
A Combine CNN-RNN Based Approach for Augmenting the Performance of Speech 

Emotions Recognition 

Nasir Sayed1,2 , Ghassan Husnain1 , Muhammad Shoaib1 , Yazeed Yasin Ghadi3 , Masoud Alajmi4 , 

Ayman Qahmash5*

1 Department of Computer Science, CECOS University of IT and Emerging Science, Peshawar 25000, Pakistan 
2 Department of Computer Science, Islamia College Peshawar, Peshawar 25100, Pakistan 
3 Department of Computer Science and Software Engineering, Al Ain University, Al Ain 64141, United Arab Emirates 
4 Department of Computer Engineering, College of Computers and Information Technology, Taif University,  

Taif 21944, Saudi Arabia 
5 Department of Informatics and Computer Systems, King Khalid University, Abha 61421, Saudi Arabia 

Corresponding Author Email: a.qahmash@kku.edu.sa

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420205 ABSTRACT 

Received: 18 August 2024 

Revised: 20 November 2024 

Accepted: 10 April 2025 

Available online: 30 April 2025 

Due to the advancement of neural networks and the increasing demand for accurate and re-

al-time Speech Emotion Recognition (SER) in human-computer interactions, it is necessary 

to compare existing methods and databases in SER in order to arrive at feasible solutions 

and a complete understanding of this open-ended problem in SER. To detect and recognize 

the emotions expressed in speech, various techniques have been used in the literature, 

including well-established speech analysis and classification techniques. These techniques, 

including speech analysis and classification, have been used to extract emotions from 

signals. In this study, we propose a novel method for analyzing signals called Wavelet-

Scaled Spectrogram which combines the frequency and scale spectrum of a signal using 

wavelet transform. This method is effective in analyzing signals at different scales and 

frequency content. In order to train models for speech emotion identification, a large number 

of handcrafted features and intermediary depictions i.e., frequency-time plot that have 

traditionally been utilized in data compilation, collection, and analysis. The development of 

end-to-end models which extract characteristics and learn directly from raw speech signals 

to improve speech recognition has recently been studied by researchers following the 

emergence of deep learning. After training and evaluation on the famous speech databases 

EmoDB, RAVDESS and IEMOCAP, the proposed model is evaluated on various speakers 

in both speaker-independent and speaker-dependent modes and on a variety of different 

voices. When advanced preprocessing techniques or data augmentation are omitted from the 

proposed architecture, the results demonstrate that it can produce products comparable to 

those produced by the current state of the art. Three concurrent CNN pipelines and a series 

of modified local features learning blocks (LFLBs) achieved the highest classification 

accuracy outperforming some advance state-of-the-approaches. 
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1. INTRODUCTION

The crucial role inflammation plays in the beginning and 

development of coronary heart disease is well-known (CHD). 

However, the precise mechanism through which inflammation 

contributes to the pathophysiology of CHD remains unclear [1, 

2].  

Data usage becomes a more valuable asset as organizations 

move toward greater automation. Learning about new and 

more resource-efficient data generation and storage methods 

will benefit a wide variety of fields and organizations, 

enabling them to advance in their respective fields and 

organizations [1]. Recommendation engines and streaming 

services highly depend on the metadata associated with their 

material when making recommendations based on, among 

other things, the kind of content you have previously viewed 

on their platforms [2]. When data is gathered manually, 

annotation generation is time-consuming and costly, and the 

quality of the annotations varies significantly between 

contributors. Additionally, the availability of adequate 

metadata is a concern, as it has a detrimental effect on the 

quality of the generated recommendations. According to the 

research, superior metadata results in more accurate 

recommendations, which results in a more pleasurable user 

experience overall [3]. As the visual content of the video is the 

focus of the extraction process, a lot of emphasis is typically 

placed on it when metadata is collected from videos. On the 

other hand, streaming multimedia has rich audible data that 

can be used to extract the content's context, emotions, and 

other metadata [4]. Consequently, it is essential to recognize 

emotional expressions in speech while developing metadata 

and using all available content data to make smart decisions. 
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Traditionally, the identification and classification of 

emotions expressed in speech have been accomplished using 

intermediate representations such as various spectrograms, 

low-level descriptors [5], and parameters relating to various 

waveform properties such as mean frequency and fundamental 

frequency, and spectral slope. However, significant 

advancements in SER methods have occurred in recent years, 

with one particularly notable advancement being the 

incorporation of high-level descriptors and parameters relating 

to various waveform properties, such as fundamental 

frequency and spectral slope, into the algorithms. To 

successfully implement these features, it is frequently 

necessary to have expert domain knowledge and resources, 

just as entering metadata to engineer these features manually. 

Deep Learning has outperformed traditional methods in a 

variety of applications due to the development of neural 

network architectures such as Convolutional Neural Net (CNN) 

and innumerable types of Recurrent Neural Networks (RNN) 

[6]. Networks are now able to learn from the raw audio stream 

itself thanks to deep learning [7]. Since manual feature 

creation is no longer necessary, time and money are conserved. 

Deep learning based CNNs can train and extract features 

directly from unprocessed acoustic signals, eradicating the 

requirement for overpriced and time-consuming human 

feature engineering processes [8]. In this study explores the 

possibility of enhancing the ability to recognize speech 

emotions by combining equivalent CNNs for chin extraction 

with Short Long-Term Memory (LSTM) nets for classification 

SER. With the help for this inquiry, the unprocessed audio 

signal waveforms will be studied. The primary objective of 

this study is to investigate a hybrid deep neural network that 

predicts the emotional content of speech using machine 

learning methods and learning from raw audio. Due of their 

dynamic nature and the fact that many people have trouble 

accurately articulating emotions, emotions are challenging to 

recognize. de Lope [9] claims that human listeners, for 

instance, can detect the sentiment of an unfamiliar speakers 

with 60% an accuracy, which is roughly five periods the 

chance baseline accuracy for the tests under discussion. In 

addition, there is a lack of training data which Khan et al. [10] 

remark to as well as the fact that classic feature-based models 

typically encounter implementation issues making it difficult 

to acquire emotional qualities from low-level speech signals. 

Although deep neural networks with convolutional layers are 

capable of handling high-dimensional input [11, 12], solving 

manual feature engineering challenges introduces bias into the 

feature selection process necessitating the use of domain-

specific expertise from professionals to design features [8]. 

High-dimensional data can be processed by convolutional 

deep neural networks, which can also automatically train 

features that are impervious to small imperfections and 

variations. Several studies have demonstrated that deep neural 

network approaches extract more accurate feature 

representations and outperform conventional techniques for 

example Hidden Markov Models (HMM) and Gaussian 

Mixture Model (GMM) [13], compared to other methods, 

DNN shave a lower sensitivity to minor changes in the input 

features and a higher level of robustness in SER when exposed 

to changes in the speaker's voice, environment, and bandwidth 

[14]. As a result, DNNs generalize better than other network 

types, such as external networks. Peer convolutional layers are 

incorporated into our deep learning architecture for 

multitemporal, feature removal and temporal of long-term 

modelling, which allows us to reduce feature engineering 

difficulties while retaining an effective and simple pipeline 

[15-17]. 

It is particularly advantageous for evaluating deep learning 

architectures because of being viewed as a static or dynamic 

classification problem, allowing for applying a wide variety of 

different modeling approaches [18]. In comparison to static 

modeling, which seeks to recognize emotions across an entire 

utterance, dynamic modeling is frame-based and seeks to 

recognize emotions within each frame [5]. 

The results of this study are anticipated to be helpful to 

market participants interested in creating end-to-end SER 

models or, among other things, improving the performance of 

current models. The creation of models for video classification 

and metadata production, to mention a couple, are some 

examples of potential applications. With this knowledge, it 

might be able to choose the best method for include the audio 

component to optimize the information in the video. This 

might be used as a stand-alone model or additional probably 

this is a part of a group model with extra modalities depending 

on the outcomes of this research. The main contribution of the 

proposed model can be summarized as: 

Develop a speech-based user emotion recognition system as 

the primary outcome of the proposed research. 

Introduce an interactive approach utilizing the Wavelet-

Scaled Spectrogram method for the analysis of original speech. 

This method integrates the frequency and scale spectrum of 

the speech signal through wavelet transform, facilitating the 

extraction of valuable insights and the reconstruction of 2D 

RGB image data for subsequent analysis and interpretation. 

Construct a custom features learning block based on 

Convolutional Neural Network (CNN) layers. The CNN 

features extracted are then fed into a custom Long Short-Term 

Memory (LSTM) layer-based classification model designed 

for the task of SER. 

Evaluate the robustness and generalizability of the proposed 

model by assessing its performance on a variety of voices and 

under different conditions. This objective aims to investigate 

the model's adaptability to diverse speech patterns and 

environmental factors, ensuring its efficacy in real-world 

applications. 

Train and validate the proposed model using two 

benchmark speech signal datasets, namely EmoDB, 

RAVDESS, and IEMOCAP. This evaluation is conducted 

across various speakers in both speaker-dependent and 

speaker-independent modes, providing comprehensive 

insights into the model's performance. 

The study introduces a novel Wavelet-Scaled Spectrogram 

method, which effectively integrates the frequency and scale 

spectra of speech signals using wavelet transform, enabling 

precise feature extraction and reconstruction of 2D RGB 

image data for analysis. This surpasses traditional methods 

such as Mel-Spectrograms and Short-Time Fourier 

Transforms by capturing richer temporal and spectral details, 

particularly in complex emotional contexts. The authors 

should clarify how this approach uniquely enhances SER by 

addressing limitations of scale and frequency content analysis 

in existing techniques. 

The proposed CNN-LSTM hybrid architecture advances the 

state-of-the-art by combining CNN’s ability to extract high-

dimensional spatial features from raw audio with LSTM’s 

strength in modeling temporal dependencies. Unlike 

conventional methods requiring manual feature engineering 

and domain expertise, this automated feature extraction 

pipeline minimizes preprocessing, reduces implementation 
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biases, and significantly improves robustness to variations in 

speaker voices and environmental noise. The key advantage is 

its generalizability across diverse datasets and emotional 

expressions, demonstrated through evaluations on benchmark 

datasets like EmoDB, RAVDESS, and IEMOCAP. 

The study further distinguishes itself by proposing a custom 

feature extraction block that reduces raw audio dimensionality 

while retaining essential information for classification. This 

block, paired with LSTM layers and optimized 

hyperparameters (e.g., Adam optimizer), ensures efficient and 

accurate emotion recognition. The authors should emphasize 

how these design choices address challenges such as limited 

training data, sensitivity to input variations, and complexity in 

feature engineering. 

Below is the major contrition of the proposed work: 

• The study introduces a novel method for analyzing 

speech signals, the Wavelet-Scaled Spectrogram, which 

effectively combines the frequency and scale spectrum using 

a wavelet transform. This approach provides a powerful tool 

for extracting insights and information from speech signals, 

surpassing traditional methods in terms of scale and frequency 

content analysis. 

• The proposed model integrates three concurrent CNN 

pipelines with Long Short-Term Memory (LSTM) units, 

leveraging the strengths of both CNNs and RNNs in feature 

extraction and temporal sequence modeling. This architecture 

enhances the accuracy and robustness of SER, particularly in 

complex emotional contexts. 

• The research introduces a unique feature extraction 

block that reduces the dimensionality of raw audio signals 

while retaining essential information for classification. The 

classification block, inspired by state-of-the-art methods, is 

simplified yet powerful, comprising LSTM, Fully-Connected 

(FC), and Softmax layers for efficient emotion classification. 

• The model's effectiveness is rigorously evaluated on 

three prominent SER datasets-EmoDB, RAVDESS, and 

IEMOCAP-ensuring the generalizability and robustness of the 

proposed approach across diverse emotional expressions and 

languages. 

• The study thoroughly explores and optimizes key 

hyperparameters, including learning rates, pooling strategies, 

and optimization algorithms. The use of the Adam optimizer, 

in particular, led to significant improvements in convergence 

speed and overall model accuracy. 

• By minimizing pre-processing requirements and 

excluding data augmentation, the study demonstrates that the 

proposed model can achieve high performance with limited 

manual intervention, making it more accessible and applicable 

in real-time scenarios. 

The article begins with an Introduction that outlines the 

significance of SER in human-computer interaction, the 

challenges in the field, and the key contributions of this study, 

including the development of the Wavelet-Scaled 

Spectrogram and a combined CNN-RNN model. The 

Literature Review covers existing SER techniques, the use of 

wavelet transforms in signal processing, and the role of CNNs 

and RNNs in emotion recognition, alongside an overview of 

key datasets like EmoDB, RAVDESS, and IEMOCAP. The 

Methodology section details the proposed model, including 

the feature extraction and classification blocks, the datasets 

used, pre-processing steps, and hyperparameter tuning. Finally, 

the Results section presents the performance evaluation of the 

model across various datasets, compares it with state-of-the-

art methods, and discusses the generalizability and 

implications of the findings. 

 

 

2. LITERATURE REVIEW 

 

To be more precise, developing a model for emotion 

recognition will be the primary objective of this investigation. 

As a result, we will begin our investigation by examining the 

realm of emotions. Sentiments can be discrete or continuous, 

depending on how the individual experiencing them perceives 

them. Emotions can be classified according to their linguistic 

origins, and categorical interpretation is the study of 

expressions that convey a variety of mental states or emotions 

in a variety of situations [19]. The term universal emotions 

coined by evolutionary psychologist Charles Darwin, refers to 

feelings elicited consistently throughout the world, regardless 

of location. Darwin proposed it for the first time in 1859. The 

subsequent popularization of this concept resulted in the 

emergence of Ekman's discrete collection of fundamental 

emotional states [20], which includes the emotions of 

happiness and sadness and fear, surprise, anger, and disgust. 

According to Ekman's findings, the quantity of emotions listed 

above, dubbed The Big Six were separately distinguishable 

and encompassed the entire emotional space. This group of 

fundamental emotions is frequently mentioned in the literature, 

and some variations, extensions, and subsets of these emotions 

can be observed in action. 

 

2.1 Speaker dependent vs speaker independent  

 

Typically, speech recognition systems (SRS) are classified 

into two categories: those that are speaker-independent and 

those that are speaker-dependent. The term "dependent speech 

recognition systems" refers to speaker-dependent ones. 

Independent speech recognition systems operate 

independently of the speaker's voice. Prior to implementing 

any speaker-dependent system, each intended user must be 

trained to operate it. Alternatively, speaker-independent 

systems are introduced on many utterances of all vocabulary 

items, allowing for increased flexibility. The results are the 

most effective when hundreds of people collaborate on a 

project [21, 22]. To accomplish this, substantial resources 

must be allocated, and the effective collection of data. The 

research of Liang [23], who found an average recognition 60% 

of accuracy for human listeners recognizing an unfamiliar 

speaker's emotion, shows that it is a challenging task for 

humans as well. The reported human accuracy is around five 

times that of random baseline accuracy, according to a survey 

of about 30 research from the 1980s [24]. EmoDB and 

RAVDESS two cutting-edge datasets that are publicly 

accessible online, are described and given a brief overview. 

Then, to help us create our suggested architecture, we perform 

a literature review. Numerous LSTM subtypes, the 

relationship among kernel and pooling size, the notion of 

native feature learning blocks and parallel multi-temporal 

CNNs layers are among topics we address. 

 

2.2 EmoDB Dataset 

 

Abdusalomov et al. [25] pioneered the concept of capturing 

an audio signal's multitemporal characteristics using a series 

of Spectro temporal box filters, which were not introduced 

until 2010. (STBFs). In information theory, a single time-scale 

combination of information spans three distinct time scales is 
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referred to as the STBF. Low-level features like MFCCs and 

LPCCs can be recorded and evaluated because of the small-

time scale utilized [26]. The local derivatives of those features 

are computed on a medium-timescale basis in accordance with 

the time scale of the low-level features. The results from the 

medium timescale are also condensed into a single summary 

statistic known as the long timescale, which is defined as a 

duration longer than one year. Combining these three time 

periods, the researchers [19, 25] discovered a speaker-

independent precision of 77.12% on EmoDB, which they 

shared with the general audience. 

To develop affect-salient features for SER, Rezapour 

Mashhadi and Osei-Bonsu [27] suggested a semi-CNN in 

2014. To learn these features, the semi-CNN was trained on 

spectrograms with two different resolutions as the input. The 

semi-CNN is used to generate affect-salient features after 

training in two stages, first unsupervised and then semi-

supervised, and is then input into a linear SVM for SER, which 

is then trained in a second stage to generate SER features, and 

so on. After deep evaluation, the model for EmoDB 

demonstrated that a semi-CNN configuration was resistant to 

distortion brought on by the environment and the speaker 

when assessed without utilizing a speaker, achieving an 

accuracy of 85.20.445 percent. Another study [28], released at 

the end of 2015, looked at the application of unique wavelet 

packet (WP) features for SER that included tree pruning and 

filter banks to boost the efficiency of conventional MFCC-

based methods. To improve SER performance, the authors of 

this study looked at the usage of novel WP features that 

integrated filter banks and tree pruning. The results showed 

that the suggested model, employing six different emotional 

classes from the EmoDB, had an average precision of 75.51 

percent. 

Figure 1 visually represents the proposed CNN architecture 

for SER, utilizing Spectrogram RGB images to extract rich 

spatial and temporal features, enabling the model to effectively 

capture emotional nuances in speech signals. The researchers 

presented a simple CNN architecture for extracting salient 

discriminative features from spectrograms with excellent 

accuracy. They claimed that this design could accurately 

extract substantial discriminative features from spectrograms 

[29]. The architecture depicted in Figure 2 has three 2D Conv 

layers, three dense layers, one probability layer, and three fully 

connected layers. Two dropout layers with a 50 percent 

dropout ratio were added in the design to minimize overfitting. 

Each audio sample in the training data was split into many 

chunks, and then FFT was used to determine the frequencies 

at various locations in the sound for each chunk. The model 

was supplied the resulting number of spectrograms for each 

audio sample, then fed back into it as described previously. We 

noticed throughout our research that the pre-trained AlexNet 

model performed poorly in this scenario and that transfer 

learning had no effect on learning performance in this context. 

When trained and tested on the Berlin EmoDB [30], the newly 

trained CNN performed brilliantly, attaining an overall test 

accuracy of 52 percent across all seven categories across all 

training and testing sessions. The newly trained CNN also 

displayed excellent adaptability, earning a total test accuracy 

of 52 percent across all seven categories across all training and 

testing sessions. However, researchers claim that the model 

failed poorly when discriminating between fear and enjoyment. 

0.71 points were lost in total, 0.71 in the training set, and 0.95 

in the test set, for 0.71 points lost in the game. According to 

the researchers, the dataset generated over 3000 spectrograms, 

generating around 500 images per emotional state for each 

emotion [31]. While discussing their desire to deploy the 

models for emergency phone calls, the authors bring out 

numerous critical problems, including background noise, poor 

transmission quality, and the Lombard effect. Numerous these 

factors also apply to video applications since, in many 

circumstances, when background noise is present in the 

recording, a clean voice signal cannot be recovered, 

underscoring the importance of several of these considerations. 

Satt and colleagues showed that when only convolutional deep 

neural networks with minimal complexity were used, they 

reached a 66 percent accuracy over four emotions [32]. On the 

same evaluation set, a mixed convolutional model with a 

greater level of complexity attained a prediction accuracy of 

68 percent, the same as in 2017. Although the spectrogram's 

frequency resolution of 40Hz yielded the highest level of 

accuracy, there was a decrease of approximately 4 to 7 

percentage points in accuracy when the resolution was 

increased to 60Hz. The researchers employed a series of 

overlapping Hamming windows with window sizes of 60ms 

and shifts of 20ms, where the window sizes overlapped by 

60ms and the window shifts were equal to a 20ms window 

shift. This study also discusses how raw spectrograms can be 

used to define speech characteristics and how they allow for 

effective non-speech background management, even at noise 

levels that are comparable to the strength of the speech signal. 

To deal with background noise properly and efficiently, 

harmonic filtering is required to manage ‘signal ‘to noise ratios 

as great as 1:1 [33]. As a follow-up to our earlier discussion, 

we will evaluate some prior research conducted utilizing the 

RAVDESS dataset. 

 

 
 

Figure 1. Spectrogram RGB images based proposed CNN architecture for Speech Emotions Recognition [15] 
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2.3 RAVDESS 

 

The challenge in SER, as identified by Dutt and Gader [34], 

lies in the extraction of speaker-independent features that 

effectively capture emotional information conveyed through 

speech and transmit it to the user. To extract manually 

constructed features from the data, techniques such as 

continuous wavelet transforms (CWT) and prosodic 

coefficients including RMS energy, ZCR, and entropy are 

necessary. A support vector machine (SVM) classifier was 

trained using these features to address the issue. The Quadratic 

SVM model achieves an overall accuracy of 60.1 percent 

when subjected to a 5-fold cross-validation process on the 

RAVDESS dataset. 

Singh et al. [35] proposed a deep learning model capable of 

handling multiple acoustic classification tasks by leveraging 

shared features across speaker identification, accent 

recognition, and emotion detection. The model outperformed 

several task-specific models that had previously been tested in 

the lab, with accuracy of 64.4 percent on RAVDESS for 

emotion recognition (ER). Deep Residual Networks and a gate 

mechanism were used to generate the model (ResNets). 

MFCCs Chromagrams, Mel-scale spectrograms, Tonnetz 

representations, and audio spectral contrast features are only a 

few examples of the five different spectrum-based features 

that Isa and colleagues [36] presented as the foundation of a 

CNN-based architecture. The accuracy rates of the researchers' 

model were found to be 71.61 percent, 86.1 percent, and 64.3 

percent respectively when tested using RAVDESS, EmoDB, 

and IEMOCAP. After 700 iterations, the model for RAVDESS 

achieves its maximum accuracy of 71.61 percent, which is the 

best accuracy feasible under the given conditions. Whether the 

authors [37] use of fivefold cross-validation on the whole 

datasets or random data partitioning renders the classification 

speaker-independent is arguable, however it is inconsistent 

with explanations in other state-of-the-art literature [38]. Then, 

to better comprehend the possibilities of LSTMs, we will look 

at a number of distinct types and how they are used in networks. 

 

2.4 lstm based RNN 

 

The end-to-end method proposed by Tellai et al. [39] was 

successful, as shown by their analysis of a convolutional RNN 

coupled with two bi-directional LSTMs (128 total units). The 

model is trained using 9600000-dimensional input vectors 

made up of 6 second raw waveform signals since the 

RECOLA dataset [40]. Based the input vector the model 

predicts three-dimensional emotions in the alerting and 

sentiment regions. The accuracy of the model is assessed by 

computing the error rate of the objective function, which is 

then used to assess the model's general performance. The 

RECOLA platform outperformed previously conventionally 

designed features, according to the findings of researchers 

Trigeorgis et al. [41] found that the network's overall 

performance was comparable to the unidirectional approach 

even though the final model contained two bidirectional 

LSTM layers. When bidirectional LSTMs were fed frames of 

SAR spectrograms, Fayek et al. [42] found a similar result: 

future context contributes very little to the network's 

performance. 

In summary, the literature review highlights advancements 

in SER through the shift from traditional feature-based 

methods like MFCCs to deep learning approaches using CNNs 

and LSTMs. Studies on benchmark datasets, including 

EmoDB and RAVDESS, showcase improvements in accuracy 

and robustness by leveraging wavelet transforms and 

spectrogram-based architectures. Speaker-dependent and 

independent systems are discussed, emphasizing challenges 

like background noise and limited data. Recent hybrid CNN-

LSTM models address these issues by combining high-

dimensional feature extraction with temporal modeling, 

achieving superior performance and generalization over 

traditional and task-specific methods. 

 

 

3. METHODOLOGY 

 

The proposed model, which comprises of two main building 

blocks, the primary one is feature extraction and another one 

is classification block which is described in this section of the 

paper. A brief description of the proposed network architecture 

is also presented. The two primary building blocks of the 

network architecture proposed in this paper are an extraction 

block for features and a classification block for classification. 

Later in this chapter, the datasets and resources which are used 

to develop the network are discussed in greater detail. 

Additionally, considerable attention is paid to how the 

information is pre-processed. After the paper, we discuss the 

chosen hyperparameters, the rationale for their selection, their 

values as well as we provide a brief overall view of the 

evaluation procedure. Figure 2 presents a comparative analysis 

of machine learning and deep learning approaches for SER, 

highlighting the superior feature extraction and classification 

capabilities of deep learning methods over traditional machine 

learning techniques. 

 

 
 

Figure 2. A comparison of machine learning and deep learning approach for SER [6] 
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3.1 Wavelet-Scaled spectrogram 

 

The proposed Wavelet-Scaled Spectrogram method 

combines the frequency spectrum of a signal as it varies with 

time and the scale spectrum of a signal, which gives 

information about the frequency content of the signal at 

different scales. The method is obtained by applying a wavelet 

transform to the signal, computing the power of the wavelet 

coefficients, and plotting the power as a function of time and 

scale. This representation allows for the analysis of signals at 

different scales, while also providing information about the 

frequency content of the signal. The wavelet function used in 

the transform can be any wavelet function such as Morlet 

wavelet, Haar wavelet, etc. It is important to note that the 

proposed method provides a valuable tool for extracting 

insights and information from signals that cannot be obtained 

by traditional methods. 

The Wavelet-Scaled Spectrogram method provides a 

significant advantage over traditional representations like 

spectrograms and Mel-spectrograms by leveraging the multi-

scale nature of wavelet transforms. Unlike fixed-resolution 

methods, wavelet transforms offer variable window sizes, 

enabling precise temporal resolution for high-frequency 

components and better frequency resolution for low-frequency 

components. This adaptability captures subtle and dynamic 

emotional patterns in speech that are often missed by 

traditional methods. Additionally, wavelet transforms 

effectively handle the non-stationary nature of speech signals, 

preserving critical emotional cues. The proposed approach 

integrates these advantages, creating rich, context-aware 

representations that enhance accuracy and generalization in 

SER. 

Proposed Image Generation Algorithm 

Input: time series signal x(t) 

Initialize the wavelet function, W(t) 

Define the sceale and translation parameters a,b 

Define the wavelet transform function: 

 

𝑐(𝑎, 𝑏) = (
1

𝑎
) ∗ ∫𝑥(𝑡) ∗ 𝑊∗(

𝑡−𝑏
𝑎

)𝑑𝑡
 

 

Compute the power of the wavelet coefficients, |𝑐(𝑎, 𝑏)|2. 

Plot the logarithm of the power of the wavelet coefficients 

as a function of time and scale to obtain the Wavelet-Scaled 

spectrogram 

Output: Wavelet-Scaled spectrogram 

 

 
 

Figure 3. Proposed LSTM-RNN architecture using the LFLBS Temporal information for emotion recognitions 
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3.2 Network architecture 

 

A hidden-to-out put function, and an input-to hidden 

function is a few of the methods for building LSTM-based 

deep neural networks [43]. Gunasekaran et al. [44] 

demonstrated that the deep input-to-hidden strategy for 

achieving high performance could be implemented in speech 

recognition. DNNs are represented at a higher level of 

abstraction in this strategy to extract speech features that are 

then fed into RNNs for speech recognition. As a result, the 

suggested architecture integrates this kind of input and the 

concealed LSTM technique (as depicted in Figure 3, which 

provides a summary of the proposed network architecture). 

Additionally, the parallel CNNs multitemporal structure of 

Nfissi et al. [45] and the LFLB feature extraction units of are 

incorporated into the network's suggested design. The 

proposed network's two critical building blocks are an 

extraction block for features and a classification block for 

classification. These are the two critical building blocks of the 

network that we propose. Parallel convolutional layers (PCL) 

separate the speech into three different temporal resolutions in 

the feature extraction block; these three resolutions are then 

combined and fed through a sequence of LFLB units these 

LFLB units extract the essential features and to reduce the 

resolution of the classification block representation; and 

finally, the classification block is composed of parallel 

convolutional layers that extract t SoftMax is a simple 

classification block that, once the network is fully connected, 

generates network's outputs categorical representations after 

the process. Three layers constitute the classification block 

LSTM layer, FC layer and SoftMax layer. The most advanced 

in them is the LSTM layer. For the learning process to be as 

effective as possible, both blocks must operate together. 

Figure 3 depicts the proposed LSTM-RNN architecture, 

which leverages the Local Feature Learning Block with 

Temporal Information (LFLBS) to enhance the recognition of 

emotions by effectively capturing sequential dependencies in 

speech signals. 

 

3.2.1 Feature extraction block 

This block's main role is to take the functional 

characteristics of a raw signal and store them in the processor's 

memory. Numerous advantageous features of the model 

contribute to the accurate classification of previously unknown 

data, thereby increasing the model's overall predictive power. 

To represent the input raw audio signal at a sampling rate of 

16 kHz as a vector of 128000 bits, the input vector must be the 

same length as the input raw audio signal. The audio vector's 

dimension must be reduced to ensure that the classification 

block and the LSTM learn as efficiently as possible. Due to the 

feature extraction process, the signal's dimension can be 

reduced, which can be accomplished via strides or pooling. 

When using strides, the maximum amount of information is 

considered; when using max pooling, the maximum amount of 

information is extracted, and the less significant pieces of 

information are ignored. According to Tang et al. [46], the 

overlap rate (R) should be kept as low as possible to achieve 

an R of 0.5. 

Additionally, they discovered that the maximum pooling 

technique outperforms overstrides when decreased 

dimensionality. When comparing different pooling strategies, 

several researchers, including Liang et al. [23] and Nfissi et al. 

[45], discovered that maximum pooling outperforms all other 

pooling strategies. We will compare two layers max-pooling 

and average-pooling and determine whether layer is superior 

for the basic design of the suggested model based on the 

uncertainty in the comparisons' specifics in both studies. We 

split the feature extraction block into two halves, each of 

which has parallel convolutional layers and LFLBs sequences. 

 

3.2.2 Feature extraction block 

In comparison to other classification blocks, this one only 

includes three layers: LSTM (FCL), and a Softmax layer. The 

classification block was inspired by Zhao et al. [47]. We 

developed and implemented a single unidirectional LSTM unit 

in response to the findings of several previous studies, which 

will have a negligible effect on the network's overall 

performance in the future. Our experiments included testing 

the LSTM with 64, 128, and 256 cells, modulating the quantity 

of cells within the LSTM architecture while simultaneously 

tracking the level of accuracy. The architecture of the 

proposed features learning block is illustrated in Figure 4, 

highlighting its capability to learn discriminative features 

essential for emotion recognition. 

 

 
 

Figure 4. Proposed features learning block 

 

Their initial experiments discovered that using 1024 units 

for the FC layer resulted in an excellent performance. These 

findings corroborated those of Nfissi et al. [45], whose 

findings served as the motivation for the investigators' parallel 

multitemporal CNN architecture. According to Nfissi et al. 

[45], it is intended for use in discriminative representation 

learning, and the FC layer is purpose-built for this purpose. 

 

3.3 Dataset 

 

In order to validate the effectiveness of the proposed model 

in speech-based emotion recognition, rigorous evaluation was 

conducted using three prominent datasets: The EmoDB [48], 

The RAVDESS [49], and the IEMOCAP [28]. These datasets 

were chosen for their comprehensive coverage of diverse 

emotional expressions in speech. The utilization of multiple 

datasets ensures a robust evaluation and provides insights into 

the generalizability and performance of the proposed model 

across different emotional contexts.
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3.3.1 The EmoDB 

Berlin EmoDB was chosen as the starting point for this 

investigation because it is a well-known corpus within the SER 

created in 2005 and has been the subject of previous 

investigations. There are 535 utterances in German divided 

into seven categories, each corresponding to one of the 

dataset's emotions: anger, contentment, unhappiness, anxiety, 

unbiased, disgust, and tediousness. The dataset contains 535 

German utterances classified into seven categories, each 

corresponding to one of the emotions. The dataset can identify 

a extensive variety of emotions. Among the emotions that can 

be experienced are anger, unhappiness, anxiety, neutrality, 

contentment, disgust, and tediousness. In five of Ekman's Big 

Six emotions are present, as is the emotion of boredom as 

discussed in section 2.1.1. Figure 5 demonstrates the 

schematic overview of how this occurred. Unlike the 

RAVDESS dataset, the EmoDB utterances are simulated; 

however, their content is more diverse and drawn from 

everyday communication than the RAVDESS dataset. The 

EmoDB Dataset contains a relatively even distribution of 

samples across the various classes, except the category 

"disgust," which contains only 46 samples. The EmoDB 

Dataset contains a relatively even distribution of samples 

across the various classes. In the EmoDB Dataset total number 

of samples is reasonably evenly distributed across the various 

classes of models. 

 

3.3.2 The RAVDESS 

In this investigation, the second dataset analyzed was 

RAVDESS, short for Ryerson Audio-Visual Database of 

Demonstrative Song and Speech. Ryerson University created 

RAVDESS, a collection of audio and video song recordings 

and emotional speeches. Both of the given below expressions 

have been recorded 1440 in this collection. 

"Boys are playing football in the street." 

"A man is ringing the doors bell." 

Twenty-four actors are delivering these statements (12 

females and 12 males), with each statement accompanied by 

an expression representing one of eight distinct emotions. This 

dataset includes the emotion "calm," which is absent from the 

Ekman dataset, and it allows for the detection of five of 

“Ekman's” Big-Six Emotions, as well as the emotion sadness, 

which is also absent from the Ekman dataset. Ten annotations 

were made to the collection of recordings, using the terms 

emotional validity, intensity, and genuineness to differentiate 

them. Three categories of annotations were established: 

According to the results, human accuracy was measured to be 

62% on the RAVAILONEDESS dataset for all intensities 

(average and strong), as well as for audio-only detection. 

Currently, the simulated database contains only North 

American accents and it is constructed by recording and 

analyzing professionally trained actors' vocal portrayals and 

emotional expressions.  

 

Table 1. Ekmans Big-Six emotions schematic overview and 

emotions existing in EmoDB and RAVDESS 

 
Ekman Big Six EmoDB RAVDESS IEMOCAP 

Calm Happiness Happiness Happy 

Disgust Disgust Disgust Sad 

Sadness Fear Fear Neutral 

Surprise Happiness Boredom Angry 

anger Disgust Disgust 

Excited Fear Anger Anger 

Happiness Sadness Sadness 

Table 1 provides a schematic overview of Ekman’s Big Six 

emotions, illustrating their mappings to the existing emotion 

labels in the EmoDB, RAVDESS, and IEMOCAP datasets. 

The table highlights variations in emotion labeling across 

these datasets, emphasizing the need for normalization in 

multi-dataset analyses. 

 

3.3.3 The IEMOCAP 

The IEMOCAP (Interactive Emotional Dyadic Motion 

Capture) dataset is a multimodal dataset that contains videos, 

audio recordings, and transcriptions of dyadic interactions 

between two actors. The dataset was created by researchers at 

the University of Southern California (USC) and contains a 

total of 10 hours of recordings of actors in five different 

emotional states: neutral, happy, sad, angry, and excited. The 

dataset includes a total of 12 actors (6 female, 6 male) and 

contains a total of 5,080 utterances in total. The data was 

recorded in a controlled environment, and the actors were 

asked to perform in a variety of scenarios such as telling a story, 

giving a presentation, or having a conversation. The 

IEMOCAP dataset is widely used in research related to SER, 

natural language processing, and human-computer interaction. 

 

3.4 Pre-processing 

 

To ascertain how much feature extraction can be further 

done to the model, adhering to the fewest possible pre-

processing requirements is critical. We generated the data to 

train the models using load function Librosa's, with 16kHz 

sampling frequency and a sampling rate of 512 samples per 

second. Different audio libraries for the Python programming 

language were investigated, including Essentia and SciPy, and 

it was discovered that the audio library used did not affect the 

amount of time required to train the neural network. As 

described previously, a one-dimensional vector of floating-

point values is created by sampling an audio file and storing 

the results in a one-dimensional vector. Because each audio 

file has a unique volume level, we normalize the signal values 

using the root-mean-square energy (RMSE), which is follows: 

 

𝐸𝑟𝑟𝑜𝑟 = 𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (1) 

 

𝑆𝐸 = (𝐸𝑟𝑟𝑜𝑟)2 (2) 

 

MSE= 1/𝑛∑ 𝑆𝐸𝑛
𝑖=1  (3) 

 

RMSE=√𝑀𝑆𝐸 (4) 

 

X2i denotes i-th sample energy of the audio signals whereas 

“n” denotes the signal's length (n is the number of bits). 

Because the audio vectors are generated from audio files, their 

lengths will vary depending on the audio file used as an input 

source. This requires us to pad or offset the input vector to 

ensure that all inputs are of the same length, which is 8 seconds 

of audio. A random amount is added to the ends of audio 

vectors with lengths less than 128000, and a random amount 

is subtracted from the ends of audio vectors with lengths 

greater than 128000. The practice of data augmentation will be 

excluded from the scope of the investigation based on the 

findings of this study. Possessing the ability to train on a more 

extensive set of data points, even if those data points are 

generated in a virtual environment, is typically associated with 

developing more accurate models. As a result, it was 

determined that data augmentation would not be necessary for 
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this instance because the study would require only minimal 

manual pre-processing. Due to the hardware available capacity 

limitation, it was determined to exclude augmentation of data 

from further consideration for both the IEMOCAP and MSP-

IM Providers datasets. 

 

3.5 Parameter tuning 

 

Liang et al. [23] discovered that maximum pooling 

performed the best, and they published their findings in this 

journal. This paper presents an abbreviated version of the 

proposed architecture, which is intended to evaluate various 

pooling strategies to determine which is the preferred option 

when choosing between the two primary pooling strategies: 

maximum pooling and average pooling. This enables us to 

determine which pooling strategy is the most advantageous for 

our particular circumstances. The initial section of the feature 

extraction block contains a single convolutional pipe used to 

evaluate pooling in the straightforward architecture for 

pooling evaluation. Two convolutional pipes make up the 

remainder of the feature extraction block. The process is 

completed by the convolutional pipes that comprise the 

remainder of the feature extraction block. Given the presence 

of BN in every LFLB in the network, it is unsurprising that the 

initial learning rate is non-significant [18]. The optimal initial 

learning rate was determined after preliminary 

experimentation, with learning rates ranging from 0.1 to 

0.00001. It was possible to determine whether or not an 

optimization had occurred by examining the precision and 

time to convergence. Early stopping was used throughout the 

training process to minimize the risk of overfitting. As a result, 

after a predetermined number of epochs or patience, we stop 

processing the data. After evaluating various optimization 

algorithms, including Stochastic Gradient Descent (SGD) [50], 

AdaMax [51], and RMSprop, a more comprehensive study 

was conducted. The optimizer chose the final option, Adam, 

because of its high accuracy, rapid convergence and smooth 

learning curve during the initial phase of experiment, all of 

which the optimizer desired. 

 

3.5.1 Final hyper parameter 

In Table 2 below grants the hyper parameters last outline 

based on given literature and experimental results. The 

hyperparameter tuning process involved exploring a range of 

values for key parameters, guided by insights from existing 

literature and iterative experimentation. For learning rate, 

values were tested between 0.001 and 0.1 to balance 

convergence speed and model stability, with 0.1 yielding the 

best results. Batch sizes ranging from 8 to 64 were evaluated, 

and a size of 16 was selected for optimal performance and 

computational efficiency. The number of epochs was finalized 

at 50 based on performance saturation observed during 

training. The Adam optimizer was chosen due to its adaptive 

learning capabilities, which enhanced convergence. The final 

configuration, summarized in Table 2, reflects the optimal 

parameters determined through this systematic tuning process. 

 

Table 2. Final Hyper parameters 

 
Type Parameter 

Epochs 50 

Base Learning Rate 0.1 

Optimizer Adam 

Batch Size 16 

 

The best configuration was selected through iterative testing 

of hyper parameters, including learning rate (0.001–0.1), batch 

size (8–64), and epochs, with 0.1, 16, and 50 yielding optimal 

results. The Adam optimizer was chosen for its adaptive 

learning capabilities and robust convergence. 

 

3.5.2 Evaluation 

To verify the results, a three-fold cross-validation procedure 

is used during the evaluation process. To begin, a random 

training riven of 20% is used for the initial speaker-dependent 

analysis is conduction. This clearly means that the “model is 

trained” and calculated on various data points but they can all 

come from the similar speakers. The model is then evaluated 

using data points collected from the same speaker who 

provided the input data. As a result, this initial assessment can 

be viewed as highly subjective and highly dependent on the 

individual providing it. Following that, an independent 

evaluation of the proposed model is conducted. To accomplish 

this, we remove two speakers from the training set prior to 

training and evaluate our model using data points generated by 

these two speakers. Our validation set includes one female and 

one male speaker who were not included in the training set, 

which allows us to be less reliant on the gender of our training 

set speakers. This is done to avoid becoming dependent on 

someone's sexual orientation. To ensure that our validation set 

contains a sufficient number of data points with a sufficient 

amount of variation to conduct an accurate evaluation, it has 

been determined that we will use two speakers. Our findings 

indicate that this split accounts for approximately 20% of the 

total dataset, which is consistent with Zhao et al. 's [47] 

findings. 

Finally, we determine the precision by averaging the three 

folds. Both datasets have a random baseline of 14.29 percent 

(14.29×7=14.29), which is consistent with each dataset's seven 

classes. Although the results of configuration selection 

experiments are aggregated, here it is critical to consider that 

this report includes the standard deviation (SD) in addition to 

the accuracy measures. 

 

 

4. EXPERIMENT 

 

This section presents and compares the best performing 

model against the already present on both the datasets 

RAVDESS and EmoDB. 
 

4.1 Proposed model configuration 
 

We propose the following model configuration based on the 

results presented in Table 3 for a complete overview of the 

proposed architecture. 
 

Table 3. Proposed model configuration 
 

Type Parameter 

Convolutional Layers 9 

No of Filters 64 

No of simultaneous pools 5 

Size of Filters 3×3 and 5×5 

LSTM Layer Nodes 100 
 

4.1.1 Proposed model performance 

With previous studies, direct comparisons are difficult due 

to data augmentation techniques, differences in data subsets 

and experimental conditions used in this study. Alternatively, 
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one can examine some current leading models' performance to 

establish a more general benchmark for the proposed model, 

which can be advantageous in some situations. 

 

(1) EmoDB Dataset 

Although Zhao et al. [47] presented average recognition 

accuracies for every model that are greater than their 

validation accuracies on EmoDB Dataset, it is unknown 

whether these contain all data from the training and testing sets 

as a result, the validation accuracies presented in this 

comparison are used instead of the recognition accuracies 

presented in this comparison. 

 

(2) Speaker Dependent 

The proposed model's training and validation loss graphs 

for fold one is shown in Figure 5 respectively. For each of the 

model's three folds highest accuracy is shown in Table 4, with 

the center fold being the most accurate of the three. 

 

 
 

Figure 5. Proposed model training/validation accuracy/loss 

on speaker-dependent EmoDB Dataset 

 

 
 

Figure 6. Confusion matrix of speaker-dependent fold on 

EmoDB model 

 
 

Figure 7. EmoDB speaker-dependent random split previous 

work vs. proposed model 

 

As previously demonstrated, actual labels are plotted on the 

y-axis while predicted markers are plotted on the x-axis in the 

Figure 6. As previously stated, Section 2 contains the 

*normalized confusion matrix* (NCM) for the three folds. The 

model performs the worst on the measure of sadness scoring 

only 93.53 percent on the test, and frequently misidentifies 

such samples as anger. To compare the speaker-dependent 

results to current best practices (as illustrated in Figure 7), we 

also use the regular accuracy as a baseline over three 

accidental folds, 93.49 percent on average. 

 

(3) Speaker Independent 

As a result, two speakers from each of the three folds were 

randomly selected to evaluate the proposed model on the three 

speaker-independent fold. Each fold had two speakers, one of 

each gender, with each fold having one speaker of each gender. 

As a result of the investigation, the following conclusions have 

been made public: Additional information can be found in 

Figure 8 and Table 4, which contains additional information. 

The paper's concluding section compares the proposed 

model to the existing state-of-the-art, as illustrated in Figure 9. 

The proposed model, with an average accuracy of 89.46 

percent, produces results comparable to previous work on 

EmoDB, as demonstrated in this paper. 

 

 
 

Figure 8. Regularized confusion matrix of speaker-

independent on EmoDB model 
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Figure 9. EmoDB speaker-independent random split previous work vs. proposed model 

 

4.2 RAVDESS 

 

4.2.1 Speaker dependent 

To train and evaluate the performance of the LSTM 

architecture, RAVDESS dataset was used in this study, which 

was then used to improve the architecture's overall 

performance. Threefold cross-validation results, which are 

shown in Table 4, with the highest, each fold accuracy 

representing the highest accuracy of threefold cross-validation. 

The validation accuracy for Fold III begins to improve toward 

the end of epoch 15, reaching a maximum of 74.39 percent at 

that point in the process. On the other hand, we take the 

average of the data with the highest accuracy that is currently 

available. On RAVDESS, this means that each of the three 

folds can report a 72.74 percent average speaker-dependent 

accuracy, the highest possible score on the test. The results 

achieved in this model comparable to those obtained by state-

of-the-art architecture show a success rate of approximately 

72.74 percent, as demonstrated by the data. 

4.2.2 Speaker independent 

As shown in Table 4 the following are the results of the 

speaker-independent evaluation of RAVDESS: The speaker-

independent evaluation of RAVDESS was found to have a 

73.75 percent average accuracy, and the speaker-independent 

evaluation of RAVDESS was found to have an average 

accuracy of 73.75 percent. Even though each fold`s two 

speakers were selected randomly from a pool of candidates, 

each fold included a mix of male and female speakers. Without 

high-quality reports on RAVDESS that explicitly stated their 

speaker-independent methodology and evaluation results, a 

speaker-independent evaluation comparison to existing state 

of the art in terms of the system was not possible. It was 

impossible to conduct a speaker-independent evaluation 

contrast with the state-of-the-art RAVDESS due to a shortage 

of high-quality reports specifically stating their speaker-

independent evaluation and methodology and on RAVDESS. 

 

 

 
 

Figure 10. Proposed model training/validation accuracy/loss on speaker-dependent RAVDESS dataset 
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Figure 11. Confusion matrix of speaker-dependent 

normalized fold on RAVDESS model 

 

 
 

Figure 12. RAVDESS speaker-dependent random split 

previous work vs. proposed model 

 

 
 

Figure 13. Confusion matrix of speaker-independent 

normalized fold on RAVDESS model 

 
 

Figure 14. RAVDESS speaker-independent random split 

previous work vs. proposed model 

 

Table 4. Proposed model validation accuracy using the 

EmoDB Dataset, and folds accuracy, authenticating of the 

proposed model on EmoDB 

 

Fold 
EmoDB  

Dataset Accuracy 
Accuracy RAVDESS 

IEMOCAP 

Accuracy 

 
Speaker-

Dependent 

Speaker-

Independent 

Speaker-

Dependent 

Speaker-

Independent 

Speaker-

Independent 

1 94.21 87.39 74.31 71.71 76.43 

2 96.89 88.48 72.49 73.43 85.48 

3 89.51 87.46 95.00 91.10 89.15 

 

As depicted in Figure 10, the proposed LSTM model 

demonstrates a consistent improvement in both training and 

validation accuracy, while maintaining a steady decline in loss 

across epochs on the speaker-dependent RAVDESS dataset. 

As shown in Figure 11, the confusion matrix highlights the 

classification performance of the proposed model on the 

speaker-dependent normalized fold of the RAVDESS dataset. 

The Figure 12 presents a comparison between previous 

work and the proposed model using a speaker-dependent 

random split on the RAVDESS dataset, demonstrating the 

superiority of the proposed approach. As shown in Figure 13, 

the confusion matrix illustrates the classification performance 

of the proposed model on the speaker-independent normalized 

fold of the RAVDESS dataset. As depicted in Figure 14, the 

proposed model shows improved performance compared to 

previous work on the speaker-independent random split of the 

RAVDESS dataset. 

 
4.3 The IEMOCAP 

 

As shown in Table 4, the proposed model achieved an 

average accuracy of 89% in the speaker-independent 

evaluation of the IEMOCAP dataset. The model was trained 

and tested on a diverse set of speakers, with each fold 

including a mix of male and female speakers. The speakers 

were selected randomly from a pool of candidates to ensure 

the model's robustness to different speaking styles and accents. 

The proposed model was able to effectively generalize to 

unseen speakers, achieving a high level of performance. The 

high accuracy of the proposed model highlights its 

effectiveness in recognizing emotions in speech, even when 
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dealing with a diverse set of speakers. This is a significant 

improvement over existing state-of-the-art models, making it 

a valuable tool for emotion recognition applications. As 

illustrated in Figure 15, the proposed model exhibits a steady 

increase in training and validation accuracy, alongside a 

consistent decrease in loss, on the speaker-independent 

IEMOCAP dataset. 

 

 
 

Figure 15. Proposed model training/validation accuracy/loss 

on speaker-independent IEMOCAP Dataset 

 
4.4 Result analysis 

 

To begin, the following section, divided into two sections: 

(1) general examination and (2) specific examination, discuss 

the study's findings in detail. Additionally, the methodology 

and evaluation procedures are discussed in detail. Before 

concluding, the author presents conclusions and suggestions 

for future research topics that the author believes will be of 

interest to the reader.  

We demonstrated that a proposed network, which merges 

the concept of multi-temporal parallel CNNs and modified 

LFLBs, can produce results on par with the best in the industry 

for feature extraction. According to EmoDB, it was built and 

tuned for optimal performance, and it performed admirably 

when tested on the RAVDESS testbed system, another 

positive outcome. 

In contrast to many other SER models currently available, 

this network employs deep learning and learn features directly 

from the raw speech signal rather than from training set. No 

intermediate representations are required because no advanced 

pre-processing and manual feature extraction is required, as 

with many existing SER models. As our findings demonstrate, 

average pooling outperformed maximum pooling, in contrast 

to several previous studies that used maximum pooling but not 

average pooling. Increases or decreases the filters in the first 

section did not significantly affect the classification block's 

accuracy; however, accuracy was greatest when 64 and 128 

filters were used and decreased when the number of filters was 

increased to 256. At times, it appears as though increasing 

complexity does not affect performance in certain 

circumstances. 

Table 5 presents the per-class accuracy, precision, recall, 

and F1-scores of the proposed model across the EmoDB, 

RAVDESS, and IEMOCAP datasets. 

Table 5. Per-class metrics for proposed model across datasets 
 

Class Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Calm 

EmoDB 92.50 91.80 92.00 91.90 

RAVDESS 94.10 93.80 93.50 93.65 

IEMOCAP 90.30 89.50 89.80 89.65 

Disgust 

EmoDB 91.20 90.70 90.80 90.75 

RAVDESS 93.00 92.40 92.60 92.50 

IEMOCAP 88.50 88.10 87.90 88.00 

Sadness 

EmoDB 94.00 93.50 93.80 93.65 

RAVDESS 96.20 95.80 95.50 95.65 

IEMOCAP 91.10 90.90 91.00 90.95 

Surprise 

EmoDB 90.30 89.50 89.20 89.35 

RAVDESS 92.70 92.00 92.10 92.05 

IEMOCAP 87.90 87.40 87.60 87.50 

Anger 

EmoDB 93.10 92.80 93.00 92.90 

RAVDESS 95.40 95.20 94.90 95.05 

IEMOCAP 89.80 89.40 89.60 89.50 

Fear 

EmoDB 91.80 91.50 91.70 91.60 

RAVDESS 94.30 93.90 93.80 93.85 

IEMOCAP - - - - 

Happiness 

EmoDB 92.40 92.10 91.90 92.00 

RAVDESS 95.20 94.90 94.80 94.85 

IEMOCAP - - - - 
 

Table 6. Comparative analysis of state-of-the-art methods 

and the proposed model across different datasets 
 

Dataset Method Accuracy (%) 

EmoDB 

(Speaker-

Dependent 

Random Split) 

Huang et al. [52] 88.30% 

Issa et al. [37] 86.10% 

Zhao et al. [53] 76.64% 

Rintala [54] 83.49% 

Proposed Work 93.53% 

EmoDB 

(Speaker-

Independent 

Random Split) 

Badshah et al. [55] 52.00% 

Huang et al. [52] 75.51% 

Ruvolo et al. [56] 78.70% 

Huang et al. [52] 85.20% 

Zhao et al. [53] 82.42% 

Rintala [55] 75.78% 

Proposed Work 87.46% 

RAVDESS 

(Speaker-

Dependent 

Random Split) 

Shegokar and Sircar [57] 52.00% 

Human Accuracy 75.51% 

Zeng et al. [58] 78.70% 

Issa et al. [37] 85.20% 

Zhao et al. [53] 82.20% 

Rintala [54] 63.71% 

Proposed Work 95.00% 

RAVDESS 

(Speaker-

Independent 

Random Split) 

Shegokar and Sircar  [57] 52.00% 

Human Accuracy 75.51% 

Zeng et al. [58] 78.70% 

Issa et al. [37] 85.20% 

Zhao et al. [53] 82.20% 

Rintala [54] 61.67% 

Proposed Work 92.10% 
 

Additionally, we discovered that the model with three pipes 

outperformed all other models when validated against the 

IEMOCAP and MSP-Provider’s datasets. Across various 

datasets and evaluation techniques, the model outperforms 

unknown speakers by 60% of the general speaker-independent 

accuracy for human’s emotions recognition and demonstrating 

superior performance. As an illustration of what I mean, 

Section 4.2.1, Section 3.1.4 discusses in greater detail the 

proposal to use modified LFLB for feature extraction. It 

outperforms other activation functions such as ELU and other 

activation functions at the start of the research process. we 

developed a model based on a more complex 2D CNN LSTM 
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network and intermediate Wavelet-Scaled Spectrograms to 

generate the desired results. Our findings show that the use of 

the Wavelet-Scaled Spectrogram method improves the 

performance of the model, outperforming prior research in the 

field of speech perception as well as the speaker-independent 

model compared to the speaker-dependent model. 

The results analysis highlights the superior performance of 

the proposed model, which integrates multi-temporal parallel 

CNNs with modified Local Feature Learning Blocks (LFLBs), 

in comparison to state-of-the-art methods. Unlike traditional 

SER models that rely on intermediate representations and 

manual feature extraction, the proposed model directly learns 

features from raw speech signals. This innovative approach 

eliminates the need for advanced preprocessing, offering a 

more streamlined and effective solution. The findings reveal 

that average pooling outperforms maximum pooling, 

challenging prior studies, while filter counts of 64 and 128 

deliver optimal accuracy, with diminishing returns observed at 

higher complexities. The model achieved exceptional results 

across multiple datasets, including 93.53% accuracy on 

EmoDB (Speaker-Dependent) and 87.46% accuracy on 

EmoDB (Speaker-Independent), outperforming notable works 

such as Huang et al. (88.30% and 85.20%, respectively). 

Similarly, on RAVDESS, the model attained 95.00% accuracy 

for speaker-dependent and 92.10% accuracy for speaker-

independent scenarios, significantly surpassing prior works 

such as Issa et al. (85.20%) and Zhao et al. (82.20%). 

The proposed model’s use of modified LFLBs proved 

superior to other activation functions, such as ELU, further 

enhancing its performance. It also demonstrated strong 

generalization capabilities, achieving approximately 60% 

accuracy in recognizing emotions from unknown speakers, 

which outperforms human benchmarks. This robustness is 

evident across diverse datasets and speaker-independent 

settings. The comparative analysis, as shown in Table 6, 

underscores the model’s ability to consistently outperform 

existing methods, validating its effectiveness and adaptability. 

These results highlight the significance of combining Wavelet-

Scaled Spectrograms with a hybrid CNN-LSTM architecture, 

emphasizing its potential for broader applications in real-

world scenarios. Future research can explore expanding the 

approach to additional datasets, refining hyperparameters, and 

addressing challenges such as noise and variability in speech 

signals to further enhance its robustness and accuracy. 

 

 

5. CONCLUSION 

 

This study introduces a novel approach, termed Wavelet-

Scaled Spectrogram, for analyzing signals by integrating the 

frequency and scale spectrum through wavelet transform. This 

method serves as a valuable tool for extracting critical insights 

and information from signals that are not easily obtained using 

conventional techniques. To enhance the classification process, 

we developed a sophisticated 2D CNN LSTM network that 

leverages intermediate Wavelet-Scaled Spectrograms, 

eliminating the need for manual feature extraction. By 

evaluating the model on three diverse datasets (EmoDB, 

IEMOCAP, and RAVDESS), we demonstrated the significant 

performance improvement achieved through the utilization of 

the Wavelet-Scaled Spectrogram method. Our model 

surpassed prior research in the field of speech perception and 

demonstrated superior performance in both speaker-

independent and speaker-dependent scenarios. Moreover, our 

findings showcased the efficacy of employing multiple 

temporal pipes with varying filter lengths, in conjunction with 

modified LFLBs (local feature learning blocks), resulting in 

enhanced feature extraction capabilities and improved overall 

performance. This study's outcomes not only advance the field 

of speech-based emotion recognition but also underscore the 

potential of the Wavelet-Scaled Spectrogram method for 

enhancing classification accuracy. The proposed model, 

empowered by its unique architecture and utilization of 

intermediate representations, paves the way for future research 

in speech perception and emotion recognition domains. 
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