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With the rapid advancement of information technology, online English instruction has 

emerged as a significant educational modality. However, insufficient teacher–student 

interaction remains a prevalent issue, negatively affecting instructional efficacy and student 

engagement. Facial expressions, as direct manifestations of emotional and cognitive 

responses, offer valuable insights into students’ affective states during learning. In recent 

years, facial expression recognition (FER) technology has been increasingly integrated into 

educational contexts to enable real-time monitoring of emotional fluctuations and to provide 

feedback for teachers, thereby optimizing classroom interaction and improving teaching 

effectiveness. Despite prior investigations into the educational applications of FER, current 

approaches often suffer from limited accuracy and latency in complex online environments. 

Moreover, existing interaction strategies have largely remained unidirectional, lacking 

comprehensive interaction strategies based on FER results. How to improve the accuracy of 

FER and enhance the quality of teacher-student interaction in online English instruction 

through this technology remains a key issue that urgently needs to be addressed. Therefore, 

this study, which can be divided into two principal components, was conducted to address 

these challenges. First, an FER method based on a multi-scale fused feature network was 

proposed, with the objective of enhancing both accuracy and real-time performance in online 

English instruction. Second, based on the results of FER, strategies for improving the quality 

of teacher-student interaction in online English instruction were studied, and how to 

optimize the interaction process between teachers and students through facial expression 

data was explored. This study not only introduces technical innovations to support 

interaction in online English instruction but also expands the practical applications of FER 

technology within the broader field of education. 
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1. INTRODUCTION

With the rapid advancement of information technology, 

online education has increasingly emerged as a mainstream 

instructional modality [1-3], particularly within the field of 

English language instruction. By removing the spatial and 

temporal constraints of traditional classrooms, online English 

instruction has enabled flexible and diverse learning pathways 

[4–6]. However, the widespread adoption of online teaching 

has simultaneously highlighted persistent challenges, notably 

the insufficiency of teacher–student interaction [7, 8]. This 

deficiency has been shown to adversely affect both student 

motivation and instructional effectiveness. Facial expressions, 

as essential indicators of human emotional and cognitive 

responses [9], are capable of directly reflecting students’ 

affective states and levels of attentiveness during the learning 

process. Consequently, the integration of FER technology into 

online English instruction has emerged as a critical area of 

inquiry, with the aim of improving the quality of teacher–

student interaction. 

In relevant research, FER has been recognized as an 

effective tool for enhancing the quality of educational 

interaction [10-13]. By enabling the real-time detection of 

students’ facial expressions, FER allows teachers to better 

interpret learners’ emotional fluctuations and engagement 

levels, thereby facilitating the dynamic adjustment of 

instructional strategies to enhance pedagogical outcomes. 

Furthermore, FER has been applied in sentiment analysis [14, 

15], assisting educators in identifying emotional variations and 

enabling timely modifications to lesson pacing and 

instructional methods, thus promoting improved learning 

effectiveness. Accordingly, the investigation of FER-based 

interaction mechanisms in online education holds substantial 

theoretical significance and practical value. 

Although the application of FER in educational contexts has 

been explored in prior studies, several limitations persist in 

existing methodologies. A considerable proportion of current 

FER techniques remain rooted in conventional image 

processing approaches [16, 17], which often overlook the 

importance of multi-scale feature fusion. This oversight has 

resulted in reduced accuracy and compromised real-time 

performance when applied in complex online instructional 

environments. Moreover, existing strategies for enhancing 

interaction have predominantly focused on unidirectional 
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feedback from teachers to students [18, 19], lacking the 

integration of FER-informed multidimensional interaction 

frameworks. Consequently, the effectiveness of such 

strategies in improving interaction quality has remained 

constrained. Therefore, how to improve the accuracy of FER 

technology and effectively apply it to online English 

instruction remains an urgent research problem to be solved. 

To address these gaps, the present study was conducted, 

which comprises two principal components. First, an FER 

method based on a multi-scale fused feature network was 

proposed to enhance both the accuracy and real-time 

responsiveness of FER in online English instruction. Second, 

strategies for improving teacher–student interaction quality 

were investigated, utilizing FER results to optimize the 

interaction process between teachers and students. Through 

these two focal areas, this research seeks to offer novel 

technological support and theoretical grounding for advancing 

interaction quality in online English instruction, thereby 

contributing to the broader development of online education. 

2. FER FOR ONLINE ENGLISH INSTRUCTION

BASED ON A MULTI-SCALE FUSED FEATURE

NETWORK

In online English instruction, facial expressions of both 

teachers and students serve as critical indicators influencing 

the quality of instructional interaction. Real-time observation 

of students’ facial expressions enables teachers to assess 

emotional and attentional states, thereby allowing for timely 

adjustment of instructional strategies to enhance interactive 

effectiveness. However, FER in complex teaching scenarios is 

often challenged by various factors, including lighting 

conditions, camera angles, and inter-individual differences. 

High inter-class similarity among expressions further 

contributes to reduced recognition accuracy. To improve the 

recognition performance of facial expressions in online 

English instruction, it is essential to design a neural network 

model that is not only lightweight and accurate but also robust 

to complex variations in facial expressions. In this context, a 

blueprint-separable dilated convolution network module was 

designed in this study, which has significant application value. 

This module facilitates architectural optimization, parameter 

reduction, and enhanced generalization capability, thereby 

addressing the deficiencies of existing FER methods in terms 

of accuracy and computational efficiency. The network 

architecture designed for FER based on multi-scale fused 

features is illustrated in Figure 1. 

Specifically, the integration of the Spatial Group-wise 

Enhance (SGE) attention mechanism plays a critical role in 

enhancing the precision of FER. In online English instruction 

scenarios, teachers are required to obtain students’ emotional 

responses in real time to facilitate timely pedagogical 

adjustments. Given that changes in facial expressions are often 

subtle and transient, conventional convolutional neural 

networks (CNNs) frequently fail to capture key localized 

features effectively. By incorporating the SGE attention 

mechanism, the network is endowed with the capability to 

automatically analyze and amplify facial features that are 

contextually relevant to learning-related emotions, while 

simultaneously suppressing irrelevant or noisy features.  

A blueprint-separable dilated convolution module was 

specifically designed for multi-scale feature fusion in teacher–

student FER in this study, which plays a crucial role in 

improving recognition accuracy. In online English instruction, 

interaction typically occurs via video conferencing, where 

facial expression features may appear at varying scales due to 

differences in camera angles and environmental conditions. 

Conventional convolution operations often fail to effectively 

process such diversified features. In contrast, the adoption of 

the blueprint-separable dilated convolution module enables an 

expanded receptive field of the convolution kernel, thereby 

facilitating the capture of more comprehensive facial 

expression information. 

Figure 1. Network architecture for teacher–student FER 
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To address issues commonly associated with deep neural 

networks, such as overfitting, the fully connected layer was 

replaced with a global average pooling layer, and a cross-layer 

connection mechanism was incorporated. These modifications 

have significantly improved the model’s generalization 

capability. In online English instructional settings, 

considerable variability exists in both instructional content and 

student emotional responses. Overfitting phenomenon may 

lead to unstable performance of the network when processing 

new data. The use of the global average pooling layer 

effectively reduces the number of model parameters, thereby 

lowering the risk of overfitting and enhancing the robustness 

of the network. Furthermore, the integration of the cross-layer 

connection mechanism facilitates more effective information 

flow between low-level and high-level features, fostering 

tighter coupling across feature hierarchies. This strategy can 

improve the adaptability and accuracy of the model across 

diverse students and instructional scenarios. As a result, FER 

in online English instruction can be performed with greater 

precision, thereby supporting improved teacher–student 

interaction quality. 

 

2.1 Attention mechanism module 

 

In the context of FER in online English instruction, the SGE 

attention mechanism was employed to optimize the network’s 

responsiveness to students’ expressions through weighted 

feature maps. In real instructional environments, students’ 

facial expressions tend to be transient and subtle. Traditional 

CNNs often struggle to accurately capture these nuances, 

particularly in emotionally complex expressions such as 

tension, confusion, or fatigue, which frequently exhibit high 

inter-class similarity. The SGE mechanism addresses this 

challenge by applying Gaussian normalization to the variance 

feature maps, enabling the network to automatically identify 

regions sensitive to emotional variation while effectively 

suppressing background noise or irrelevant expression 

changes. This selective attention allows the network to focus 

on critical facial areas—such as the eyes and mouth—thereby 

improving the accuracy of emotion recognition. The 

implementation of this module follows a structured process: 

(a) Initially, feature information within the image is divided 

into groups, followed by the application of global average 

pooling to extract global features. Each image region is then 

subjected to a pointwise multiplication operation to compute 

initial attention weights relative to the global context. In online 

English instructional settings, the recognition of students’ 

facial expressions is often complicated by environmental 

factors such as lighting, posture, and background variability. 

Global average pooling serves to mitigate the influence of such 

variations, ensuring the preservation of holistic information. 

The subsequent element-wise multiplication enables the 

network to contrast global and local features to determine 

which regions of the face convey the most salient expressions. 

For instance, subtle micro-expressions such as confusion or 

engagement, which are often localized to specific facial 

regions, can be effectively identified through this operation. 

(b) The attention-weighted masks computed by the SGE 

mechanism are subjected to normalization, and each feature 

group is independently scaled. This process ensures that no 

particular region receives disproportionate emphasis during 

the feature weighting stage, thus preserving the integrity of 

diverse expression information. In online English instruction, 

real-time interpretation of students’ emotional changes is 

essential, particularly during extended sessions in which facial 

expressions may undergo subtle shifts, such as signs of fatigue 

or disengagement. If the network were to focus excessively on 

specific facial regions while neglecting others, the accuracy of 

FER would be compromised. Through normalization, the SGE 

mechanism enables equitable weighting of expression features 

across all regions. The subsequent scaling operation further 

adjusts the relative importance of each region’s features, 

enhancing the network’s adaptability and flexibility, and 

thereby improving recognition precision. 

(c) The SGE attention mechanism also employs a sigmoid 

function to extract features that require more attention, 

followed by a scaling transformation for features of each 

region. The use of the sigmoid function enables finer 

modulation of the network’s attention across regions, allowing 

context-sensitive calibration of feature importance. In online 

English instruction, students’ facial expressions may vary 

dynamically in response to instructional content, interaction 

style, and classroom atmosphere. The sigmoid-based 

adjustment mechanism empowers the network to recalibrate 

attention weights in real time, focusing on regions indicative 

of emotional variation—such as a slight smile or furrowed 

brows. This context-aware adaptability enhances the 

network’s sensitivity to subtle expressions, ensuring that 

teachers are provided with accurate and timely emotional 

feedback for precise pedagogical adjustments. 

 

 
 

Figure 2. Network architecture of the SGE attention 

mechanism 
 

Figure 2 illustrates the network architecture of the SGE 

attention mechanism. When implementing the SGE 

mechanism in FER tasks, particular attention must be paid to 

the partitioning of feature groups and the detailed processing 

of the network. The SGE mechanism processes the input 

feature map by dividing it into multiple feature groups, then 

computes the inter-feature similarity to generate attention 

coefficients. During this process, both the size and the quality 

of the feature map exert a substantial influence on the 

performance of the model. In online English instruction, facial 

expression details are frequently affected by the distance 

between students and teachers, the camera angle, and 

environmental variability. As such, the grouping of features 

must take into account the inherent diversity and complexity 

of these instructional settings. The granularity of feature group 

partitioning must be appropriately aligned with the 
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requirements of FER to ensure that critical facial regions—

such as the eyes and mouth—are adequately emphasized. This 

targeted attention allows for the effective capture of micro-

expressions such as anxiety or confusion, thereby enabling 

timely instructional adjustments by educators. 

Furthermore, although the global average pooling operation 

in the SGE module enables the extraction of global feature 

information, reliance solely on global features may be 

insufficient for capturing the subtle variations in students’ 

emotional states during FER. Accurate recognition of facial 

expressions often depends on fine-grained local information, 

such as minor muscle movements and region-specific 

expression changes. Accordingly, when the global average 

pooling function Dh(·) is applied, it must be ensured that the 

resulting global features, when integrated with local features, 

adequately preserve the subtle variations inherent in facial 

expressions. For example, slight changes around the eyes or 

the corners of the mouth are critical in identifying emotions. 

The attention-weighting capability of the SGE mechanism 

plays a pivotal role in amplifying such localized features, 

thereby enhancing recognition accuracy. Using global 

statistical features, the feature vector obtained after pooling is 

represented as: 

( )
1

1 v

h u
u

h D a
v


=

= =  (1) 

The degree of similarity between the global feature au and a 

local feature h can be evaluated via an element-wise 

multiplication operation. The attention coefficients zu for each 

feature can then be computed as follows: 

u uz h a=  (2) 

Normalization of the attention coefficients is another 

essential component of the SGE mechanism. In online English 

instructional contexts, students’ expressions are subject to 

dynamic variation depending on content, situational context, 

and individual emotional states. Therefore, the normalization 

of the attention coefficients zu is critical for preventing 

overfitting that may arise from expression disparities across 

samples. By normalizing the attention coefficients, the 

network is better equipped to accommodate a wide range of 

complex emotional states—such as anxiety or confusion 

encountered during learning difficulties—thus ensuring that 

the system can respond consistently and provide accurate 

feedback. Assuming the mean and standard deviation of the 

attention coefficients zu are denoted by ωz and δz, respectively, 

and the normalized attention coefficients are represented by 

𝑧̂𝑢. A small constant ∈ was added for numerical stability. The

following shows the specific normalization operation: 
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The design of the hyperparameters ε and α within the SGE 

attention mechanism plays a critical role in ensuring the 

model’s flexibility and overall performance. In FER tasks, 

real-time tracking of students’ emotional fluctuations is 

essential for effective instructional interaction. However, 

variations in teaching scenarios can lead to significant 

differences in facial expression features. For instance, during 

highly interactive speaking exercises, expressions may 

predominantly reflect tension and concentration, whereas 

listening tasks may elicit signs of confusion or fatigue. To 

accommodate such contextual variability, the hyperparameters 

ε and α in the SGE module were configured to match the 

number of feature groups, allowing for adaptive adjustment of 

feature weighting across different instructional contexts. 

Activation of the attention coefficients was performed using 

the sigmoid function, which refines the weighting and spatial 

scaling of each feature. This enables dynamic modulation of 

facial expression regions according to changes in situational 

demands, thereby enhancing both the robustness and accuracy 

of expression recognition. Such improvements support more 

accurate interpretation of student emotional states by teachers. 

Specifically, the transformation and scaling of the normalized 

attention coefficients 𝑧̂𝑢  are governed by the following

equation: 

ˆu ux z = + (6) 

xu was activated by the initial au via the sigmoid function 

δ(.). Then the activated xu was element-wise multiplied with 

the original facial expression feature information. Scaling 

operation was performed in the spatial dimension using xu. 

( )ˆu u ua a x=  (7) 

 1...ˆ ˆ ˆ, ,

Z

H
v ua a a E v G Q=  =  (8) 

2.2 Improved dilated convolution module 

Dilated convolution was utilized to expand the receptive 

field without increasing computational complexity by 

introducing a dilation rate into the convolution operation. This 

is particularly advantageous for FER, where subtle changes 

often occur in localized regions such as the corners of the 

mouth, eyes, or eyebrows. By applying dilated convolution, 

the network is enabled to capture broader contextual facial 

features without the need for additional network layers. This 

not only reduces the computational burden of convolutional 

operations but also improves the network’s ability to interpret 

complex emotional fluctuations present in both teacher and 

student facial expressions. Accurate recognition of emotional 

states—such as confusion, concentration, or happiness—can 

thus be more effectively achieved. In the context of online 

English instruction, minimizing computational load is 

essential for improving real-time performance and 

responsiveness. Given that student facial expressions may 

shift rapidly during interactive sessions, a model capable of 

performing timely and accurate emotion recognition is 

required. To meet this demand, a lightweight blueprint-

separable dilated convolution network was employed. This 

network structure was selected to ensure high recognition 

accuracy while simultaneously optimizing architectural 

efficiency, reducing resource consumption, and increasing 

processing speed.
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Figure 3. Schematic diagram of the blueprint-separable 

convolution 

 

To support FER, a blueprint-separable convolution 

architecture was first designed to effectively extract critical 

features from subtle facial variations. FER tasks often require 

the extraction of multi-scale and multi-dimensional facial 

features. The blueprint-separable dilated convolution was 

adopted for this purpose, leveraging efficient pointwise and 

depthwise convolution operations. This allows the network to 

identify key expression-related features with reduced 

computational resource consumption, without compromising 

recognition accuracy. As a lightweight neural network 

module, the blueprint-separable dilated convolution is built 

upon the redundancy along the depth axis of the convolution 

kernel. By optimizing the convolutional computation process, 

both the number of parameters and computational complexity 

are significantly reduced, while maintaining or even 

enhancing the network's feature extraction capability. This 

module consists of two pointwise convolution layers and one 

depthwise convolution layer. Initially, a 1×1 pointwise 

convolution is applied to the input feature maps to transform 

them into a new set of weighted coefficients. This operation 

effectively captures the channel-level information from the 

input features. Subsequently, a second 1×1 convolution is used 

to further refine these coefficients, allowing for the extraction 

of multi-scale feature information. Throughout this process, 

the inherent redundancy of the convolution kernels is 

exploited to efficiently separate deep feature representations, 

leading to a considerable reduction in computational cost. A 

schematic illustration of the blueprint-separable convolution is 

provided in Figure 3. 

The derivation of the constructed blueprint-separable 

convolution module is primarily oriented toward efficient 

facial feature extraction and computational optimization. A 

detailed breakdown is presented below. 

To begin, consider the input feature map I with dimensions 

(Z,B,A), where Z denotes the number of channels, and B and A 

represent the spatial dimensions. The objective of the 

blueprint-separable convolution is to transform the input 

feature map I into an output feature map N with V output 

channels, maintaining the same spatial dimensions B and A. 

To achieve this transformation, V convolutional kernels were 

employed, denoted as O(1),O(2),O(3)...O(V), where each kernel 

has dimensions (Z,C,C), with C representing the spatial size of 

the kernel. The central idea of this design lies in constructing 

each convolutional kernel through the combination of the 

blueprint and coefficients, which enables the efficient 

extraction of local facial expression features. Let the 

convolution operation be denoted by *. The computation step 

is as follows: 

 

( )*
v

v
N I O =  (9) 

 

What distinguishes the blueprint-separable convolution 

from conventional approaches is the method by which the 

convolutional kernels are constructed. Each kernel O(V) is 

composed of a blueprint O(v), representing the structural 

pattern of the kernel, and a set of corresponding weight 

coefficients μv,1, μv,2, μv,3, ..., μv,Z. This decomposition 

facilitates a more flexible convolution operation. By 

decoupling the convolution kernel into a blueprint and 

components, both parameter count and computational 

complexity are significantly reduced, thereby improving the 

efficiency of FER. In the context of online English instruction, 

the rapid and accurate recognition of subtle student facial 

expressions is critical. The blueprint-separable convolution 

leverages this decomposition strategy to achieve efficient 

recognition while minimizing computational resource usage. 

Specifically, the blueprint-separable convolution kernel O(v) is 

expressed as: 

 
( ) ( )

,
v v

v ll
O Y =   (10) 

 

Compared to conventional convolution, the blueprint-

separable convolution significantly reduces the number of 

parameters. For a standard convolutional kernel of size 

(Z,C,C), the total number of parameters is Z×C×C. In contrast, 

the blueprint-separable convolution requires only C×C+Z 

parameters. By decomposing each convolutional kernel into a 

blueprint and a corresponding set of coefficients, the total 

parameter count is substantially reduced, which in turn lowers 

the computational burden. This characteristic is particularly 

important in FER tasks, especially within real-time online 

English instructional settings, where computational efficiency 

and responsiveness are critical. Through this parameter 

reduction, the blueprint-separable convolution network is 

capable of processing facial images more rapidly, thereby 

enhancing real-time performance without compromising the 

accuracy of expression recognition. Expanding the previous 

formulation yields: 

 

( )( )
1

*
Z v

v z
N I O  =

=  (11) 

 

Each element was computed from a specific channel z 

within the input convolutional kernel channel. 

 

( )( )( ),1
*

Z v
v zv z

N I Y =
=   (12) 

 

Given that Y(v) is independent of Z and that μv,z is a scalar, 

the above expression can be further expanded as: 

 

( ) ( )
,1

*
Z v

v zv z
N I Y =

=   (13) 

 

,1
'

Z

v zv z
N I  =

=   (14) 

 

By rearranging the weights μv,1, μv,2, μv,3…μv,z into μ~
v with 

Z×1×1, the resulting operation becomes: 

 

1033



 

* ,* v zv
N I  =  (15) 

 
( )' *
v

N N Y =  (16) 

 

As indicated by the preceding formulations, the output N'v* 

of the blueprint-separable convolution—corresponding to the 

v-th channel—is obtained through a weighted summation 

across all input channels I. The weights μv,1, μv,2, μv,3, …, μv,z 

correspond to each input channel and are computed using a 

1×1 pointwise convolution. This operation is functionally 

equivalent to applying a pointwise convolution to perform a 

weighted summation of the input I, thereby integrating feature 

information across different channels. Simultaneously, the 

blueprint Y(v), with dimensions 1×1×C×C, operates 

analogously to a depthwise convolution and serves to extract 

feature information along the depth dimension. In FER tasks—

particularly in dynamic and complex teacher–student 

interactions—accurate extraction of deep expression features 

is essential for identifying subtle variations. The structure of 

the blueprint-separable convolution is capable of capturing 

these nuanced changes efficiently, thereby supporting teachers 

in better understanding students' emotional states. 

In the baseline lightweight neural network architecture, the 

replacement of conventional convolution with blueprint-

separable dilated convolution can significantly reduce 

convolutional redundancy. Specifically, the original input 

feature map I possesses the dimensionality (Z, B, A). In the 

optimized blueprint-separable dilated convolution, the 

operation is divided into two stages: an initial weighted 

pointwise convolution, followed by a depthwise convolution. 

In both stages, traditional convolutional layers are substituted 

with dilated convolutions. By expanding the receptive field, 

dilated convolution enables the capture of subtle facial 

variations—such as minor movements around the eyes or 

mouth—using fewer layers. The introduction of dilated 

convolution also enhances the network's capacity to extract 

multi-scale facial features, thereby improving both the 

accuracy and robustness of expression recognition. 

During the weighted pointwise convolution stage, the input 

feature map is processed using a 1×1 convolution kernel in a 

pointwise manner. In conventional CNNs, this operation is 

typically performed using standard convolution. However, in 

the blueprint-separable dilated convolution, this step is 

replaced with a dilated convolution, thereby expanding the 

effective receptive field. Because subtle facial expression 

variations often span broad spatial regions, the use of dilated 

convolution enables the extraction of significant facial 

expression features over larger areas—without increasing 

computational complexity. As a result, the weighted features 

derived through pointwise convolution more accurately reflect 

student facial feedback during online English instruction, 

including emotional states such as anxiety, confusion, or 

concentration, thereby enhancing affective recognition 

performance. 

In the depthwise convolution stage, the input feature maps 

undergo deep convolutional processing. Dilated convolution is 

again employed to enlarge the receptive field, further 

facilitating the extraction of high-level facial expression 

features along the depth dimension. Depthwise convolution 

operates independently on each channel, allowing fine-grained 

facial details to be captured for each specific channel. This is 

especially valuable in recognizing subtle facial expression 

changes, where the model is required to focus on highly 

localized expression regions. In online English instruction, 

teachers often rely on the real-time interpretation of students’ 

micro-expressions to adjust teaching content and strategies. 

Accordingly, the model must be capable of extracting key 

expression-related information with both speed and precision. 

The integration of dilated convolution into the depthwise 

convolution stage enables the extraction of meaningful deep 

features while maintaining a low computational cost, thereby 

improving the accuracy of FER. Figure 4 shows the detailed 

architecture of the blueprint-separable dilated convolution 

network. 

By integrating the two previously described stages, the 

complete blueprint-separable dilated convolution network 

achieves efficient extraction of facial expression features 

through a combination of weighted pointwise convolution and 

depthwise convolution. The use of dilated convolution 

increases the receptive field, enabling the network to capture a 

wider range of facial expression features with fewer layers and 

reduced computational overhead. In the context of online 

English instruction, this highly efficient FER capability is 

particularly valuable, as it enables teachers to detect students’ 

emotional changes in real time. Such changes may reflect 

comprehension of the course content, signs of confusion, or 

varying levels of attention and engagement.  

 

 
 

Figure 4. Detailed architecture of the blueprint-separable 

dilated convolution network 

 

 

3. IMPROVING ONLINE ENGLISH INTERACTION 

WITH FER 
 

Through the previously described methods, accurate 

recognition of student facial expressions was achieved using a 

blueprint-separable dilated convolution network module 

designed within a lightweight neural network framework. To 

further improve the quality of teacher–student interaction in 

online English instruction, several targeted strategies may be 

implemented as follows: 

Strategy 1: The introduction of a real-time affective 

feedback mechanism constitutes a critical approach to 

enhancing interaction quality. By leveraging FER technology, 

the system is capable of continuously monitoring students’ 

emotional states—such as confusion, anxiety, enjoyment, or 

focus—in real time. Based on detected emotional fluctuations, 

teachers can adjust their pedagogical strategies accordingly. 

For instance, when expressions of confusion or anxiety are 

detected, the system may prompt the teacher to consider 

modifying the pace or complexity of the instructional content. 

Additional clarification or increased interactivity may then be 

provided as needed. This real-time emotional feedback 

enables more precise adjustment of instructional pacing, 
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ensuring that students’ affective needs are promptly addressed, 

thereby improving the overall quality of interaction. 

Strategy 2: The optimization of personalized learning 

strategies also serves as an effective approach to enhancing 

interaction quality. FER not only provides real-time insight 

into students’ emotional states but also enables the 

longitudinal analysis of emotional trends. Based on students’ 

emotional patterns observed across different lessons or time 

intervals, tailored instructional strategies can be developed. 

For students exhibiting significant emotional fluctuations, 

individual support, adjustments to course content, or 

modifications to instructional methods may be employed to 

alleviate emotional burdens. Conversely, for students 

demonstrating emotional stability and sustained focus, the 

introduction of more challenging content may be used to 

stimulate interest and motivation. By implementing such 

personalized strategies, teachers can better adapt to the needs 

of each student, thereby enhancing the effectiveness and 

engagement of interaction. 

Strategy 3: The enhancement of interactive teaching 

activity design represents another critical strategy for 

improving the quality of teacher–student interaction. In online 

English instruction, student facial expressions often convey 

authentic responses to instructional activities beyond verbal 

interaction. For example, expressions of enjoyment may 

indicate strong interest in a particular activity, prompting 

increased instructional emphasis on that component. 

Alternatively, facial expressions reflecting boredom or fatigue 

may suggest the need for additional interactive elements—

such as group discussions or Question & Answer (Q&A) 

sessions—to boost engagement. By integrating feedback 

derived from FER, instructional content and interaction 

formats can be dynamically adjusted in real time. This 

approach fosters a more interactive and engaging classroom 

environment and further facilitates emotional communication 

and collaboration between teachers and students. 

Strategy 4: The further development and integration of 

affective intelligence systems constitute a long-term measure 

for enhancing the quality of teacher–student interaction. 

Building upon the foundation of FER, the construction of more 

intelligent sentiment analysis systems can provide teachers 

with multidimensional emotional data. These data may include 

not only students’ immediate affective responses but also their 

emotional preferences regarding various types of instructional 

content and their adaptability to different pacing patterns. 

Through such systems, a more comprehensive understanding 

of students’ emotional states and learning needs can be 

obtained, enabling data-driven optimization of instructional 

design and interaction modalities. Moreover, the deep 

integration of affective intelligence systems with online 

English instruction platforms can facilitate real-time 

responsiveness to students’ emotional changes. Instructional 

content and interaction formats can be automatically adjusted 

in accordance with these changes, thereby improving both 

teaching efficiency and interaction quality. 

By incorporating real-time emotional feedback, 

personalized learning strategies, interactive instructional 

design, and integrated affective intelligence systems, teachers 

can more effectively understand and respond to students’ 

emotional needs. Consequently, the quality of interaction in 

online English instruction can be significantly enhanced. As 

an effective tool for affective recognition, FER technology 

serves as a critical bridge in this process, facilitating the 

transition of online education from traditional knowledge 

transmission to a more personalized and interactive 

instructional paradigm. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

As shown in Table 1, the proposed model achieved 

significantly higher accuracy across all three datasets 

compared to the baseline lightweight neural network model. 

Specifically, for the student facial image dataset, the proposed 

model attained an accuracy of 98.61%, representing an 

improvement of approximately 5 percentage points over the 

baseline model’s 93.56%. For the teacher facial image dataset, 

the proposed model achieved an accuracy of 98.51%, 

exceeding the baseline model’s 95.47%. On the scene-

associated image dataset, the proposed model reached an 

accuracy of 98.23%, while the baseline model recorded only 

88.92%. These results demonstrate the superior performance 

of the proposed FER approach based on a multi-scale fused 

feature network. Enhanced recognition accuracy and stronger 

generalization capabilities were observed across diverse data 

sources, thereby validating the effectiveness of the proposed 

model in improving the precision of FER. 

 

Table 1. Accuracy comparison between the baseline lightweight neural network model and the proposed model 
 

Model 
Student Facial Image Dataset 

Accuracy (%) 

Teacher Facial Image Dataset 

Accuracy (%) 

Scene-Associated Image Dataset 

Accuracy (%) 

Baseline lightweight neural 

network model 
93.56 95.47 88.92 

Proposed model 98.61 98.51 98.23 

 

 
(a) Student facial image dataset 

1035



 

 
(b) Teacher facial image dataset 

 
(c) Scene-associated image dataset 

 

Figure 5. Accuracy curves of the baseline lightweight neural network model and the proposed model across three datasets 
 

Table 2. Recognition accuracy comparison of multiple methods across three datasets 

 
Dataset Method Recognition Accuracy (%) 

Student facial image dataset 

StarGAN 94.23 

MFNet 94.58 

Capsule-Emotion 96.32 

MTL-FER 97.85 

Proposed model 98.21 

Teacher facial image dataset 

StarGAN 92.65 

MFNet 95.36 

Capsule-Emotion 96.87 

MTL-FER 97.52 

Proposed model 98.26 

Scene-associated image dataset 

StarGAN 88.31 

MFNet 87.26 

Capsule-Emotion 87.56 

MTL-FER 98.31 

Proposed model 98.46 

 

As illustrated in Figure 5, both the proposed model and the 

baseline lightweight neural network model exhibited a degree 

of fluctuation in the early training stages on the student facial 

image dataset, with both models eventually converging toward 

an accuracy of 1.00. However, the proposed model 

demonstrated greater overall stability. On the teacher facial 

image dataset, the baseline model experienced significant 

early fluctuations before stabilizing at a relatively high 

accuracy, while the proposed model showed a steady upward 

trend and similarly converged toward 1.00. In the scene-

associated image dataset, the baseline model displayed notable 

instability, whereas the proposed model, despite some initial 

variation, also ultimately achieved near-perfect accuracy. 

These results visually depict the accuracy trends across 

training epochs for each model on the three types of datasets. 

From a broader perspective, the experimental outcomes across 

all three datasets indicate that the proposed model exhibited 

strong adaptability and effectiveness in diverse online English 

instruction facial image scenarios. Although some fluctuation 

was observed during early training phases, the final accuracy 

levels achieved by the proposed model were consistently high. 

Notably, the superior performance observed on both the 

student facial image dataset and the scene-associated dataset 

underscores the efficacy of the multi-scale fused feature 

network in enhancing FER accuracy. These findings provide a 

robust empirical foundation for subsequent strategies aimed at 

optimizing teacher–student interaction based on FER 

outcomes. Furthermore, they validate the practical value of the 

proposed approach to improving both the accuracy and real-

time responsiveness of FER, while also reinforcing the 

reliability of leveraging recognition results to inform strategies 

for interaction quality enhancement. 

Based on the data presented in Table 2, the proposed model 

achieved a markedly higher recognition rate than all 

comparative methods across the three evaluated datasets. On 

the student facial image dataset, the proposed model reached a 

recognition rate of 98.21%, outperforming Star Generative 

Adversarial Network (StarGAN) (94.23%), Multimodal 

Fusion Network (MFNet) (94.58%), Capsule-Emotion 

(96.32%), and Multi-Task Facial Expression Recognition 

(MTL-FER) (97.85%). On the teacher facial image dataset, an 

accuracy of 98.26% was attained, again surpassing StarGAN 

(92.65%), MFNet (95.36%), Capsule-Emotion (96.87%), and 

MTL-FER (97.52%). Notably, on the scene-associated image 
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dataset, the proposed model achieved a recognition rate of 

98.46%, exceeding MTL-FER (98.31%) as well as other 

baseline models, including StarGAN (88.31%), MFNet 

(87.26%), and Capsule-Emotion (87.56%). These 

experimental results confirm the proposed model’s 

exceptional recognition accuracy across varied datasets. In 

particular, its performance remained robust even when applied 

to complex visual scenes involving diverse emotional 

expressions and background variability. 

 

Table 3. Comparison of recognition accuracy and average 

mutual information for positive and negative features 

 

Feature 
Block 

Size 

Accuracy 

(%) 

Average Mutual 

Information 

Positive 

emotion 

1×1 54.23 1.115 

2×2 75.62 0.736 

5×5 91.23 0.415 

7×7 92.36 0.326 

Negative 

emotion 

1×1 61.25 1.526 

2×2 81.54 1.389 

5×5 88.96 0.856 

7×7 92.36 0.612 

 

Based on the data presented in Table 3, significant 

differences were observed in recognition accuracy and average 

mutual information for positive and negative emotions across 

varying block sizes. For positive emotion recognition, 

accuracy was found to increase with larger block sizes. 

Specifically, an accuracy of 54.23% was achieved using a 1×1 

block, which improved to 91.23% with a 5×5 block and 

reached 92.36% with a 7×7 block. However, this improvement 

in accuracy was accompanied by a progressive decrease in 

average mutual information, which declined from 1.115 at 1×1 

to 0.326 at 7×7. This suggests that while larger block sizes 

enhanced recognition performance, a trade-off may have 

occurred in terms of information extraction efficiency. A 

similar trend was observed for negative emotion recognition. 

The accuracy increased from 61.25% with a 1×1 block to 

81.54% with 2×2, 88.96% with 5×5, and stabilized at 92.36% 

with 7×7. Concurrently, accuracy for the negative emotion 

was stable with larger block sizes, and average mutual 

information decreased from 1.526 at 1×1 to 0.612 at 7×7. The 

results demonstrate that the proposed FER method maintained 

high recognition accuracy for both positive and negative 

emotions, particularly when larger block sizes were employed. 

These larger blocks proved effective in capturing subtle 

emotional variations within facial expressions, thus enhancing 

classification accuracy. However, this improvement came at 

the cost of reduced average mutual information, potentially 

indicating a compromise in fine-grained feature 

representation. In practical applications, a balance must be 

achieved between recognition accuracy and information 

extraction efficiency. For FER systems designed to support 

interaction in online English instruction, such a balance is 

essential to ensure that emotional data are utilized effectively, 

thereby optimizing teacher–student feedback mechanisms and 

instructional strategies. 

Figure 6 presents the scatter plots of multi-scale fused facial 

expression features for positive and negative emotional states. 

In the plot corresponding to positive emotion, the distribution 

of points—distinguished by color—exhibits both aggregation 

and dispersion, indicating a rich and diverse representation of 

features under positive emotional conditions. In contrast, the 

scatter plot for negative emotion displays a more complex 

distribution pattern, with notable differences in density and 

spatial regions compared to positive emotion, thereby 

reflecting distinct characteristics in multi-scale feature 

expression between emotional categories. A degree of 

separability between the feature distributions of positive and 

negative emotions can be observed, suggesting that the multi-

scale fused feature network was capable of effectively 

capturing emotion-specific patterns. Although partial overlap 

between feature points exists, the overall spatial structure 

reveals that emotion-discriminative multi-scale features were 

successfully extracted, supporting the FER process. This 

visual evidence aligns with the stated objective of enhancing 

recognition accuracy and substantiates the model’s 

effectiveness in distinguishing between teacher and student 

emotional states. Moreover, it provides a reliable foundation 

for the subsequent optimization of interaction processes based 

on recognized emotional cues. These findings underscore the 

practical value of the proposed method in advancing the 

quality of teacher–student interaction within the context of 

online English instruction. 

 

 
(a) Positive emotion 

 

 
(b) Negative emotion 

 

Figure 6. Scatter plot of multi-scale fused facial expression 

features 
 

 

5. CONCLUSION 

 

This study centers on the development of an FER method 

based on a multi-scale fused feature network, with the 

objective of enhancing both accuracy and real-time 

performance to improve the quality of teacher–student 

interaction in online English instruction. Through the 

introduction of the multi-scale fused feature network, a novel 

approach to FER was proposed. Experimental results obtained 

across multiple datasets demonstrated that the proposed model 

significantly outperformed existing methods in terms of 

recognition accuracy. Superior performance was achieved on 
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student, teacher, and scene-associated facial image datasets, 

with particularly notable adaptability and robustness observed 

in scenarios involving complex backgrounds. Furthermore, 

based on the outcomes of FER, strategies for optimizing the 

interactive processes between teachers and students to 

improve teaching effectiveness were explored, facilitating 

more personalized and responsive instructional delivery in 

online learning environments. 

The contributions of this study are reflected in two primary 

dimensions. First, from a technological perspective, the 

proposed multi-scale fused feature network substantially 

improved the accuracy and real-time capabilities of FER, 

offering an efficient technical solution for online English 

instruction and related domains. Second, from an application 

standpoint, the integration of facial expression analysis into 

pedagogical practice enabled the refinement of teacher–

student interaction, promoting personalization and real-time 

feedback, and thereby enhancing the overall learning 

experience. Nonetheless, several limitations remain. The 

application scope of the proposed model was primarily 

confined to FER. Although its relevance to instructional 

contexts was validated, its adaptability to broader affective 

recognition tasks warrants further investigation. In addition, 

the sensitivity of FER to environmental factors such as lighting 

conditions, occlusion, and facial variation may affect stability 

and robustness in real-world instructional settings. Moreover, 

individual differences in emotional expression among students 

were not fully accounted for, which may introduce bias or 

errors in emotion recognition under certain conditions. 

Future research could be advanced in several key directions. 

First, efforts could be directed toward enhancing the 

robustness of the model, particularly in terms of maintaining 

stability under complex conditions such as variable lighting 

and facial occlusion or deformation. Second, the scope of 

application could be expanded through the integration of 

multimodal information—such as voice and contextual data—

with facial expression features. Such multimodal fusion is 

expected to further improve the accuracy of emotion 

classification and enhance the granularity of emotional 

interpretation. Third, the model could be aligned with more 

refined personalized instructional strategies. By leveraging 

diverse emotion recognition outputs, new pathways may be 

explored to optimize interactive patterns between teachers and 

students, thereby enabling more intelligent online educational 

solutions. In conclusion, this study provides strong technical 

support and innovative insights for the field of online 

education. Nonetheless, further development and refinement 

are required to ensure that the proposed approach meets the 

evolving demands of increasingly complex and diverse 

educational environments. 
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