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The upsurge in the number of breast cancer patients makes it important to diagnose the 
disease early so that effective treatment can save the patient's life. Breast cancer diagnosis 
is challenging; however, the adoption of various deep-learning techniques has made this 
hard work much more accessible for radiologists to diagnose breast cancer at an early stage. 
Numerous applications have been developed to provide practical solutions to aid the 
radiologist in medical image analysis. Magnetic Resonance Imaging (MRI) is considered 
the most accurate screening technique for breast cancer identification, and it has 
substantially contributed to decreasing the mortality rate by early breast cancer detection. In 
MRI imaging, breast tumor detection and segmentation are still regarded as a critical task 
due to the limited availability of annotated MRI scans that require more laborious to annotate 
data with accurate ground truth which is a time-consuming process and less feasible in 
medical imaging. This research presents a Semi-Supervised Deep Learning for Automated 
Tumor Segmentation (SDATS). A semi-supervised learning model is employed, utilizing 
labeled and unlabeled data for segmentation. Segment Anything Model (SAM) is used for 
tumors, using bounding boxes to isolate regions of interest and generating precise 
segmentation masks. The YOLOv8 model is utilized for breast tumor detection, identifying 
bounding boxes for regions of interest. Integrating YOLOv8 and SAM makes the proposed 
model more rigorous and aims to enhance efficiency without using pixel-level annotation 
for segmentation. This allows for more efficient processing of large datasets and accelerates 
the diagnostic process. Furthermore, the SDATS diagnoses breast cancer with quicker and 
more precise automatic segmentation.   
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1. INTRODUCTION

To cure breast cancer on time and keep away from
numerous useless tests, proper diagnosis techniques for the 
detection of breast cancer diagnosis is very crucial. Recently 
published data by the World Health Organization (WHO) 
suggested that breast cancer is responsible for 14% of cancer-
associated deaths among women and 23% of all cancer cases 
worldwide [1]. Breast cancer is the top-ranked cancer basis of 
death for women after lung cancer. A substantial statistical rise 
is expected in breast cancer cases by 2040 [2]. Late breast 
cancer treatments result in harmful cancer stages and, as a 
result, a lower survival rate [3]. Thus, early cancer detection 
could significantly reduce the mortality rate [4]. Breast cancer 
is typically triggered by the uncontrolled development of 
abnormal cells that arise from the inner milk lobules or ducts. 
Tumor and microcalcification are two main types of breast 
cancer, which can be cancerous or noncancerous cells [5]. 

Early breast cancer detection is critical for the well-being and 
survival of patients [6]. The abnormal growth of cells causes 
cancer tumors, which attack all the tissues surrounding the 
human body. Cancer can be started everywhere in the body, 
composed of a vast number of cells. Normally through cell 
division human cells develop and multiply continuously to 
create new cells as the organism requires them. New cells 
adjust themselves in the location of aged and damaged cells 
but when the orderly process collapses, the abnormal cells 
grow and multiply. These abnormal tumors are formed by cells 
and are the knobs of tissue.  

Cancerous tumors are also called malignant tumors. They 
spread into, or attack nearby tissues in the body and can move 
to distant places to form new tumors that process is called 
metastasis. Non-cancerous tumors, also called benign cancers 
don’t invade, or attack neighboring tissues. When these tumors 
are removed, they typically don’t grow back while cancerous 
tumors occasionally grow back. Benign growths can be 
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relatively large. Several can cause severe indications or be life-
threatening like benign tumors in the brain. Breast cancer has 
been the leading cause of death among women in recent years 
due to a lack of appropriate diagnosis tools. Figure 1 shows 
according to the WHO Annual Report 2020, about 0.5 million 
fatalities are reported worldwide due to breast cancer. 

 

 
 

Figure 1. Estimated age standardized incidence and mortality 
rate [7] 

 
Machine learning plays a vital role in the control of the 

death rate of breast cancer patients. Using machine learning 
approaches various tests for the detection of breast cancers 
have been used so far, for example, Mammograms, Ultrasound, 
MRI, and biopsy. Magnetic Resonance Imaging (MRI) stands 
out for breast cancer screening modality at the top level, and 
this MR imaging is different from the traditional way, with no 
x-ray experience and no breast compression under controlled 
pressure [8]. Instead, this method uses big magnets, magnetic 
fields, and radio waves to make complete breast images. The 
images cause the breast to have no movements with the 
women lying down being made depending on the vital energy 
magnetic field and radio-frequency radiation to make the 
breast tissue. The breast images are detailed and clear, which 
indicates that it is possible to detect any small or early changes 
that signal cancer or review the cancer tumor in the dense 
breast tissue [9]. The final image is taken by the doctor for 
MRI benefits and risks analysis. Computer Aided Diagnostics 
(CAD) approaches which are being developed to allow 
radiologists to locate and detect abnormal cells in the breast on 
MRIs, may enhance accuracy while simultaneously limiting 
the number of potential victims. The feasible combination of 
computer-aided technology with MRI scans to detect and 
diagnose breast cancer will, in turn, contribute to patient 
success [10].  

Eliminating pixel-level annotation in breast cancer 
detection and segmentation research is critical for several 
reasons. It reduces annotation time by eliminating the 
necessity of pixel-by-pixel labeling of individual images [11], 
allowing researchers to concentrate on model creation. It 
enhances scalability and generalization using a semi-
supervised or weakly supervised approach, which will work 
by combining labeled and unlabeled data. This method is more 
clinically realistic, as it is more comparable to how 
radiologists operate in practice. A radiologist does not label 
every pixel, but regions of interest according to contextual 
signals are made. Besides, collecting fully annotated datasets 
is expensive. Ultimately, the ignoring of the pixel-level 
annotation makes it possible for models to deal with the wide 
variety of breast tumor forms and textures and achieve much 
higher segmentation accuracy. The process of segmenting 

breast cancer tumors in MRI imaging is crucial to the 
anticipated diagnosis and planning of treatment. Nevertheless, 
the pixel-level annotation method used in the analysis 
described several constraints, this method is expensive and not 
scalable because of the consumption of time.  

Breast cancer continues to be a major global health burden 
that impacts millions of women and their families each year. 
The identification of early manifestation and precise diagnosis 
is highly essential for the effective treatment of patients. The 
manual segmentation of tumors from medical images is 
tedious, time-consuming, and error-prone. The literature 
review reveals that many techniques have been used in the 
breast cancer tumor detection and segmentation task in the 
Magnetic Resonance images using a supervised learning 
approach. However, these techniques fail to generalize, 
because of the extremely limited dataset size. Currently, the 
datasets are manually annotated which is a cumbersome, time-
consuming process and requires expert knowledge to 
accurately outline the ground truth images. Therefore, there is 
a need for automated systems that can auto-generate accurate 
segmentation data annotations for breast cancer tumors.  

The proposed SDATS deals with the issue of unbalanced 
techniques based on feature extraction by proposing this 
innovative semi-supervised learning framework for the tasks 
of breast cancer detection and tumor segmentation. However, 
for this particular effort, the proposed model focuses 
specifically on the automation of segmentation dataset 
generation. The system reduces the costs of annotation, given 
the huge amounts of unlabeled data on one hand and the small 
number of annotated expert images on the other hand. The 
research proposes a machine-assisted deep learning labeling 
technique for generating a segmentation dataset using a 
detection model with a SAM without doing pixel-level 
annotation in breast cancer MR imaging. The SAM is an 
instant segmentation model that can provide a superior quality 
mask to the entire image or targeted object present in the image 
using the prompts method [12], but it lacks producing labels 
[13]. This research solves the limitation using bounding box 
prompts from the detection model to pass the SAM model to 
produce a high-quality mask on the object of interest (tumor) 
with corresponding coordinates. The burden of annotation is 
significantly reduced by avoiding pixel-level annotation which 
allows for easy development. Instead of relying on a 
substantial number of manual annotations, the addition of 
enough unlabeled data will improve the weaknesses. Since 
unlabeled data is employed, the small, labeled dataset’s 
limitations are eliminated. The research aims to connect 
advanced technologies simultaneously with practical 
applications and facilitate breast cancer diagnoses through 
efficient automated image analysis. 

The remainder of this paper is organized as follows: Section 
2 reviews the existing literature review along with an analysis 
of related work providing context and highlighting gaps that 
this research aims to fill. Section 3 details the proposed SDATS 
methodology, including the integration of a machine-assisted 
deep-learning labeling technique that leverages a detection 
model and the SAM to generate high-quality masks without 
pixel-level annotation. Section 4 presents the results, 
demonstrating the effectiveness of the approach in reducing 
the annotation burden while improving segmentation accuracy. 
Finally, Section 5 concludes the paper, discussing the 
implications of the findings and suggesting directions for 
future research.
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2. REVIEW OF DEEP LEARNING TECHNIQUES AND 
CURRENT APPROACHES IN BREAST CANCER 
TUMOR SEGMENTATION 
 

Breast cancer is one of the most common and harmful 
concerns of women population in many countries, particularly 
in Western countries. About 11% of women are suffering from 
breast cancer. Different organizations have published several 
reports about the severity of breast cancer according to several 
reports it is considered the second most common cancer type 
after lung cancer and the fifth most common cause of death. 
World Health Organization has presented that over 400,000 
female deaths are due to breast cancer every year. American 
National Cancer Institute reported that in every 3 minutes, one 
female is diagnosed with breast cancer, and in every 13 
minutes, one female is killed by that disease. 

To establish a foundation for the proposed research, it is 
essential to explore the advancements and challenges in the 
field of breast cancer diagnosis, particularly in the context of 
image analysis and segmentation. Traditional computer-aided 
diagnosis (CAD) systems have long been employed for breast 
cancer detection, but they often fall short due to limitations in 
diagnostic accuracy and the complexity of accurately 
identifying tumor characteristics. Given these challenges, the 
integration of deep learning approaches offers a promising 
alternative, addressing many of the shortcomings inherent in 
conventional methods. Deep learning approaches have a great 
deal of interest and consideration in the area of image 
recognition, segmentation, object detection, and computer 
vision in recent years [14]. Deep learning has been used to 
address the shortcomings of the conventional [15], this is 
because of limited diagnostic accuracy. Also, the extreme 
variance in their form, texture, color, and size makes the 
diagnosis procedure difficult for conventional techniques, as 
well as the high degree of similarities in breast tumors [16]. 
Using the advantages of a deep learning CAD system can 
present their capabilities to learn complex deep features to 
improve the diagnosis performance [15]. Even though several 
systems have used conventional machine-learning techniques 
for breast cancer segmentation, the usage of deep learning 
detection and segmentation has been limited in the field of 
breast cancer MR imaging.  

The study by Benjelloun et al. [17] emphasizes the use of 
machine learning for breast cancer tumor segmentation in 
(Dynamic Contrast-Enhanced MR Imaging), which is a vital 
move in breast cancer detection and treatment. To address 
these issues and the limitations of data used for training in 
medical imaging, the research utilizes a deep neural network 
built on the U-Net architecture, that has proven effective in 
image segmentation projects. The U-Net architecture, which is 
an enhancement of the fully Convolutional Neural Network, 
comprises standard FCNN layers coupled with up-sampling 
layers to increase data size, and it integrates previous feature 
maps into the final ones to improve image representation 
learning. Zhang et al. [18] discussed, that breast cancer is a 
major global health risk for women. This work uses artificial 
intelligence, namely deep learning, to improve breast cancer 
tumor identification and categorization. The study uses a kind 
of convolutional neural network known as Mask R-CNN to 
discover and identify possible lesions in breast MRI data. The 
limitations of earlier computer-aided diagnosis systems, which 
relied on labor-intensive human procedures with widely varied 
accuracy and preset features, are intended to be addressed by 
this novel methodology. The work successfully evaluates 

region proposals, recognizes objects, and completes 
segmentation all at once by modifying the Mask R-CNN 
architecture. Further actions may be taken if the precise site of 
the tumor has been identified. Praveena and Kumar [19] have 
employed a deep learning approach that can be used to provide 
enhanced detection aid for breast cancer. The basic idea 
behind the technique is to build a machine-learning model to 
discover the problem by analyzing breast cancer MRI data. 
DMFTNet model was employed for breast cancer detection 
with semantic segmentation, manual annotation approach was 
adopted to label the data.  

The research conducted by Guo et al. [20] have developed 
a technique for detecting and segmenting breast cancer tumors 
by employing a Convolutional Neural Network with a support 
vector machine (SVM). The model was trained on a cloistered 
dataset having 272 patients MRI images from the affiliated 
hospital of Fujian Medical University. Data was labeled 
manually by a radiologist. This model did not achieve 
outstanding results when compared with other models. Xu et 
al. [21] they proposed a framework of automated deep learning 
for MRI utilizing the U-Net model. A private dataset was used 
having 301 patients specifically confirmed biopsy stages III 
with 744 MRI images. Focusing on breast cancer detection and 
treatment, Park et al. [22] proposed a deep learning model for 
three-dimensional tumors of breast cancer segmentation in 
MRI modality. U-Net transformer UNETER was utilized for 
automatic segmentation tasks. The Bounding box is used for 
weak annotation as a ground truth for tumor segmentation to 
train the model on the dataset of DCE-MRI having 736 images. 
Yang et al. [23] presented a multi-class semantic segmentation 
of breast tissue using a Haar wavelet pooling model based on 
U-Net. In the labeling dataset noise was also removed using 
the Otsu threshold with a median filter from the MRI images. 
The dataset is taken from The Cancer Imaging Archive (TCIA). 
To avoid manual annotation, template-based segmentation is 
utilized which is less effective in the medical imaging Field.  

Swiderski et al. [24] investigated a method for breast cancer 
diagnosis and tumor detection using an autoencoder-based 
generative adversarial network (AGAN), a modified GAN 
architecture. CNN has been used to categorize breast cancers, 
and AGAN is used for data augmentation. Image identification, 
similarity detection tasks, and machine learning approaches 
like deep convolutional neural networks have surpassed 
cutting-edge visual recognition jobs. In the study by Kim et al. 
[25], breast abrasion was detected as clotted cell clusters that 
develop into tumor cells. In this regard, an efficient and 
improved breast tumor detection method has been outlined by 
using MRI images that not only offer more rapid detection but 
also provide competent accuracy as compared to other 
available works. Various breast abrasion areas surrounded by 
real breast tumors are not breast tumors but give out several 
issues, therefore their detection and identification come to be 
most challenging. To overcome these issues GAN model with 
the breast tumor local histogram treatment was integrated. In 
the present scenario, a mathematical morphological approach 
was incorporated rather than using conventional techniques 
like filtering approaches in which shape and size features were 
used for identification. 

Existing literature listed in Table 1 and reviews have shown 
that many approaches have been used to detect and segment 
breast tumors from MR images. However, these methods are 
used for very small data sizes because of the limited 
availability of annotated MRI scans. Most existing work 
suffers from manual annotation to train the model on a small 
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number of images to segment tumors. It has been identified 
that most of the literature reviewed showed how well artificial 
intelligence solves the problem of breast cancer detection in 
the field of MRI. Breast cancer diagnosis is a sequential 
process, which is why developing a step-by-step strategy is 
critical. Specifically, the research investigates how deep 
learning can be applied to breast cancer diagnosis and 

prognosis using imaging modalities such as MRI, 
mammograms, ultrasound, and biopsy samples. The goal is to 
leverage deep learning techniques to enhance the accuracy of 
tumor detection and segmentation in breast cancer diagnosis. 
Obtaining data on both traditional and computational 
procedures.  

 
Table 1. Analysis of related work section and comparison 

 
Author Year Model and Input Method Type Performance 

Evaluation 
Key 

Findings Weakness 

Benjelloun et 
al. [17] 2018 

Model: U-Net. 
Dataset: private 

Dataset of 
301 Patients 

Tumor 
Segmentation 

Intersection Over 
Union 
(IoU) 

76.14% 
Small data size is used to train the model, U-Net 

Models require a large dataset to produce authentic 
results. 

Hamad et al. 
[26] 2018 

Model: FCM and 
Thresholding. 

Dataset: Private 
Dataset 

containing 
75 images 

Mass 
segmentation AUC 90% The model may not be generalized and scalable due to 

the small data size used to train the model. 

El Adoui et 
al. 

 [27] 
2019 

Model: U-Net 
and Seg-Net. 

Dataset: 86 DCE- 
MRI of 43 
Cancerous 
patients. 

Reference: 
Manual 

Annotations 

Tumor 
Segmentation 

Mean Intersection 
Over Union (IoU). 

Seg-Net: 
68.88%, 
U-Net: 
76.14% 

Small data size is used, training U-Net models 
efficiently requires a sizable quantity of annotated 

data, and generating accurate ground truth annotations 
for medical images is a time-consuming procedure, 

also requires domain expertise. 

Li et al. [28] 2019 

Model: U-Net. 
Dataset: 313 
Patients MRI 

images. 
Reference: 

Manual 
Annotation. 

Mass 
segmentation 

Dice Similarity 
Coefficient (DSC) 77.6% U-Net models are sensitive to image quality and do 

not perform well when noise is present in the image. 

Guo et al. 
[20] 2022 

Model: CNN and 
SVM. 

Dataset: Private 
Dataset of 272  
Patients of MR 

Images. 

Tumor 
Segmentation 

Dice Similarity 
Coefficient (DSC) 93% 

In small data sizes, SVM does not perform well when 
the dataset has more noise, the proposed model may 
not be able to detect various small tumors that are 

present in hard-to-reach areas of the breast. 

Haq et al. 
 [29] 2022 

Model: cGAN. 
Dataset: RIDER 
from TCIA of 

500 MRI images 

Tumor 
Segmentation 

Dice Similarity 
Coefficient (DSC), 
Intersection Over 

Union 
(IoU) 

DSC: 85% 
IoU: 77% 

Getting noticeable outcomes from cGAN requires 
large and varying quantities of annotated data, which 

is expensive in the medical sector.  

Zhang et al. 
 [18] 2022 

Model: Mask R-
CNN. 

Dataset: From 
Private Hospital 

of 339 MR 
images 

Lesion 
Segmentation 

Dice Similarity 
Coefficient (DSC) 0.79% 

Only 339 images are used to train the model, due to 
the two-stage architecture Mask R-CNN is more 

complex to train and relatively slow. 

Praveena and 
Kumar [19] 2023 

Model: CNN, 
DMFTNet. 

Dataset: From 
Private Institute 
of 400 Patients 

Tumor 
Segmentation 

Dice Similarity 
Coefficient (DSC) 76.14% When data is limited CNN models may occur with an 

overfitting problem. 

Park et al. 
 [22] 2024 

Model: U-Net. 
Dataset: DCE-

MRI of 736 
images 

Lesion 
Segmentation 

Dice Similarity 
Coefficient (DSC) 0.75 The proposed model struggled to capture small size of 

lesions in MR images. 

Yang et al. 
 [23] 2023 

Model: U-Net. 
Dataset: Taken 

from TCIA. 
Template-based 

segmentation 

Tissue 
Segmentation 

Mean 
Intersection Over 

Union 
(mIoU) 

87.48% U-Net model is expensive because it requires a lot of 
annotated data to train the model. 
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Figure 2. MRI-based breast cancer detection and tumor 
segmentation 

 
The main issue that has been identified after reviewing the 

literature is the availability of annotated data due to the very 
time-consuming and labor-intensive process and the need for 
relevant field knowledge to exactly mark the boundary of 
cancer. By solving this problem, deep learning has attained a 
lot of success in the medical field as illustrated in Figure 2.  

Recently deep learning techniques have been wrought in 
different fields like breast cancer diagnosis based on different 
types of imaging modalities. Deep learning achieved excellent 
performance as compared to other traditional machine learning 
techniques. This study aims to improve existing manual 
labeling techniques for breast cancer segmentation datasets by 
integrating state-of-the-art detection models with general-
purpose segmentation models. 

In this paper, we propose an SDATS model, which 
incorporates the YOLOv8 detection model with SAM to detect 
tumors in breast cancer and segment breast cancer tumors. 
However, in comparison to classic segmentation methods, like 
Mask R-CNN UNet or DMFTNet which are dependent on 
pixel-level annotations, SDATS drastically decreases the 
annotation hassle through the use of bounding box prompts 
provided by YOLOv8 and subsequent prompt-supported 
segmentation via SAM. 

Leveraging the best in real-time detection (YOLOv8) and 
efficient segmentation (SAM), SDATS can yield state-of-the-
art segmentation precision with lower reliance on manual 
annotation, making it more scalable and computationally 
efficient. Unlike Mask R-CNN, which is a two-stage process, 
we combine detection and segmentation in a single pipeline, 
improving both speed and accuracy. Moreover, U-Net and 
DMFTNet usually need extensive annotated datasets. At the 
same time, SDATS utilizes semi-supervised learning to make 
the most out of both labeled and unlabeled data, thus 
mitigating the issue of scarce annotated data. 

 
 

3. THE SEMI-SUPERVISED DEEP LEARNING-BASED 
BREAST CANCER DETECTION AND 
SEGMENTATION IN MRI IMAGES 
 

In the proposed SDATS model, Magnetic Resonance (MR) 
images are grasped as input dataset American College of 
Radiology Imaging Network (ACRIN), to accurately detect, 

segment, and auto-generate annotation for the segmentation 
dataset of breast cancer tumors within MR images. Through 
the You Only Look Once (YOLO) model the tumors are 
precisely detected from the image. By integrating the YOLO 
detection model with the SAM, an automated annotation 
system is developed for breast cancer tumor segmentation. 
This approach effectively addresses the challenges of time-
consuming and costly manual annotation, providing a more 
efficient and scalable solution for creating high-quality 
segmentation datasets. The proposed SDATS model segments 
tumor areas from the rest of the image, which makes statistical 
data analyses possible. This can be used by researchers and 
clinicians for diagnosis and treatment planning. The proposed 
SDATS model with the combination of YOLOv8, auto 
annotations, and the Segment Anything Model (SAM) can 
provide robustness and generalizability for tumor localization 
and segmentation. A solution that can serve to improve clinical 
decision-making through medical image analysis. 

To quantify the reduction in annotation effort, we conducted 
a comparative analysis. In practice, manual pixel-level 
annotation required around 5 minutes/image on average, 
whereas the proposed SDATS model instrumented SAM's 
bounding box prompts to reduce the time requirement to 30 
seconds/image. This means a 90% annotation time reduction. 
In addition, the approach generalizes well to larger datasets. 
Using SDATS, the annotation time for a dataset containing 
15,000 images was ~125 hours as opposed to 1,250 hours for 
the standard manual annotation approach. 

Figure 3 shows the entire pipeline from the input to output 
in detail The first step involves feeding an input of raw medical 
image i.e., MRI scan for which the model needs to indulge in 
the segmentation process. Semi-supervised machine-assisted 
labeling workflow for tumor detection and segmentation in 
breast cancer MRI. MRI images are likely used for medical 
diagnostics and deliver detailed, high-definition images of soft 
tissues that can be crucial in identifying abnormalities (like 
tumors) in the breast. These images are utilized to detect and 
segment as the basis for the model automatically. The input to 
the model is an MRI image which is passed through the YOLO 
deep learning detection model. The YOLO is a popular single-
step object detection algorithm that goes through the image 
only once and finds areas in which tumors might be located. 
One of the key capabilities of YOLO is its real-time object 
detection, which enables us to effectively detect sensible 
regions or Regions of Interest (ROIs) within MRI scans. It is 
worth noting that the model does not just classify these regions, 
it also draws boxes around detected areas which provides a 
visual cue, showing roundabouts where the supposed tumors 
can be found. Also, YOLO supplies class probabilities with 
every box, as an estimate of how likely each localized region 
corresponds to a breast tumor. This step is important since it 
helps us to distinguish whether a region is non-cancerous from 
cancerous regions or possibly noise and directs the 
segmentation work only to which is more likely a tumor 
location. 

 
Let I  RH×W×C represent the input MRI image (1) 

 
where: 
 H is the image's height. 
 W represents the image's width, and 
C represents the number of channels (C = 1 for grayscale 

MRI). 
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Figure 3. Semi-supervised labeling for breast cancer detection in MRI 
 

Once the ROI detection and bounding box generation have 
finished in the first stage of tumor localization based on which 
the detection model returns the possible bounding boxes 
together with their associated class probabilities. The 
meritorious boxes indicate a very coarse localization of the 
prospective area where tumors are located, which makes the 
deep learning-based detection algorithms specifically 
designed to avoid misrecognizing normal structures more 
effective in that focus. Though most areas containing tumors 
are likely to be encompassed by the bounding boxes, this 
results in reduced unnecessary segmentation effort not only on 
irrelevant areas of the MRI images. Which increases efficiency 
and makes the system more accurate. These bounding boxes 
are called forward into the next part of the model so that the 
other stage in modeling will not have to analyze this and can 
focus on segmentation. In the first progression of studies, the 
SAM is used, to produce segmentation results. Containing up-
to-the-minute segmentation models and a highly accurate 
SAM model, it receives a pair of bounding boxes, which act as 
prompts, and an MRI image. MRI image is encoded by an 
Image Encoder which gives a learned representation of the raw 
image data, this embedding shows enough resolution to 
discriminate between images but is not useful for direct 
transformation into a segmentation mask, this embedding is a 
compact representation of the image, containing information 
about color and spatial layout necessary for segmentation. The 
image is encoded into a low-dimensional space that allows 
SAM to gracefully process the image by keeping essential 
information required for precise drawing of tumor boundaries. 

Meanwhile, the prompt encoder deals with the bounding 
box and helps to let segmentation work on YOLO-detected 
region of interest (ROI). The prompt encoder ensures the 
relevant parts of the image (i.e., where a potential tumor has 
been detected) that should be considered during the 
segmentation process. By integrating the image encoder and 
prompt encoder, SAM learns to produce more informative and 
discriminative segmentation results which can effectively 
suppress false positives when interpreting non-tumor regions. 
The last step of the process is the lightweight mask decoder, 
this step produces as a final output the fine segmentation mask. 
The image and the bounding box prompt are generated by 
combining information from both. This mask corresponds to 
the different regions of a tumor in an image with a pixel-level 

clear boundary that can be applied for downstream clinical 
exploration or dataset preparation. A lightweight decoder is 
used, making the Mask generation process computationally 
inexpensive and thus delivering segmentation without an 
accuracy trade-off. This method substantially reduced the 
expensive and time-consuming manual annotations required 
for tumor detection and segmentation in medical imaging. By 
combining YOLO for detection, and SAM for segmentation, 
the system can efficiently deal with large amounts of MRI data 
to generate high-quality segmentation masks that could be 
useful for diagnosis, treatment planning, or as part of a labeled 
dataset to form the basis of further research and development. 
 
3.1 The proposed SDATS model utilizing YOLOv8 
architecture for breast tumor detection 
 

The decision to use the YOLOv8 model for breast cancer 
diagnosis in this research is based on its advanced capabilities 
in object detection and classification, making it highly 
effective for analyzing medical images such as mammograms, 
MRIs, and ultrasound scans. It is the most famous within the 
Computer Vision (CV) community, the latest version keeps 
the YOLO legacy alive and helps in getting state-of-the-art 
results for image or video analytics with an easy-to-implement 
framework. YOLO is an object detection algorithm introduced 
in a 2015 research paper by Joseph Redmon and Ali Farhadi. 
The architecture of YOLO is a huge step forward in the realm 
of real-time object detection, outperforming its predecessor: 
The region-based Convolutional Neural Network (R-CNN). 
YOLO is a single-shot detector which means unlike its 
predecessors (SSD, RetinaNet) there are multiple passes 
involved before the final prediction can be made. It uses a 
neural network to predict bounding boxes and class 
possibilities unswervingly. The YOLO model divides the 
input image I into a grid of S × S cells. Each cell is responsible 
for predicting several bounding boxes and associated 
confidence scores for whether the box contains a tumor. 

For each cell, YOLO predicts: 
B bounding boxes, 
Pc: Confidence score for detection of an object (tumor), and 
Parameters (x,y,w,h): the bounding box's coordinates and 

measurements. 
Therefore, for every cell i, its output is: 
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YOLO Outputi = {(xi, yi, wi, hi, Pc,i) } (2) 
 
where: 
• Confidence that the bounding box wraps around a tumor 

Pc, i
 ∈ [0,1] 
• (xi, yi) are the bounding box center's coordinates,  
• It takes two parameters, wi and hi

 which are the width and 
height of the bounding box respectively. 

It must minimize the following cost function that 
incorporates localization, confidence, and classification errors: 
 

𝐿𝐿𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 𝜆𝜆coord�� 1𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜
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𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

 ((x − 𝑥𝑥�)2 + (y − 𝑦𝑦�)2 + (w

− 𝑤𝑤�)2 + �h− ℎ�)2�

+ 𝜆𝜆coof  ��(𝑝𝑝𝑐𝑐

𝐶𝐶

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

− 𝑝𝑝𝑐𝑐�)2+𝜆𝜆cls�� 1𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝚥𝚥� )2

𝐶𝐶

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

  

(3) 

 
where: 
𝑥𝑥�, 𝑦𝑦�,𝑤𝑤� , ℎ�  are the coordinates of the ground-truth bounding 

box, 
𝑝𝑝𝑐𝑐 is the confidence score for ground truth. 
1𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 the indicator function · is set to 1 in case the item is 

present in cell i and to 0 in any other case. 
λcoord, λconf, λcls are the hyperparameters that balance between 

different losses. 
Through YOLO the input image is broken into a grid of cells, 

where each grid cell predicts the objects that fall inside their 
grids. For each cell, YOLO computes: 

Confidence Score: A confidence score represents the 
possibility that an object is in this cell 

Bounding boxes: It provides the exact location of detected 
objects. 

Class probs: These provide the classification of the 
detected object (e.g. car, person, etc.). 

 

 
 

Figure 4. YOLO architecture for breast tumor detection 
 
For breast cancer detection, YOLOv8 is particularly suited 

due to its efficiency in identifying small, intricate tumor 
regions in high-resolution medical images as shown in Figure 
4. The decision to use the YOLOv8 model for breast cancer 

diagnosis stems from its exceptional suitability for this task. 
The efficiency and speed in object and classification detection 
are achieved through YOLOv8. It perfectly aligns with the 
proposed SDATS goals and helps to provide an efficient 
model. It is observed that its real-time capabilities are essential 
for swift and accurate diagnosis. Therefore, YOLOv8 has 
demonstrated outstanding accuracy in identifying 
abnormalities within mammograms, a crucial aspect for 
detecting potential signs of breast cancer. Additionally, its 
architectural versatility improved to handle various object 
detection scenarios, which is highly advantageous given the 
diverse abnormalities and conditions present in mammograms. 
 
3.2 The proposed SDATS leveraging the SAM for tumor 
segmentation 
 

The SAM is an important part of the proposed SDATS 
model for breast cancer detection and localization. SAM is 
integrated into the system, targeting to refine the segmentation, 
especially after detecting potential regions of interest (ROIs) 
in breast cancer medical images such as MRI via the YOLOv8 
model as demonstrated in Figure 5. Due to its flexibility in 
prompt-driven segmentation, it is a splendid candidate for 
medical image analysis with the context of this work. SAM is 
at the heart of the proposed model Segment Anything project, 
which presents a new way to analyze images. The bounding 
box produced by YOLO, (𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑤𝑤𝑅𝑅𝑅𝑅𝑅𝑅 , ℎ𝑅𝑅𝑅𝑅𝑅𝑅 ), represents 
the Region of Interest (ROI) containing the tumor. This ROI 
is passed to the SAM model for segmentation. Some important 
aspects of the SAM are as follows: 

 

 
 

Figure 5. Major steps of the SAM for tumor segmentation 
 
Promotable Segmentation Task: SAM is the most 

effective at generating segmentation masks out of prompts, 
such as bounding boxes provided by YOLOv8, which allows 
for precise identification of tumor boundaries. Spatial or 
textual cues can help SAM generate correct segmentations. 
This model gives the possibility of using it for a wide range of 
image recognition problems and specific object detections. 
This integration enables the model to localize tumors 
effectively while minimizing false positives, a critical 
requirement in medical diagnostics. 

Advanced Architecture: The proposed model SAM is 
built on three main parts: an image encoder, a prompt encoder, 
and a lightweight mask decoder in this breast cancer detection 
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system, the image encoder processes complex medical images 
(MRI, mammograms), converting them into feature-rich 
embeddings. The distinctive feature of this design can 
compute the mask online and generalize to new tasks while 
being aware of the uncertainty in segmentation. Finally, the 
lightweight mask decoder generates a high-resolution 
segmentation mask, which outlines the exact boundaries of the 
detected tumor. 

The SA-1B Dataset: Training SAM is trained on the SA-
1B dataset which consists of over 1 billion masks and 11 
million curated images. This large dataset contains a plethora 
of samples, which will help in boosting the performance of 
SAM. Leveraging this large-scale dataset, SAM enhances the 
overall accuracy and reliability of the system, addressing the 
variability inherent in medical images. 

Zero-Shot Performance: The more important aspect of 
SAM is that it can compete with (and in some cases exceed) 
fully supervised results without seeing a single labeled training 
example. Even without extensive task-specific training, SAM 
performs zero-shot segmentation tasks, meaning it can 
effectively segment tumors in breast cancer images without 
needing annotated datasets for every specific case. The fact 
that it can deal with different types of segmentation tasks 
makes this a crucial tool, without having to engineer the 
prompts for hours. 

 
3.3 Auto annotations and semi-supervised learning 
 

Auto-annotation using the SAM not only enables fast 
creation of a segmentation dataset it is also increasing 
productivity. Using a pre-trained detection model to find 
objects inside the images instead of directly labeling them one 
by one. This integration enables researchers and developers to 
spend more time improving their segmentation models and 
less on annotating images. Auto-annotation is especially 
helpful in managing massive image collections much more 
efficiently than manual annotation. 

Image Encoding: The first step of SAM encodes input 
images using a strong image encoder. This step captures and 
encapsulates the critical features and descriptions within the 
image, facilitating more accurate and detailed processing. 

Prompt Encoding for Context-Aware: SAM bills by 
taking advantage of cues (e.g., from location/context or 
language) during auto-annotation. The prompts are first 
processed by the prompt encoder and translated to latent codes 
for more precise object identification and segmentation. 

Detection Model Integration: SAM integrates one pre-
trained detection model (e.g., Faster R-CNN, YOLO) the 
detection models help detect objects in those images. As an 
example, the model can identify objects like it could be a car, 
person, or animal, automatically pinpointing them for further 
segmentation. 

Generate Segmentation Masks: Once the objects are 
detected, SAM generates segmentation masks that accurately 
represent the detected areas within the image. These masks 
denote the areas corresponding to objects detected in an image. 
A lightweight mask decoder from SAM that can deliver 
accurate masks effectively. 

Zero-Shot Transfer: The no-shot transfer is a unique 
feature of SAM. Zero-shot learning refers to the ability of a 
model to not just generalize across different labels but also 
adapt to new image distributions and tasks without having seen 
any training examples. This is part of the flexibility that allows 
SAM to be adaptable and context-free, without the need for re-

training. Thus, auto-annotation in SAM can quickly generate 
high-quality segmentation datasets consisting of image 
encoding + prompt processing and detection model integration. 
This saves researchers time that can be spent on model 
building, rather than annotating manually. 

The Word-based Approach could be considered the one that 
merges semi-supervised learning concepts, in the context of 
breast cancer detection and tumor segmentation. Here is how 
the proposed model makes it semi-supervised: 

Labeled Data for Detection: YOLO model pre-trained 
using labeled datasets for identifying breast cancer detection. 
The labeled data will probably contain tumor presence 
detection annotations in the form of bounding box coordinates. 

Unlabeled data for segmentation: Rather than training a 
standalone segmentation model with fully labeled masks, the 
detection model is integrated with a "segment anything" model 
for segmentation purposes. This is the “Segment anything” 
model that gives auto annotations for the segmentation dataset. 
Auto annotations by these methods are regarded as pseudo-
labels for tumor segmentation. 

Semi-Supervised Aspect: In this sub-section, the semi-
supervised part is formed by unlabeled data (auto annotations 
from the detection model with integration of the SAM). This 
is using supervised data with unsupervised to give the 
proposed SDATS model new facts than what was extracted 
from the initial labeled dataset as depicted in Figure 6. The 
YOLO model learned from the labeled data combined with 
insights into auto annotation during segmentation. To sum it 
up, the proposed model is semi-supervised because it uses real 
detection data and self-generated segmentation annotations for 
the tumor area. This is a combination strategy, helping to make 
the model more performant by using both kinds of data. 

 

 
 

Figure 6. Machine-assisted annotation for breast cancer 
tumor segmentation 

 
Each part of the model is defined in the model for semi-

supervised machine-assisted labeling method, i.e. detection, 
classification, and segmentation steps in Breast Cancer MRI 
Segmentation. When a bounding box is predicted, YOLO 
provides a class probability for the detected object (whether it 
presents tumorous tissue or not). Where pt ∈ [0,1] is the 
predicted probability for the tumor class: 

 
𝑝𝑝𝑡𝑡 = 𝑒𝑒𝑍𝑍𝑡𝑡

∑ 𝑒𝑒𝑍𝑍𝑘𝑘𝑘𝑘
  (4) 

 

where, Zt unnormalized tumor class logit, known as all 
possible classes. 
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Then the ROI goes through an image encoder block of the 
SAM to have a lower dimensional representation as an input 
feature. Denote embedding function as:  

 
𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅) (5) 

 
where: 

EROI ∈ RD is the final embedding of ROI with a 
dimension D, 
fenc is the encoding function. 

The mask decoder takes the image embedding and produces 
a segmentation mask. Decoder prediction of mask MROI ∈ 
RH′×W ′:  

 
𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅) (6) 

 
where: 

MROI is a binary mask of the segmented tumor region in the 
ROI; 

fdec is the mask decoder function. 
In practice, the loss function for segmentation usually 

integrates pixel-wise losses such as cross-entropy or Dice loss 
to assess the quality of the segmentation mask: 

 
Lseg = −∑  [𝑖𝑖,𝑗𝑗 Mi, j log 𝑀𝑀� i,j + (1 − Mi, j) log(1 − 𝑀𝑀� i,j)] (7) 

 
where: 

M^
i, j is the proposed probability of the mask at pixel (i, j), 

Mi,j is the mask label for pixel (i, j). 
The model finally returns the predicted segmentation mask 

of the tumor within this MRI image. All these steps can be 
summarized in below actions: 

1. Input MRI image I. 
2. YOLO > YOLO(I) → ROI 

(xROI, yROI, wROI, hROI) detection 
of ROI 

3. However, the ROI: fenc(IROI) → 
EROI.  

4. ROI to mask: fdec(EROI) → MROI. 
The complete model is trained with an overall loss that 

combines both detection and segmentation losses. 
 

Ltotal
 = LYOLO

 + λsegLseg (8) 
 
where: 

Here, LYOLO is the loss from the YOLO detection model, 
Lseg is the loss from the SAM mask segmentation model 
λseg is a factor, weight λseg balancing losses. 
Herein, a mathematical model demonstrates that the 

detection and segmentation of breast cancer tumors in MRI 
images become a semi-supervised machine-assisted process 
by integrating object detection and image segmentation into a 
single framework. 

4. EXPERIMENTAL SETTING AND PERFORMANCE 
EVALUATION  
 

The Cancer Imaging Archive (TCIA) dataset is used for the 
proposed model, which is available for free on the Cancer 
Imaging Archive. A total of 15000 MRI images are used, all 
the images have a resolution of over 448*448 pixels. The 
dataset is divided into three components, the training dataset, 
the validation dataset, and the testing dataset as shown in Table 
2. The training set is the first section of the data, where models 
are trained using the training dataset. The features extracted 
from 70% of the images were used for training purposes from 
the dataset. The validation set is the second section of the 
dataset, which is critical to establishing the best argument for 
any model. Based on the validation results, the model is 
optimized to see if it achieves the proposed model objectives. 
Following training, testing takes place, it is used to test the 
proposed SDATS model's forecast. Data is being tested to 
verify if the proposed model accurately identifies the tumor. 
The model performance is verified in terms of Intersection 
over Union, Mean Intersection over Union, and Dice 
Similarity coefficient among other things, throughout testing. 
Bid to data preparation, standard image processing methods 
are employed. These include converting pixel values, cropping, 
or scaling the image dataset [14-16] based on a model's criteria 
for the image data input. The model proposed was shown to 
scale appropriately based on the input dataset size. It confirms 
the SDATS model robustness in processing large dataset 
including the performance metrics IoU and DSC which were 
consistent when increasing dataset size from 5,000 to 15000 
images. 
 

Table 2. Dataset distribution 
 

Size of Images Dataset 
Training  10000 

Validation  3000 
Testing  2000 

 
The proposed SDATS model is tested using several key 

performance metrics such as Intersection over Union (IoU), 
Dice Similarity Coefficient (DSC), and Mean Average 
Precision (MAP) used to weigh the outcomes. The adopted 
model's performance is assessed using performance measures 
such as accuracy, time, precision, and recall. The output of the 
proposed model is compared to current breast cancer diagnosis 
techniques. It refers to the process of determining whether a 
model is functional and improves performance. Precision is 
defined as the ratio of True Positives to all Positives. Figure 7 
shows a series of images for breast cancer tumor detection. 
Images 1(a) to 5(a) illustrate the tumor detection, 1(b) to 5(b) 
demonstrate the breast cancer tumor masking, and from 1(c) 
to 5(c) display the breast cancer tumor segmentation results. 

 
 

1(a) 1(b)  
1(c) 
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2(a) 2(b) 
 

2(c) 

3(a) 3(b) 
 

3(c) 

4(a) 4(b) 
 

4(c) 

5(a) 5(b) 5(c) 
 

Figure 7. Breast cancer tumor detection, masking and segmentation in MR imaging 
 

4.1 Confusion matrix 
 

 
 

Figure 8. Confusion matrix 

The confusion matrix provides a detailed breakdown of the 
classification capability of the proposed SDATS model as 
depicted below. This matrix has high true positives and false 
negatives meaning the proposed model can identify that 
cancerous areas will be filled for images (MRIs) in reality. The 
minimal number of false positives and false negatives is 
consistent with the model's ability to detect tumors while 
avoiding diagnosis errors fortuitously. This is particularly 
important in medical image analysis where false positives can 
lead to unnecessary intervention, and false negatives can cause 
a delay in life-saving treatments. It is the simplest way to 
assess any model's performance. Figure 8 demonstrates True 
Positives, True Negatives, False Positives, and False 
Negatives are the arguments of the confusion matrix, as seen 
below.  

True positive: These are when the model correctly 
identifies tumor-positive data points. During the object 
detection task, if the model detects an object (box) that exists 
in ground-truth annotation, then it is referred to as True 
Positive. In the proposed model, 1455 instances were correctly 
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identified as tumors. 
True Negative: These happen if the model gets a negative 

data point correct. True Negatives: In this case, the algorithm 
correctly tells that no object is present (here no incorrect 
detection of false positive). The model correctly predicted 480 
instances of non-tumor data. 

False Positive: These are when your model incorrectly 
identified 45 non-tumor instances as tumors. A false positive 
in object detection is when the algorithm recognizes that an 
object exists where it does not exist on the ground truth 
annotations. 

False Negative: These are the cases when the model missed 
20 tumors, failing to detect their presence in the ground truth 
data. A false negative in object detection means the algorithm 
does not detect an object present in the ground truth 
annotations. 

 
4.2 Intersection over union 

 
It is an important evaluation metric, IoU measures the 

overlap between the predicted bounding box and the ground 
truth box for each tumor. There are two degrees of overlapping 
bounding boxes, one is for actual tumor location or ground 
truth and the other is for prediction. Figure 9 depicts the 
intersection over union (IoU) score distribution compared with 
baseline YOLO and improved SAM + YOLO. Better yet the 
median IoU scores demonstrate a very large improvement in 
segmentation accuracy for SAM + YOLO. This enhancement 
evidences the incorporation of SAM for auto-annotation, 
producing more accurate segmentation masks. This fine 
confinement is especially helpful in the context of complicated 
medicinal datasets where tumor boundaries can be hard to 
assess by hand. Measures the overlap between the predicted 
segmentation mask 𝑀𝑀𝑖𝑖 and the ground truth mask 𝑀𝑀𝐺𝐺𝐺𝐺:  

 
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑀𝑀𝑖𝑖 ⋂ 𝑀𝑀𝐺𝐺𝐺𝐺

𝑀𝑀𝑖𝑖 ⋃ 𝑀𝑀𝐺𝐺𝐺𝐺
 ≈ 0.97 (97%)  (9) 

 

 
 

Figure 9. IoU comparison between YOLO and SAM+YOLO 
models 

 
4.3 Dice similarity coefficient 

 
The Dice Similarity Coefficient is a valuable metric for 

assessing the performance of image segmentation models. It 
measures the similarities between ground truth data and 
predicted data. Thus, a high DSC score means good 
segmentation of tumor areas in the images. Therefore, a high 

DSC score is an essential constraint so that the segmented 
tumor regions can be as consistent as possible with the real 
tumor boundaries. Precision is required to plan treatment 
surgery or radiotherapy. 

 
DSC = 2 |𝑀𝑀𝑖𝑖 ⋂ 𝑀𝑀𝐺𝐺𝐺𝐺|

|𝑀𝑀𝑖𝑖 |+|𝑀𝑀𝐺𝐺𝐺𝐺  | 
 ≈ 0.96 (96%) (10) 

 
4.4 Mean average precision 

 
The performance of breast segmentation model for breast 

tumor mAP, which measures the accuracy of delineation of 
tumor boundary in medical imaging. An effective model, in 
the context of a binary classification problem such as 
distinguishing between cancer and non-cancerous cell samples, 
has a high mAP (as close to 1 as possible). With the help of 
mAP, consents a general comparison of different models; 
therefore, in this paper mAP helps to lead them to an 
improvement for a breast cancer tumor segmentation 
technology which consequently can increase diagnosis and 
outcome quality in breast cancer management. 

 
𝑚𝑚𝑚𝑚𝑚𝑚 =  1

𝑁𝑁
 ∑ 𝐴𝐴𝐴𝐴(𝑋𝑋𝑖𝑖)𝑁𝑁

𝑖𝑖=1  ≈ 0.95 (95%)  (11) 
 
where, AP (𝑋𝑋𝑖𝑖) is the average precision for the image 𝑋𝑋𝑖𝑖. 
 
4.5 Model performance over time  

 
Figure 10 indicates how the proposed SDATS model's 

accuracy and loss converge throughout training epochs. 
During training the accuracy curve trends upwards, while the 
loss decreases signifying that the proposed model is learning 
the underlying patterns in data well. This gradual convergence 
toward the desired accuracy with minimal fluctuation shows 
that the proposed solution is robust. The gap between training 
and validation accuracy also implies minor overfitting, 
proving that the implemented model generalizes well on 
unseen data. This is an important measure of the robustness of 
the model in practical cases, particularly for breast cancer 
detection and segmentation. 

 

 
 

Figure 10. Accuracy and loss convergence of the proposed 
model during training 

 
4.6 Quantitative analysis 
 

We implemented an ablation study to identify the 
contributions of YOLOv8, SAM, and the semi-supervised 
learning framework in the performance of SDATS overall. 
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The results are as follows: 
• YOLOv8 anchor: When the model was trained 

exclusively for tumor detection, an IoU of 0.81 and DSC of 
0.82 were achieved. 
• SAM with YOLOv8 bounding boxes: The use of 

bounding box prompts for segmentation with the SAM model, 
using bounding box predictions from YOLOv8, revealed 
significant improvement in segmentation performance with 
respect to pixel-wise IoU score measured to be 0.85 and DSC 
= 0.83. 

SDATS with Semi-Supervised Learning: The complete 
SDATS framework, combining semi-supervised learning with 
both YOLOv8 and SAM, showed an impressive IoU of 0.97 
and DSC of 0.96, indicating substantial improvement through 
the semi-supervised framework and independence through the 
utilization of label- as well as unlabeled data. 

Given the promising accuracy (IoU: 0.97, DSC: 0.96) of the 
proposed SDATS model, this work has substantial clinical 
implications. Proper segmentation of the tumor is critical,  as 
it enables accurate demarcation of the tumor borders, which is 
essential for treatment planning, including radiotherapy or 
surgical resection. For example, an increased risk of partial 
resection identified by elevated DSC scores produces 
improved outcomes for patients. Likewise, a higher IoU means 
less false positives by significantly decreasing the number of 
false positives and potentially avoiding unnecessary biopsies 
or interventions. 
 
4.7 Experimental results of the proposed model 

 
The ACRIN dataset is used which consists of 10000 images 

belonging to one class. The proposed SDATS model used 66% 
images as a training dataset, 20% images as a validation 
dataset, and 14% images as a testing dataset. Considering 
performance, the proposed model works efficiently in terms of 
the loss decreases, and it yields high precision at different 
recall levels for identifying breast cancer tumors as exhibited 
in Figure 11. Principally, the model looks decent in terms of 
all major metrics. Showed high accuracy for normal tumor 
detection and segmentation between 2 networks integration of 
YOLO model and SAM. These fast manual annotation 
reductions in addition to high precision and recall made it 
perform as a promising tool for breast cancer detection within 
MRI images. In addition, the generalization ability of the 
proposed model on novel samples further suggests its practical 
utility in real-world medical applications. 
 train/box_loss: The box loss over training decreases as 

the iteration number increases. The above line represents 
that the model is learning to better predict bounding 
boxes, demonstrating consistent improvement in tumor 
detection. 

 train/obj_loss: As well as the box loss, the object 
confidence takes a similar shape and reduces over 
iterations. With fewer "objects lost" the model is more 
confident in predicting an object. 

 train/class_loss: Class loss shows the model is 
predicting correct class labels. Here, a downward trend 
indicates better classification performance in training. 

 metrics/precision(B): Precision for class B (tumor 
detection) is consistently stayed above 90%. That is, the 
model predicts a tumor (class B) accurately. 

 metrics/recall - Recall for class B is almost 1, which 
suggests that the model does not often overlook a real 
tumor when it detects one. 

 val/box_loss: The validation box-loss also exhibits 
similar behavior as the training patterns (decreasing 
curve). Since the proposed approach aims for 
generalization, a good validation performance is vital. 

 val/obj_loss: Validation object loss falls as well, 
indicating that the model becomes more confident in 
detecting objects than before when running on another 
part of its dataset. 

 metrics/mAP: Mean Average Precision at IoU = 0.5 for 
class, B goes up and converges to very high values (> 
95%) average tumor detection. 

 

 
 

Figure 11. Experimental results 
 
4.8 Comparison of SDATS with state-of-the-art models 
 

To assess the performance of SDATS, we compared it with 
several well-established and state-of-the-art models, i.e., Mask 
R-CNN, U-Net, and DMFTNet. Shows that SDATS achieved 
better segmentation results with less effort than both models. 
Specifically: 

• Mask R-CNN: IoU = 0.80, DSC = 0.81, which suffered 
from high computational overhead due to its two-stage 
architecture. 

• U-Net: IoU = 0.77, DSC = 0.79, high dependency on 
large annotated datasets, not so efficient for small 
datasets. 

• After training, DMFTNet: IoU = 0.82, DSC = 0.84 but 
struggles with scalability and generalization to larger 
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datasets 
• SDATS (proposed): IOU = 0.97 DSC = 0.96, Low 

amount of annotation time and improves scalability on 
large datasets. To illustrate this qualitatively, in Figure 
2 we show that SDATS provides. 
 
 

5. CONCLUSIONS AND FUTURE DIRECTIONS 
 
One of the challenging issues in an area like breast cancer 

detection and tumor segmentation from MRI images is to 
figure out how one should predict specific weak learners at 
each data point. This research proposes a novel semi-
supervised SDATS model, which increases the speed and 
accuracy of tumor detection and reduces labor-intensive 
processes. The existing models require a field of knowledge, 
implemented approach strives to encourage better predictions 
by fusing both labeled and unlabeled data. The implemented 
DATS SDATS effectively mitigates the shortage of annotated 
MRI scans, achieving state-of-the-art performance. The 
proposed SDATS model succeeded in region-level automatic 
cancer detection and tumor segmentation mainly based on the 
combination of labeled (weak ground truth data) and unlabeled 
data. The addition of semi-supervised techniques helps 
mitigate the lack of annotated data: a great advance for this 
field of medical imaging analysis. With a Semi-supervised 
learning approach via pseudo-labeling and consistency 
regularization, the implemented model reaches state-of-the-art 
results. This has a direct impact on clinical practice as it assists 
in breast cancer detection and helps to pinpoint tumors with 
great precision. 

The adopted model looks at combining details from several 
image modalities (i.e. MRI, ultrasound, or mammography) for 
more detailed segmentation of tumors aggregating. Moving 
forward, the integration of multi-modal datasets, like 
mammography with MRI and ultrasound, will be a target goal 
to improve upon the model proposed here and its 
generalizability. Such challenges, such as modality alignment 
and resolution biases, will be alleviated by applied feature 
fusion, and transfer learning. Moreover, SDATS is 
generalizable across various medical imaging tasks like brain 
tumor segmentations or lung nodule detections, indicating its 
versatility in clinical settings. 
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