 

availability. 

• Grad-CAM will be used to improve model 

explainability, providing better visual insights into 

predictions. 

• Future work will explore EfficientNet and lightweight 

custom CNN models to boost performance and reduce 

computational costs. 

• We will partner with maritime authorities and 

stakeholders to test the model in real-world 

environments like ports and fisher shelters. 

• The model will be adapted for parking and occupancy 

detection in other areas like urban car parks, airports, 

and logistics hubs. 

• A real-time monitoring system using UAV feeds and 

AI-based alerts will be developed for ongoing parking 

management. 

• We plan to release part of our dataset publicly to 

promote research and collaboration in maritime 

computer vision. 

• Future studies will combine radar, thermal imaging, 

and visual data to enhance detection accuracy in 

challenging weather or lighting conditions. 

• We plan to introduce an explainable DFE model 

employing Grad-CAM. 

 

 

6. CONCLUSIONS 

 

The main purpose of this research is to solve the parking 

space availability problem for the maritime industry with a 

cost-effective and autonomous method. For this purpose, a 

novel image dataset was collected from approximately 200 

fisher shelters using a UAV. In the second stage, the 

ResNet50-based DFE, which was designed cognitively and 

whose design process is detailed in the discussion section, was 

applied to the collected dataset. The introduced approach 

attained a 97.27% test accuracy and a 97.40% test geometric 

mean, effectively solving the parking space availability 

problem for marine vessels using computer vision. The 

reliability of the method has been demonstrated by presenting 

explainable results in the study. The obtained classification 

results, explainable outcomes, and findings clearly illustrate 

that the presented model is effective for parking space 

availability detection for marine vessels. 
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