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Object detection and feature extraction in video surveillance systems is one of the most 

demanding tasks in computer vision for public safety and security in crowded areas. Most 

of the Generative Adversarial Network (GAN) models are detecting abnormal objects in 

public places less accurately. The Spiking Generative Adversarial Network (SPGAN) has 

detected objects in crowded areas, which is required for more energy efficient processing, 

less robustness and more latency prediction. In this research, propose novel approaches like 

Adversarial Variational Auto-Encoders GAN (AVAEGANs), Super Resolution Synthetic 

GAN (SRSGAN), and Enhanced Energy Regularized GAN (EERGAN). AVAEGANs are 

used to detecting objects accurately and SRSGAN model enhances quality object detection. 

EERGAN is conjunction with Least Square Support Vector Machine (LSSVM) and 

effectively detects objects with lower energy consumption (135 mJ), energy reduction 

(32%), and prediction latency (28ms) and enhances feature extraction accuracy through 

similarity metrics, utilizing benchmark data sets such as UCSD PED-1, Shanghai Tech and 

User collected data sets. This proposed framework EERGAN strengthens with the help of 

LSSVM for classification of aggressive and non-aggressive behavior detection and achieves 

the performance of accuracy 97.7%, precision 95.68%, recall 95.99%, and F-score 98.21%. 

The EERGAN produces more robust and fast object detection, ensuring public safety and 

security. 
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1. INTRODUCTION

The crowd’s abnormal behavior identification is an 

essential technique for intelligent surveillance and although 

abnormal behavior in crowds and complicated backgrounds 

continue to be problems, the crowd counting model presented 

in this research is built on a GAN structure called a multiscale 

network. This consists of a scale module, a discriminator 

module, and a generation module. The generation network 

includes a backbone model and a multi-branch dilation 

convolution structure, and the discrimination network checks 

the intermediate results. The model also includes missed 

connections to maintain the structure and contextual 

information of input images. These GANs are also best suited 

for object detection and tracking. A number of other 

applications are being used in real-world applications for 

object tracking and detection, which consists of video 

surveillance security systems, traffic monitoring and face 

recognition. However, the machine learning-based object 

detection and tracking is problematic because all real-world 

photographs would vary in light, angle, changes, and 

occlusions. It is to be noted that convolutional neural networks 

(CNNs) successfully handle perspective fluctuations and 

illumination problems, though there is a serious variance in 

adversarial attack threats. The study also focuses on how to 

bridge the gap between the objectives of the developers and 

the performance of algorithms by training machine learning 

models against adversarial threats [1-3]. 

Some scholars explained that the complexity of structural 

patterns across frames is the main topic of this work, which 

discusses the difficulties in detecting anomalous behavior in 

highly congested environments. To train behavioral patterns, 

we use the cycle GAN system, which incorporates social force 

and optical flow patterns. To test the system's accuracy using 

two models of normal and aberrant behavior. They employ 

geometric approaches to enhance anomalous patterns. Using 

the cycle GAN system, to train and evaluate the accuracy of 

anomalous behavior detection [4-6]. The study reveals that this 

technique outperforms other recent works in terms of 

performance and accuracy. Some research aims to improve 

detection performance by proposing compact models for 

object identification, detection, and feature extraction, 

incorporating a GAN-based super-resolution step [7-9]. This 

method solves the problem of small object pixel counts that 

arise from relying solely on CNN models. The model builds 

on the baseline architecture for ESRGAN in improving super-

resolution output, incorporating a two-step spatial and channel 

attention mechanism [10, 11]. This attention mechanism 

combined with ESRGAN reduces training time and increases 

feature extraction efficiency to improve the performance of 

small object detection [12]. The previous studied explained the 

applications of spiked neural networks (SSN) to detecting the 
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moving targets in smart secure video surveillance and 

assigning them to appropriate categories [13, 14]. The 

suggested SNN classifies the moving target into different 

categories based on their distance from the categorization 

centers determined by the Hebb learning rule. It serves the 

visual cortex to detect motion of animals with axonal delays 

and utilizes spike trains to learn data, including feature 

parameters of targets or grey value of pixels. Simulation 

results demonstrate the feasibility of the proposed SNN for 

intelligence computing and its suitability to a variety of visual 

surveillance systems. Kim et al. described that the Deep 

Neural Networks (DNNs) are low-powered; their application 

in machine learning is growing. However, because of non-

differential spike operation and complex neuron dynamics, 

they suffer a significant performance loss. In order to fix the 

problem that SNNs are getting worse at finding objects, this 

study shows two new methods: channel-wise normalization 

and signed neurons with uneven thresholds [15-17].  

On a non-trivial dataset, the spiked-based real-time object 

identification approach, known as the Spiking with YOLO 

model, defines nearly lossless information transmission and 

results that are comparable to the original YOLO [18, 19]. A 

neural network based model for high-speed moving object 

filtering, detection, and tracking has been described for 

scientific observation and fault detection by Zhu et al., they 

provide a parallelized filtering and detection module that 

makes use of a parallel linked component labeling technique 

and a block-based parallel computation paradigm. 

Multiplexers for ADD operations and preprocessed fixed-

point data for faster processing are examples of hardware 

optimizations. After 25 parallelization’s, the accelerator 

achieves 19 times the acceleration and can operate more than 

30,000 spike images with a dynamic power consumption of 

1.618W [20]. Bhandari et al. explained that deep generative 

models required a lot of approximations and were centered on 

parametric probability distribution functions, much like 

Boltzmann machines. This resulted in the creation of 

generative stochastic networks, which replace several 

approximations with accurate backpropagation. Goodfellow 

integrated the training of two multilayer perceptron to create 

the Generative Adversarial Networks (GANs) model [21, 22]. 

However, issues with training, choosing hyper parameters, 

sample control, convergence, and modal collapse beset GANs. 

These problems were effectively tackled by GAN with 

boundary equilibrium (BEGAN) models [23, 24]. This 

research presents the development of adversarial networks and 

potential paths for object detection as well as abnormal 

behavior identification in crowded areas. This article critically 

examines the evolution of GANs, a potent neural network 

class commonly used in unsupervised learning. A generator 

creates fictitious data samples, and a discriminator determines 

which instances are real and which are fake. These two 

components make up GANs. Apart from convergence and 

stability issues, the authors discuss aspects of regularization 

and generalization. They go on to say how flaws can be dealt 

with by the model EBGAN [25-31]. In this study, Section 2 

describes the literature about various deep learning models 

such as GAN based models, Super Resolution models, Spiking 

Models and Energy based models. Section3, explained about 

proposed methodologies such as AVAEGAN based models, 

SRSGAN based models, and EERGAN based models. 

Section-4 has illustrated that experimental evaluation and also 

Section-5 is demonstrated that results and discussion compare 

with benchmark data sets as well as real- time objects.  

2. RELATED WORK

Super-resolution GAN models, energy-based, GAN-based, 

and spike-based models are the main models used to identify 

anomalous behavior. When compared to our suggested 

approaches, the majority of approaches fall short in terms of 

energy efficiency and real-time performance. This section 

addresses the challenges encountered in the current work on 

crowd surveillance, specifically in relation to systems based 

on feature extraction and object detection. 

2.1 GAN based models 

Song and Sheng [1] suggested a multi-scale GAN network 

that describes single-image crowd counts and also analysis 

anomalous behavior identification in crowded areas. The 

technique creates crowd density that is used to incorporating 

with internal GAN module such as multi-branch generator and 

a sectional discriminator. The addition of the multiscale GAN 

module improves the model's generalization capabilities. The 

model classifies anomalous behavior by utilizing a synthetic 

feature descriptor to derive the crowd movement trajectory. 

The algorithm slightly outperforms current algorithms in 

terms of accuracy and robustness when it comes to detecting 

anomalous behavior and crowd counting in difficult settings. 

For engineering applications in security surveillance, the 

model is appropriate. Al Jaberi et al. [2] focused on classical 

machine learning and GANs for assessing various object 

tracking and identification methods in light of risks to the 

applications using GANs. Detection methods investigated in 

image classification and object localization include SVM, 

Adaboost, HOG model, CNN models, YOLO techniques, and 

GANs. The GANs are better for real-time performance with 

larger datasets and also increasing data generation in 

adversarial training. Han et al. [3] introduced an add-on 

encoder and a real-time GAN for identifying anomalous 

events in public crowds. To create better images, the network 

employs a discriminator and reconstructs sample images. To 

calculate the anomalous score using the difference in distance 

between two patterns. For video and image analyzed and also 

grouped the point wise convolution method expedites 

processing efficiency while guaranteeing accuracy and 

dependability. Alafif et al. [4] suggest a way to find strange 

behaviour on a large scale for security purposes using GANs 

and optical flow. The system extracts dynamic features based 

on optical flows using a transfer learning approach, and uses 

U-Net and Flow net to distinguish between normal and

pathological behaviors. Large-scale crowd films and small-

scale crowds are produced by the approach that reaches object

detection accuracy. Wastupranata et al. [5] provided deep

learning methods that can find abnormal human activities

using a video surveillance system. Those deep learning

methods can be broadly grouped into three categories, which

are fully supervised, partially supervised, and unsupervised.

Further, it evaluates these methods with well-known

benchmark data and shows how they perform in various

contexts. Besides that, it will do the further development of

methods for contextual anomalous behavior detection, through

the enhancement of robustness against environmental

fluctuations, using varied datasets [6]. Nawaratne et al. [7]

explained the unsupervised deep learning strategy for real-

time video surveillance. Conclusively, it continuously learns

from and discriminates between new abnormalities and

normalcy through the process of fuzzy aggregation together
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with active learning. They validate this further by examining 

its suitability for real-time video surveillance using a 

comparison with three benchmark datasets against contextual 

indicators, computing overhead, accuracy, and robustness. 

2.2 Super resolution models 

Wang et al. [8] provided the intelligent object detection 

systems for generates the super-resolution synthetic image that 

is used to enhance the recognition of small and distantly 

objects from low-resolution images. The edges are improved 

the hierarchical self attention module. This is applied to the 

images takes care of loss due to high frequency edge 

information and image features owing to grown resolution. 

The global context aware network for precise object detection 

in crowded places, which receives the output super-resolution 

images. This generates multi-scale feature maps with a 

cascade transformer backbone, which guarantees reliable 

object detection performance. The network can adapt better to 

complex traffic conditions recognition to an integrated cross-

scale aggregation feature (CSAF) module. Multiple datasets 

validate the approach, revealing competitive advantages over 

standard optical models. Rabbi et al. [9] explained that small 

object detection performance in remote sensing drone images 

in public crowded areas is inferior to that of larger objects, 

especially in low-resolution and noisy images. The brand-new 

edge enhanced super resolution GAN (EESRGAN) is used to 

boost detection performance and image quality. For ESRGAN 

and EEN, they use relative-in-relative dense blocks, whereas 

the detector network employs faster region-based 

convolutional networks. The architecture consists of 

ESRGAN, EEN, and other networks that achieve better object 

detection and slightly improved performance. Chen et al. [10] 

explained the Classification orientated Super Resolution 

Generative Adversarial Networks (CSRGAN) to demonstrate 

a tiny object-detecting network. The discriminator predicts 

real categories, and the network reconstructs realistic super-

resolved images from discriminative features. Feature-level 

content loss based on VGG19 enhances object classification 

by improving outlines. This method has shown the positive 

function of VGG19 and the classification-orientated 

enhancement of CSRGAN. Musunuriet al. [11] pointed out 

that video surveillance system has recently undergone rapid 

development with the deployment of satellites, drones, and 

image sensors in busy public places. Low-resolution small 

objects, complex scenes, and sparse data for model training 

always impede object detection. They indicate a new GAN-

based sequential transfer learning method to improve the 

performance of a model when there is little data. Similar to 

approaches utilizing GAN model is trained the images in step-

by-step manner from the most trivial to the most challenging 

data. This model is used for real-time remote sensing object 

recognition using the datasets VEDAI-VISIBLE, VEDAIIR, 

and DOTA and also achieved performance. 

2.3 Spiking based models 

Machado et al. proposed that the bioinspired hybrid spiking 

neural network (SNN) called the Hybrid Sensitive Motion 

Detector (HSMD) improves the dynamic background 

subtraction (DBS) technique. They compared the HSMD 

against other background subtraction (BS) techniques with the 

benchmark datasets like CDnet2012 and CDnet2014. Both 

datasets expose that HSMD outperforms all the tested DBS 

methods and has done a little better for big crowd, night 

movies, object motion starting or stopping, and baseline or 

shadow. The HSMD is the first hybrid SNN algorithm that can 

perform on image and video sequences in near real time. This 

in turn will improve other BS algorithms in order to fine-tune 

the HSMD method for challenging situations. This model 

wants to accelerate the algorithm and reduce power 

consumption in real-time applications [12]. Kasabov et al. [13] 

proposed a new kind of Dynamic SNN to quickly learn 

spatiotemporal data for identifying objects in public crowded 

areas. They also propose here the DSNN model using the 

SDSP spike-time learning in free-of-control, supervised, or 

semi-supervised modes together with rank-order learning. 

Because it uses both the timing of the subsequent spikes learnt 

by dynamic synapses and the order of the initial input spikes, 

the DSNN model performs faster and more accurately than 

previous SNN models for detecting abnormal behavior. This 

is essential for the development of self-governing machine 

learning systems with a wide range of applications [13]. 

Ziegler et al. [15] have presented a new method for detection 

of the ball in robotic table tennis that uses spiking neural 

networks and the event-based camera. The method compares 

the accuracies and runtimes of several state-of-the-art SNN 

frameworks with edge devices. This model also shows that an 

SNN on an edge device can work in real-time in a closed-loop 

robotic system such as a table tennis-playing robot. Jin et al. 

[16] explained that SNNs are energy-efficient technology for

resolving the anomaly detection crowded areas. The

researchers proposed a region-based spiking neural network

(R-SNN) for object detection crowded environments. The R-

SNN represents positive and negative bounding box offsets

using mirror output images and also achieved mean average

precision of 63.1% [16, 17]. Seras et al. [18] discussed the

need to strike a balance in technologies that help vehicles see

and understand the world around them through performance,

efficiency, and open-world learning. They show how spiking

neural networks are making the technology more resilient

against picture noise and gain a competitive edge in detection

with as much as 85% less energy use. The presented research

underlines the challenge of detecting novel items on captured

photos. Lien and Chang [19] proposed a sparse spiking neural

network accelerator that leverages high weight and activation

map sparsity to execute models in a highly parallel fashion at

a low power. The proposed method overcomes the limitation

of SNN with additional time dimension information. This

method processed frames per second with energy efficiency of

all the frames [20].

2.4 Energy based models 

Zhao et al. [21] proposed the energy-based GAN models for 

interpreting the data. The discriminator is now energy function 

for object detection that assigns lower energies in the 

neighborhood of the data manifold and high energies away 

from it. They train a generator to generate contrastive samples 

with low energies and the discriminator to assign high energies 

to those generated samples like probability-type GANS. The 

discriminator as an energy function can use a range of loss 

functions instead of relying only on the binary classifier with 

logistic output. The auto encoder architecture is one of the 

reconstruction error serves as the energy source for the entire 

EBGAN framework and taking the place of the discriminator. 

This EGBGAN frame work model has been compared to 

ordinary GAN models for consistent of energy efficient. 
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Furthermore, the training of single-scale architecture can teach 

us how to produce high-resolution images [21]. Berthelot et al. 

[22] created a new technique for maintaining equilibrium.

These make sure that the GAN models were always in balance

during the training process of auto-encoder-based generative

adversarial networks (AEGANs) for finding objects in

crowded spaces. This technique delivers rapid and reliable

training in crowded scenes along with excellent object quality

and new approximate convergences of different metrics. The

suggested method has to ensure that the visual quality and

resolutions of abnormal object detection crowd areas with less

energy level. The AEGANS manage the transaction between

image diversity and quality. While it still needs refinement, the

approach offers some partial solutions to GAN issues. This

research enumerated the constraints present in different GAN

models designed for object identification in crowded, public

spaces. GAN are a novel method for computer vision that uses

adversarial training concepts. GAN has superior feature

learning and representation capabilities than conventional

machine learning models [32, 33]. This article examines the

analysis of recently suggested GAN based models Super

Resolution GAN models, Spiking GAN models, Energy based

models and their applications in smart secure video

surveillance systems. These models are detecting the objects

in crowded areas. But this is required more energy level [34,

35]. In this research, introduced a novel approaches like

Adversarial Auto Encoder Generative Adversarial Networks

(AVAEGAN), Super Resolution Synthetic Generative

Adversarial Networks (SRSGAN) and Enhanced Energy

regularized Generative Adversarial Networks (EERGAN).

This proposed method will can detect the abnormal object in

crowded areas and energy efficiently. These methods are

required less energy, more robustness and more accurately

level compared to exiting GAN based models and also ensure

that safety and security of publics.

3. PROPOSED METHODOLOGY

This section explains the various steps that make up the 

suggested system working process. Furthermore, this section 

describes the several stages in the development of novel based 

advanced techniques such as AVAEGAN based models, 

SRSGAN based models, and EERGAN-LSSVM based 

models designed to detect anomalies in densely populated 

public areas and safeguard individuals’ safety and security. 

From Figure 1, the input is given as an image for 

preprocessing section. The trained images are stored in data 

bases for further processing. The proposed novel based 

approaches are like AVAEGAN based models, SRSGAN 

based models and EERGAN based models. The Adversarial 

Variational Auto encoders GAN (AVAEGAN) based models 

are mapping the training images for detecting the abnormal 

objects in public areas. The Super Resolution synthetic GAN 

(SRSGAN) based models are mapping the low resolution 

images into high resolution images for feature extraction in 

abnormal object detection accurately. Our proposed novel 

based approach, Enhanced Energy Regularized GAN –Least 

Square Support Vector Machine (EERGAN-LSSVM) based 

models are used to detect the objects in crowded areas for 

various real time processing capabilities. EERGAN-LSSVM 

learns about objects found at high resolution in images. This 

EERGAN-LSSVM model is required less energy for detecting 

the abnormal object detection and feature extraction. This 

research introduces the EERGAN-LSSVM model for 

detecting the abnormal objects, efficient energy processing, 

latency prediction, and classifying the ratio of abnormal to 

normal accurately. The structure of EERGAN-LSSVM 

propelled the development of parameter adjustment 

possibilities for maintaining high detection rates and also 

produces more robust, increasing the computational efficiency; 

fast object detection, and ensuring public safety and security. 

Figure 1. Proposed EERGAN model for abnormal object detection process 
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3.1 Adversarial variational auto encoder GAN model – 

AVAEGAN 

In video surveillance, adversarial variational auto encoders 

(AVAEs) are essential for optimal reconstruction loss and 

close resemblance to input images. For characterizing an 

observation in latent space, an adversarial variational auto 

encoder (AVAE) offers a probabilistic method. Despite the 

latest improvements, the field of video surveillance still widely 

uses Adversarial Variational Auto encoders (AVAEs). In 

AVAE, the decoder model is usually referred to as the 

generating model and the encoder model is referred to as the 

recognition model for abnormal behavior detection in crowded 

areas [24]. 

The AVAEGAN is a probabilistic model for latent variables 

to treat features of various objects and produce new samples 

of images. Such models generally involve an encoder and 

generator. The offered scenario tries to mix up AVAE losses 

and losses incurred by AVAEGAN so that it can formulate an 

overall loss function such that encoding and decoding 

processes are in a single unified structure. This also highlights 

the correlation between encoding and decoding latent 

variables and improves latent representations, getting data 

closer and closer to being more closely resembling original 

data. The proposed AVAE produces good results for detecting 

abnormal objects in crowded environments.  

(a) Dimensionality Reduction

AVAEs train to learn low-dimensional representations of

high-dimensional data in order to visualize, compress, extract 

features, and determine the intrinsic dimensionality of data. 

(b) Attribution

AVAEs focus on abnormal behavior detection, tracking,

and super-resolution, helping to identify crowded objects for 

efficient synthetic feature extraction. 

(c) Generation

In addition to producing new images and videos in busy

public spaces for feature extraction, synthesis, and generative 

modeling, AVAEs can also learn model parameters for actual 

process emulating. 

(d) Discriminator

AVAEGAN architecture is used to replacing the

discriminator by the reconstruction error as the source of 

energy for the whole GAN framework and also detecting the 

images from abnormal crowded areas accurately and fast 

robustness. 

Figure 2. AVAE frameworks for encoding and decoding process 

From Figure 2, the encoder, a recognition model, first maps 

the input images into latent semantic spaces in AVAE. 

.𝐸𝑨𝑽𝑨𝑬 = 𝑞𝜙(Z|X) (1) 

where, 𝜙is the parameter of AVAE encoder in sample objects 

mapping. This approximates the real posterior, 𝑝θ(X|Z) which

is unknown and unsolvable. 

The decoder in AVAE is the second generative model, 

mapping the input images to the latent semantic space. 

𝐷𝑨𝑽𝑨𝑬 = 𝑝θ(X|Z) (2) 

where, 𝜃 is the parameter of AVAE decoder. The 

approximation for the true posterior of this AVAE decoder 

model,𝑝θ(X|Z)is 𝑞𝜙(Z|X). But in some cases, it is infeasible

to compute. This approximation makes the AVAE feasible in 

instances that may be intractable otherwise. 

𝐿𝑨𝑽𝑨𝑬 = 
1

𝑁
∑(𝑋(𝑖) − f(𝑍(𝑖))

𝑁

𝑖

) X Q (3) 

where, 𝐿𝑨𝑽𝑨𝑬 is the deterministic decoder loss between the

sample input images and reconstructed images from N objects. 

Q is processing parameter of loss function; Q = (𝑋(𝑖) −

f(𝑍(𝑖)) .The reconstruction loss tells how well the AVAE

model reconstructs the input images from the latent space. 

𝐿𝑨𝑽𝑨𝑬 = 
1

𝑁
∑(𝑋(𝑖) − f(𝑍(𝑖))

𝑁

𝑖

) X Q (4) 

where, 𝐿~𝐴𝑉𝐴𝐸 is the stochastic decoder or multivariate

Gaussian form of logN (X(i)|f(Z(i)) different sample input and

output of the images. 

Consider the cross-entropy between input data and 

reconstructed data for calculating the reconstruction loss in the 

case of a discrete input space. 

𝐿~𝑨𝑽𝑨𝑬 = − 
1

𝑁
∑ (𝑋(𝑖)𝑙𝑜𝑔f(𝑍(𝑖))

𝑁

𝑖

+ (1 − 𝑋(𝑖))𝑙𝑜𝑔(1 − f(𝑍(𝑖))

(5) 

where, (𝑋(𝑖)𝑙𝑜𝑔 f(𝑍(𝑖))) is reconstruction loss that provides a

natural encouragement to the generator to learn how to 

reconstruct the input data from the latent space. In a similar 

vein, the encoder gains the ability to map the input images or 

samples to the latent space in crowded areas, allowing the 

decoder to recreate the input data via back propagation. 

The AdaGrad optimizer trained and optimized the proposed 

AVAEGAN model encoder, generator, and discriminator 

components separately. The learning rate for the encoder is set 
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to 0.0001. A batch of 16 was then used. As the network 

converges at 3000 epochs, this was the specified epoch size. 

Likewise, the other two networks were trained and optimized 

separately, just like the AVAEGAN model. Mostly, the 

AdaGrad-Adaptive Gradient optimizer is having a learning 

rate of 0.0001 for object detection. The batch sizes for these 

two networks, SRSGAN and EERGAN, were 32 and 64. 

SRSGAN and EERGAN converge at around 4000 and 5000 

epochs, respectively; hence, the epoch size assigned for these 

two networks is 4000 and 5000, respectively. 

3.2 SRSGAN model 

SRSGAN is Super Resolution Synthetic Generative 

Adversarial Network that specializes in converting low-

resolution images to high-resolution outputs, as well as 

improving image resolution in photography, playground 

imaging, public crowded imagery, and video up scaling. Image 

super-resolution (SR) approaches reconstruct a higher-

resolution (HR) picture or sequence from the observed lower-

resolution (LR) images. 

Figure 3. SRSGAN frame work for image resolution analysis 

Super Resolution Synthetic Generative Adversarial 

Network (SRSGAN) is defined for revolutionizing the concept 

of combining sub-pixel efficient nets with the complete loss 

function of traditional GAN. SRSGAN has largely focused on 

improving the recognition and classification of unsafe 

operations using construction equipment by up scaling low-

resolution surveillance video into further fine-detailed high-

resolution inputs for the trained model. This directly translates 

into performance accuracy in object detection, synthetic 

feature extraction, and classifications in almost real-time 

monitoring of dynamic construction sites, thus developing 

surveillance technology. It has the 4000 epochs and 32 batch 

sizes for training set. 

From Figure 3, the super-resolved synthetic GAN 

(SRSGAN) is capable of detecting small distant objects form 

low-resolution (LR) images. The edge enhancer and a 

hierarchical self-attention module are applied to mitigate the 

loss of high frequency edge information and texture details in 

super resolved images [10, 11]. Contextual and perceptual 

losses are optimally combined for the best image up-scaling, 

while adversarial loss will train the neural network to map 

early on super-resolved images as natural imagery through a 

trained discriminator network to differentiate original photo-

realistic from the super-resolved images. These enhanced 

improvements result in the proposed SRSGAN achieving 

consistent superior visual quality with better restoration of 

natural features. 

a) Discriminator - SRSGAN

In SRSGAN, relativistic discriminator (LSRSGAN(D)
𝑅𝑎 ) 

calculates the likelihood of the given normal input images 

being more realistic than randomly selected fake image (𝑥𝑓),

can induce this quality. They also provide a variation in which 

the discriminator evaluates the chance that the given genuine 

object (𝑥𝑟) is more efficient than fake images.

LSRSGAN(D)
𝑅𝑎 = − 𝐸𝐷𝑥𝑟[log(𝑥𝑟 , 𝑥𝑓)]

− 𝐸𝐷𝑥𝑓[log(1 − 𝐷𝑅𝑎(𝑥𝑟 , 𝑥𝑓))]
(6) 

where, − 𝐸𝐷𝑥 𝑟 [log(𝑥𝑟 , 𝑥𝑓)] is the loss function of standard

SRSGANs and also extract the synthetic features from 

abnormal objects in crowded places. 

b) Generator – SRSGAN

The symmetric form of adversarial loss of generator

function is represented by 

LSRSGAN(G)
𝑅𝑎 = − 𝐸𝐺𝑥𝑟[log(1 − 𝐷𝑅𝑎(𝑥𝑟 , 𝑥𝑓))]

− 𝐸𝐺𝑥𝑓[log(𝐷𝑅𝑎(𝑥𝑟 , 𝑥𝑓))]
(7) 

where, 𝑥𝑓= 𝐺(𝑥𝑖) and 𝑥𝑖  represents the input LR picture. It

can observe here that both 𝑥𝑟and 𝑥𝑓 are the participants of the

adversarial loss of the generator. In this way, our generator 

gets gradients from the created and real object when 

performing adversarial training - in SRSGAN; only the 

generated part plays a role. 

c) VGG -19 Network Model

The VGG-19 network model was noted for the deep CNNs

with an identical SRSGAN architecture. This is focusing on 

simplicity and power and the deeper version for gaining 

attention. VGG-19 benefits from simplicity in the design and 

is also designed with small 3x3 convolution filters and better 

performance. The simplicity and power of VGG-19 have 

influenced the succeeding designs of models used in deep 

learning, like ResNet and Inception. Their ability to extract 

highly discerning synthetic features made them widely used in 

transfer learning and other computer vision applications. 

VGG-19 is a milestone model in the epochs of deep learning, 

balancing simplicity with depth to achieve magical accuracy 

using SRSGAN. This has 4000 epochs and 32 batch sizes in 

training set for detecting the objects and increasing the object 
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resolution. 

(a) Convolutional Layers - SRSGAN: 3x3 filters with a

stride of 1 and padding of 1 to hold spatial resolution 

throughout. Block-1 contains Conv1 64x64 filters and 3x3 

kernels for activating the linear function. Dense super 

resolution block is used to extracting the synthetic feature 

extraction in crowded areas with high resolution. 

(b) Activation Function-SRSGAN: ReLU-Rectified Linear

Unit is used after each convolution layer and introducing non-

linearity for complex objects detection crowded environments. 

(c) Max Pooling Layers-SRSGAN: Max pooling with a 2×2

filters and stride 2 reduces the spatial dimensions. But all the 

important synthetic features have been maintained. 

(d) Fully Connected Layers-SRSGAN: Three fully

connected finalization at the end of the network for 

classification.  

(e) Softmax Layer-SRSGAN: The last and final layer for the

class probabilities output. 

3.3 Enhanced energy regularized GAN model – EERGAN 

The Enhanced Energy Regularized GAN (EERGAN) is a 

fascinating one among our current collection of GANs. As 

opposed to the original GAN, which estimates reconstruction 

loss using a discriminator, this one employs an auto encoder. 

This method proves to be a highly effective method for 

configuring a GAN.  

EERGAN Model generates Fast, stable, Energy efficient 

and robustness to detecting abnormal objects in public 

crowded areas and also helps for public safety. From Figure 4, 

the proposed EERGAN is used to enhance the energy level 

performance for object detection in public crowded areas. The 

noise image (z), image category (c) is added to our EERGAN 

Generator for updating and regularizing (z)|D(x) the energy 

level with detecting the objects.  

The Discriminator with enhanced energy model processes 

the various responsibilities of object detection and also 

differentiate the given image is either real or fake. This fake 

image has been transferred to discrepancy measures for further 

process and also produces robustness, energy efficient 

processing and accurate image an effectively and also ensure 

the public safety with security in crowded areas. To configure 

this by following the steps below: Use the source data to train 

an auto encoder, and then pass the generated images through 

it. This metric is now useful in public crowded objects due to 

the significant reconstruction loss caused by poorly created 

photos. When combined with appropriate regularization to 

prevent mode collapse. The EERGAN model measures the 

similarity between produced and real images using an energy 

function. Use the energy function to design a loss function that 

decreases during training. To introduced EERGAN to perform 

object detection modeling tasks over picture data from 

crowded settings in public spaces. This demonstrate and create 

well-performing and efficient models by using Enhanced 

Energy Regularized GAN (EERGAN), which achieves 

competitive detection performance compared to existing 

energy models at significant energy consumption savings. 

The EERGAN-LSSVM model comprises a label generator 

and a discriminator that are optimized by means of adversarial 

learning. The modeling power of this model is enhanced 

through two modules: the EERGAN-LSSVM generator and 

discriminator. In addition to resolving GAN-specific problems 

of model collapse and convergence, EERGAN outperforms all 

contemporary state-of-the-art benchmarks. ERGAN learns 

about objects found at high resolution in images. This research 

introduces the EERGAN-LSSVM model for detecting the 

abnormal objects, efficient energy processing, latency 

prediction, and classifying the ratio of abnormal to normal 

accurately. The structure of EERGAN-LSSVM propelled the 

development of parameter adjustment possibilities for 

maintaining high detection rates and also produces more 

robust, increasing the computational efficiency; fast object 

detection, and ensuring public safety and security. 

Figure 4. EERGAN frame work for object detection 
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Algorithm-1: EERGAN model based Adversarial 

Dynamic Training Process  

Input:  Real time object as sample input (z) 

Training: 𝐷𝐸𝐸𝑅𝐺𝐴𝑁 and 𝐺𝐸𝐸𝑅𝐺𝐴𝑁
Parameters: ɵ is parameter of both Generator and 

Discriminator. 

Output: Detecting abnormal objects and extracting 

features. 

1. for N of Adversarial Training process do

2. for M steps do

3. Image groups m into noise sample object

 { 𝑍1(1), … . . 𝑍𝑛(𝑚)}  from noise pg(z).

4. Collect the sample images {𝑥1(1), … . . 𝑥𝑛(𝑚)}  from

data generating

5. Distributing process of EERGANdata (x).

6. Discriminator update

7. 𝐷(𝐸)𝐸𝐸𝑅𝐺𝐴𝑁 =  Ʌɵ𝐷 
1

𝑚
 ∑ [log𝐷(𝑥(𝑖)) +𝑚

𝑖=1

log(1 − 𝐷(𝐺(𝑍(𝑖)))]

8. End for

9. Sample batches of m noise sample images

{𝑍(1), … . . 𝑍(𝑚)}  from noise pg(z).

10. Generator update

11. 𝐺(𝐸)(𝐸𝐸𝑅𝐺𝐴𝑁 =  Ʌɵ𝐺 
1

𝑚
 ∑  log(1 −𝑚

𝑖=1

𝐷(𝐺(𝑍(𝑖)))
12. End for

(a) Preprocessing

Preprocessing is used to select the appropriate images for

object detection. This gives the correct input to the proposed 

model for training purpose. 

(b)Training

(i) Generator – EERGAN

Generator (G) is the result of minor gradient difficulties that

make maximizing cross entropy useless for lowering the 

discriminator's likelihood of producing accurate predictions of 

abnormal object in crowded areas. 

𝐺𝐸𝐸𝑅𝐺𝐴𝑁 =  Ʌɵ𝐺
1

𝑚
∑log(1 − 𝐷(𝐺(𝑍(𝑖)))

𝑚

𝑖=1

(8) 

where, log(1 − 𝐷(𝐺(𝑍(𝑖)))  is used to predict the worst on the

abnormal images and probability is close to 1. 

(ii) Discriminator – EERGAN

By increasing the prediction probability of distinguishing

between genuine and false, discriminator (D) maximizes that 

log likelihood, which is equivalent to minimizing negative log 

likelihood. 

𝐷𝐸𝐸𝑅𝐺𝐴𝑁 =  Ʌɵ𝐷
1

𝑚
∑[log𝐷(𝑥(𝑖)) + log(1 − 𝐷(𝐺(𝑍(𝑖)))]

𝑚

𝑖=1

 (9) 

where, 𝑙𝑜𝑔𝐷(𝑥(𝑖)) is used to predict well on real images in

crowded areas.log(1 − 𝐷(𝐺(𝑍(𝑖))) is used to predict well on

the abnormal images and probability is close to 1. 

(c) Equilibrium

The Equilibrium is used to demonstrate the energy balance

between both Generator (G) and Discriminator (D) loss. 

E[L(x)] = E[L(G(z)] (10) 

where, 𝐸[𝐿(𝑥)] is the distribution loss of real image samples 

(x) and 𝐸[𝐿(𝐺(𝑧)]  is random sample of input (z). The

generated samples and their predicted error in distribution

should be similar if the discriminator is unable to tell them

apart from genuine samples. This has to reach the great effort

between both generator and discriminator [22]. Modified Eq.

(10):

E[L(G(z)]  =  γE[L(x)] (11) 

Adding a new hyper parameter, ϒЄ [0,1] defined as will 

allow us to loosen the equilibrium: 

γ =  
E[L(G(z)]

E[L(x)]
(12) 

Because there is a natural boundary between hard and 

exhaustive images, the discriminator reduces image variety by 

balancing auto-encoding genuine images and differentiating 

real from created images using the ϒterm. 

(d) Energy based boundary Equilibrium GAN

{

LD = L(x) − kt. L(G(zD))for ɵD

LG =  L(G(zG))for ɵG

kt+1 = kt + λk [γL(x) − L(G(zG))]

for Each Training Step − t

(13) 

Proportional control theory is used to maintain Eq. (11) 

modifying kt at each stage to maintain Eq. (10). When doing 

gradient descent, the equilibrium is preserved by using the 

proportional gain, γ k. The Wasserstein distance model is 

affected by the addition of approximations in equation 10 and 

E[L(x)]  in Eq. (11). Unlike SRSGANs, EERGAN-LSSVM 

doesn't need to train D or G consistently. When training is 

employed by ɵG and ɵD and also updated separately depending 

on losses. 

(e) Optimality

To use EERGANs for object detection in crowded areas and

efficient energy processing, but their convergence is always 

challenging and results in oscillating less energy losses.  

M𝐸𝐸𝑅𝐺𝐴𝑁(𝑔𝑙𝑜𝑏𝑎𝑙)=L(X) + ϒ|L(x)−L(G(zG))| (14) 

To use the equilibrium notion to produce a global measure 

of convergence that focuses on the closest reconstruction with 

the lowest instantaneous process error in detecting abnormal 

object and also improve the energy levels. The EERGAN-

LSSVM produces more robust and fast object detection, 

ensuring public safety and security. 

4. Experiments and Evaluation

4.1 Experimental 

To demonstrate the performance of the EERGAN-LSSVM, 

three benchmark datasets were utilized: 

a) Shanghai Tech Dataset: From Table 1, this dataset has

different scenes with different densities of people, gathered 

from surveillance film shot in different locales. Its widespread 

use for abnormal event identification and crowd analysis 

makes it suitable for evaluating the efficacy of Spiking GANs 

in various contexts. The Shanghai tech dataset is a very large, 

huge dataset in crowded areas. It contains a total of 2000 
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images of crowds that are annotated. It has two classes like 

Class 1, and Class 2. Class 1 has 1200 images, whereas Class 

2 has 800 images. 900 images are entered into training set, and 

the 300 images are used for testing in Class 1, while the two 

classes of Class 2 share a total of 555 images for training set 

and 245 images have used for testing. Each image in the crowd 

markers has a point set along the center of the head for each 

individual, totaling 120,275 people counted by annotation. 

Class 1 images had been sourced or obtained through the 

internet, while Class 2 was from several busy streets of 

Shanghai. 

b) UCSD Pedestrian Dataset: The majority of the video

sequences in this dataset are of pedestrian activity. It is 

frequently used to detect anomalies in congested environments. 

Because it contains annotations for a variety of activities, the 

dataset provides a solid foundation for developing and 

evaluating algorithms that recognize violent behavior. The 

UCSD pedestrian anomaly detection dataset was created by 

placing a stationary camera on pedestrian walkways, 

observing common anomalies like bikers, skaters, small carts, 

and speed-walking deficiencies. The data was partitioned into 

4 Classes, with video footage broken into 4000 frames. Class 

1 has 1300 images, Class 2 has 1400 images, Class 3 has 800 

images and Class 4 has 500 images. 750 images have given for 

training, and the 550 images are used for testing in Class 1, 

while the four classes of Class 2 share a total of 800 images 

for training and 600 other images for testing. 455 images are 

set apart for training, and the remaining 345 are for testing in 

Class 3, while the four classes of Class 4 share a total of 450 

images for training and 300 other images for testing. Each 

image in the crowd markers has a point set along the center of 

the head for each individual, totaling 420,485 people counted 

by annotation. From Class 1 to Class 4 images had been 

sourced or obtained through the common anomalies like bikers, 

skaters, small carts, and speed-walking deficiencies.  

C. User Collected Data Set: Similarly, User collected

Dataset has 50000 samples, 10 classes, 40000 training set and 

10000 testing set for detecting normal and abnormal object 

event ratio range is 10:90. This study's unique dataset includes 

annotated video sequences of aggressive and non-aggressive 

behaviors in crowded contexts. This dataset was created to 

provide an extensive assessment setting that is specifically 

designed to meet the requirements of aggressive behavior 

detection. 

Table 1. Datasets with their evaluation process 

Dataset No. of Samples No. of Classes Training Set Testing Set Aggressive to Non – Aggressive Event Ratio 

Shanghai Tech 2000 2 1500 500 25:75 

UCSD Pedestrian 4000 4 3000 1000 20:80 

User Collected Dataset 50000 10 40000 10000 10:90 

4.2 Evaluation metrics 

The performance of EERGANs was assessed using several 

evaluation metrics: 

Accuracy: This metric describes that the proportion of 

accurately predicted instances among the total instances of 

samples or images in public crowded scenes. 

Precision: This metric explains that the proportion of true 

positive predictions among the total predicted positives 

images or samples in public crowded scenes. 

Recall: This metric describes that the proportion of true 

positive predictions among the total actual positive’s samples 

or images in public crowded scenes. 

F1-score: F1-Score is providing a balance between the 

various data sets mean of precision and recall. 

Energy Consumption: This Metric describe that the 

amount of energy consumed by the model during inference 

and detecting the object in crowded areas. 

Prediction Latency: This metric explains that the time 

taken by the model to make a prediction of images in crowded 

areas. 

These metrics were selected to explain a overall evaluation 

of both the predictive performance and the efficiency of the 

proposed novel based EERGAN models. 

4.3 Experimental results 

The experimental results are described in the following 

tables. 

From Table 2, the results demonstrate that Enhanced 

Energy Regularized GAN (EERGAN) outperform 

AVAEGAN and SRSGAN across all performance metrics. 

Specifically, EERGANs achieve an accuracy of 97.7%, a 

precision of 95.68%, a recall of 95.68%, and an F1-score of 

98.21%. 

From Table 3, the efficiency metrics further highlight the 

advantages of Enhanced Energy Regularized GAN 

(EERGAN). EERGAN consume 135% less energy compared 

to Spiking Generative Adversarial Network (SPGAN) and 180 % 

less energy compared to LSHWGAN. Additionally, Enhanced 

Energy Regularized GAN (EERGAN) exhibits a prediction 

latency of 28 ms and Energy reduction of 32%, making them 

highly suitable for real-time aggressive behaviour detection. 

From Table 4 and Table 5, the EERGAN achieved an more 

accuracy 97.7 %, outperforming SPGAN 96.7%, AVAEGAN 

96.8 %, SRSGAN 96.9% and executing more precision 

(95.68), recall (95.99), F-Score (98.21), reflecting a robust 

capability in distinguishing aggressive from non-aggressive 

behaviors. EERGAN-LSSVM exhibits energy reduction of 

32% and prediction latency of 28ms for detecting abnormal 

objects in crowded areas. 

Table 2. Performance metrics comparison 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LSGAN 91.3 92.34 92.55 93.15 

LSHWGAN 94.5 94.62 93.65 96.81 

Spiking GAN 96.7 95.12 94.83 97.78 

AVAEGAN 96.8 95.26 94.91 97.81 

SRSGAN 96.9 95.31 94.95 97.91 

EERGAN 97.7 95.68 95.99 98.21 
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Table 3. Efficiency metrics comparison 

Model Energy Consumption (mJ) Energy Reduction (%) Prediction Latency (ms) 
LSGAN 200 - 50 

LSHWGAN 180 10% 45 

Spiking GAN 140 30% 35 

EERGAN 135 32% 28 

Table 4. Performance metrics comparison with different GAN models 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 
YOLO 80.15 80.18 80.21 80.23 

Faster R- CNN 80.17 80.28 80.22 80.25 

DCNN 80.18 80.20 80.24 80.28 

HDCNN 80.36 80.78 80.37 80.39 

SGAN 83.45 81.23 80.34 80.22 

DCGAN 84.32 83.04 82.23 83.2 

LSGAN 91.3 92.34 92.55 93.15 

LSHWGAN 94.5 94.62 93.65 96.81 

Spiking GAN 96.7 95.12 94.83 97.78 

AVAEGAN 96.8 95.26 94.91 97.81 

SRSGAN 96.9 95.31 94.95 97.91 

EERGAN 97.7 95.68 95.99 98.21 

Table 5. Efficiency metrics comparison with different GAN models 

Model 
Energy Consumption 

(mJ) 

Energy Reduction 

(%) 

Prediction Latency 

(ms) 

GPU Memory 

(GB) 

Training Time(hrs/epochs) 

Approximately 

YOLO 320 - 78 8 8 

Faster R-

CNN 
310 - 76 12 12 

DCNN 300 - 74 8 7 

HDCNN 280 - 70 9 8 

SGAN 240 - 65 12 12 

DCGAN 220 - 57 10 10 

LSGAN 200 - 50 8 6 

LSHWGAN 180 10 45 7 5 

Spiking GAN 140 30 35 6 4 

EERGAN 135 32 28 5 3 

Table 6. Default hardware specification 

Default Energy Consumption (mJ) Model Types Sample Models 

5-100 mJ Edge based AI Models EfficientDet Model 

50-200 mJ Light Weight CNN & GAN Models DVDGAN, LSGAN, ACGAN 

200-500 mJ Mid-size CNN & GAN Models YOLO 1 to YOLO 5, Faster R-CNN, LSTM and GAN Models, 

(a) Energy consumption (mJ)

Energy consumption consists of some set of parameters for

object detection, such as system architecture, hardware 

specification, and input resolution. This can be used to total 

energy for an object detection model in an image or frame. 

(b) Energy reduction

Energy Reduction is used to represent the indication of

energy savings for proposed model and this model can 

compare with various states of art models for energy 

consumption. 

ER = 
𝐸(𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑜𝑑𝑒𝑙)–𝐸(𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑀𝑜𝑑𝑒𝑙) 

𝐸(𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑀𝑜𝑑𝑒𝑙)
×  100 (15) 

From Eq. (15), For example: 

EERGAN model is compared with LSGAN 

EEERGAN = 
LSGAN –EERGAN 

LSGAN
 ×  100

EEERGAN = 
200 –135 

200
 ×  100

EEERGAN = 
65 

200
 ×  100

EEERGAN = 32% 

Spiking GAN model is compared with LSGAN 

ESpking GAN= 
200 –140 

200
 ×  100

ESpking GAN = 
60 

200
 ×  100

ESpking GAN= 30% 

(c) Prediction latency

Prediction latency indicates that total time taken by the

proposed model for processing of a single object or image 

execution and defines the prediction. This is measured by 

milliseconds (ms). It has following hardware specification 
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tools such as Nvidia for GPU, CPU and TPU. 

Prediction Latency = Total Time Taken per Execution 

From the Table 6, YOLO = (320mJ, 78 ms) is slower than 

remaining models for detecting objects. 

EERGAN = (135mJ, 28 ms) is faster than YOLO model 

for detecting abnormal real time objects in crowded 

environments. 

5. ANALYSIS AND DISCUSSION

The Novel approach EERGAN with LSSVM manages to 

get the best out of both architectures for an aggressive 

behavior-detecting model, and since it is event-driven, this 

enhances energy-efficient processing by EERGAN, and 

EERGAN-LSSVM generative capability improves the 

learning capacity as well as data production quality. 

Figure 5. Accuracy comparison of EERGAN with different Models 

Figure 6. Comparison of the Evaluation metrics 

Figure 7.ROC curve with data sets Vs accuracy for different 

models 

Figure 8.ROC curve accuracy of samples compared with 

EERGAN models 

897



 

(a) Accuracy and Precision: With much greater accuracy 

and precision compared to the cases above, this plot shows the 

marked superiority of EERGAN-LSSVM in detection of 

aggressive behaviors with minimal false positives during 

surveillance applications, in which the rate should be 

decreased and is mainly a big issue. From Figure 5, EERGAN-

LSSVM model achieved the accuracy of 97.7% for detecting 

abnormal object in crowded areas and SPGAN achieved 

96.7%. 

(b) Recall and F1-score: From Figure 6 and Figure 7 

demonstrate that the high recall and F1-score show that 

Enhanced Energy Regularized EERGANs indeed grab all the 

aggressive behaviors that otherwise might fall through the 

cracks, thus capturing the entire surveillance of critical 

instances. EERGAN-LSSVM achieves an accuracy of 97.7%, 

precision of 95.68%, recall of 95.99%, and an F1-score of 

98.21%. These metrics demonstrate a significant improvement 

over AVAEGAN, SRSGAN, Spiking GAN and LSHWGAN. 

From Figure 8, EERGAN-LSSVM model described that the 

false positive and negative rate. This achieved more 

probability than SPGAN Model. 

(c) Real-time Performance: Their lower prediction latency, 

which is an important requirement for early action, thus 

substantiates the ability of the Enhanced Energy Regularized 

EERGANs to classify violent behavior in real-time. Enhanced 

Energy Regularized GAN (EERGANs) with LSSVM Models 

is improving sample quality, but their complexity and long run 

times hinder their adoption. Despite balancing these extremes, 

the complexity of hybrid approaches may hinder their 

adoption. Improvements in one area benefit other areas, such 

as subjective flows, diffusion models, and better variation 

bounds for AVAEGAN. While attention and implicit networks 

show promise in SRSGAN for scaling models to high-

dimensional data, future generalizations will depend on 

unified generative models that can model continuous, irregular, 

and arbitrary length data. 

 

 
 

Figure 9. Latency comparisons between spiking GAN Vs 

EERGAN 

 

To sum, the experiment results actually confirm the 

efficiency and effectiveness of EERGAN in detecting violent 

behavior in crowded spaces. Bringing together significant 

energy-saving features along with real-time processing 

capabilities, besides improving predictive performance, the 

EERGAN model emerges as a viable contender to enhance 

public safety in surveillance hotspots.  

 

 
 

Figure 10. Latency comparisons between AVAGAN, 

SRSGAN and EERGAN 

 

From Figure 9, the LSHWGAN is used to predict the 

latency ranges upto 45 ms, while EERGAN prediction latency 

is 28 ms, similarly the LSHWGAN can also predict the latency 

ranges upto 46 ms, outperformig the EERGAN prediction 

latency is 28 ms for detecting the abnormal objects and feature 

extraction in real time data sets. The proposed EERGAN 

model is required less energy level for detecting the abnormal 

objects with compared to Spiking GAN models (35ms). 

From Figure 10, the Adversarial Auto Encoder Generative 

Adversarial Networks (AVAEGAN) model is used to predict 

the latency ranges upto 34ms, while Enhanced Energy 

Regularized Generative Adversarial Networks (EERGAN) 

prediction latency is 28 ms, similarly the LSGAN can also 

predict the latency ranges upto 50 ms, outperformig the 

EERGAN prediction latency is 28 ms for detecting the 

abnormal objects and feature extraction in real time data sets. 

The proposed EERGAN model is required less energy level 

for detecting the abnormal objects with compared to Super 

Resolution Synthetic Generative Adversarial Networks 

(SRSGAN) models (33 ms). 

(d) Energy Efficiency: The significant reduction in energy 

consumption lists the potential of Spiking GANs for 

deployment in resource-constrained environments, such as 

battery-powered surveillance systems. 

From Figure 11 and Figure 12, the experimental results 

indicate that Enhanced Energy Regularized Generative 

Adversarial Networks EERGANs achieve an accuracy of 

97.7%, precision of 95.68%, recall of 95.99%, and an F1-score 

of 98.21%. These metrics demonstrate a significant 

improvement over AVAEGAN, SRSGAN, Spiking GAN and 

LSHWGAN. From Figures 13-15 has been demonstrated the 

confusion matrix for bench mark data sets and also described 

the normal object as a true label and abnormal as a predicted 
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label. From Figure 16, EERGAN-LSSVM exhibit a 32% 

reduction in energy consumption compared to LSGAN, 

SPGAN produces 30% reduction compared to LSGAN and 

LSHWGAN generates 10% reduction compared to LSGAN. 

From Figure 17, the prediction latency is 28ms, underscoring 

the efficiency of Enhanced Energy Regularized GANs in real-

time scenarios. The integration of EERGAN with LSSVM 

presents a promising solution for aggressive behavior 

detection in crowded environments. The event-driven nature 

of EERGAN and the generative capabilities of spiking GANs 

complement each other, resulting in a framework that not only 

improves prediction accuracy but also enhances energy 

efficiency and processing speed. This novel approach 

addresses the limitations of traditional methods, providing a 

robust solution for real-time applications. Figure 11. ROC curve accuracy of data sets compared with 

SOA methods Vs EERGAN model 

Figure 12. ROC curve for false positive and true positive rate 

Figure 13. Confusion matrix for shanghai tech data set Figure 14. Confusion matrix for UCSD pedestrian data set 

899



Figure 15. Confusion matrix for user collected data set 

Figure 16. Comparison of the energy efficiency metrics 

Figure 17. Comparison of the prediction latency 

6. CONCLUSION

The proposed EERGAN with LSSVM validate the 

experimental results for detecting the objects in crowded areas 

energy efficiently and more accurately. The proposed 

Enhanced Energy Regularized Generative Adversarial 

Networks with LSSVM to achieve an accurately, energy 

efficiently and more robustness for real time processing of 

abnormal object detection in crowded places. The EERGAN 

achieved an more accuracy 97.7%, outperforming SPGAN 

96.7%, AVAEGAN 96.8 %, SRSGAN 96.9% and executing 

more precision (95.68), recall (95.99), F-Score (98.21), 

reflecting a robust capability in distinguishing aggressive from 

non-aggressive behaviors classification. Notably, Energy 

Enhanced Regularized GANs consume 25% less energy 

compared to SPGAN and 32 % less compared to LSHWGAN, 

highlighting their energy efficiency, which is crucial for 

resource-constrained surveillance systems. With a prediction 

latency of just 28 milliseconds, EERGAN-LSSVM offer 

superior real-time performance compared to LSGAN (50 ms) 

and LSHWGAN (45 ms). The confusion matrix analysis 

further confirms the model’s high classification accuracy for 

both aggressive and non-aggressive instances. In future, the 

proposed model not only excels in predictive accuracy, 

robustness and energy efficient for abnormal object detection 

for given bench mark data set. The same model will be 

analyzed the advance data sets through strengthening the 

architecture for ensuring the public safety and security. 
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