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Energy represents economic growth and social welfare for modern societies. Fossil fuels are 

of great importance in energy production. Seismic images formed by the reflection of sound 

waves sent underground are used to locate fossil fuels such as oil, natural gas and coal. The 

presence of salt domes in seismic images gives clues for fossil fuels. Experts manually 

interpret seismic images to identify reserve areas. Expert knowledge, experience and time 

are needed in this process. As a result of these knowledge and experience being affected by 

special circumstances, drilling operations carried out in areas that are incorrectly estimated 

can cost companies or countries in terms of time and cost. There are artificial intelligence 

studies in the interpretation of seismic images where the results are more successful than 

classical methods. In our study, based on the UNet architecture, which is one of the deep 

learning methods, various modules have been added for performance improvement. 

Concurrent Spatial and Channel Squeeze & Excitation (SCSE), Atrous Spatial Pyramid 

Pooling (ASPP) and Hypercolumn modules were added, and their performance was 

investigated both individually and collectively. By adding modules, it is aimed to increase 

the performance of our model and contribute to the field. Before designing the system, pre-

processing was applied on the data. Modules were added to the UNet architecture, and the 

results were evaluated with accuracy, IoU, F1 and mAP scores. The statistical significance 

of the obtained results was measured by Mc Nemar and Cohen's Kappa tests. As a result of 

the study, our UNet-based model improved the performance of the ASPP module alone the 

most, and the best performance was achieved when all modules were used together.  
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1. INTRODUCTION

The economic growth and social welfare of modern 

societies depends on energy. Energy is required for production 

in industry, agriculture, technology and other sectors [1]. 

Energy is an essential resource for the economic production of 

countries or societies and the regular functioning of daily life. 

Energy not only ensures the continuation of daily life but is 

also defined as a critical resource for sustaining economic 

development and growth [2]. Approximately 80% of the 

materials used for energy in the world are provided from fossil 

fuels [3]. In the BP Energy Outlook Report (2022), 33% of the 

materials used for energy in the world are oil, 24% natural gas 

and 27% coal. In the field of the critical role of energy in the 

development of societies, fossil fuels have been one of the 

most important sources of energy production throughout 

history. Since the industrial revolution, they have been used as 

an indispensable fuel for both economic growth and 

technological development, especially oil. Therefore, the 

ability to own and sustainably utilize fossil fuel resources has 

become one of the most important factors determining the 

economic and political power of countries. Especially during 

the industrial revolution, the discovery and extraction of fossil 

fuels contributed to many countries becoming global 

economic and industrial powers. According to the 

International Energy Agency, headquartered in France, the use 

of fossil fuels to meet energy needs will take the first place by 

2035. With the discovery of new reservoirs, only 80% of the 

demand will be met. According to the results of the research, 

the dependence of countries on fossil fuels to meet their energy 

needs is an important condition for their economic strength. In 

determining the location of fossil fuels, the data obtained by 

seismic imaging of the earth are analyzed. Geophone machines 

that send sound waves and visualize their reflection are used 

to obtain these data. Experts interpret the seismic images and 

locate the fuel reserves [4]. With the information provided by 

seismic data, it is very important for the country's economy to 

locate, extract and process fossil fuels. With the correct 

determination of the location of fossil fuels and their extraction 

and processing, their contribution to the country's economy is 

great. The analysis of seismic data is carried out by experts in 

determining the underground locations of fossil fuels such as 

oil, natural gas and coal. The presence of salt deposits gives 

clues to experts in the detection of these fossil fuels [5, 6]. 

There are valuable fossil fuels in the lower parts of the 

structures called salt domes [7]. Therefore, salt domes guide 

experts in the detection of oil and natural gas fields [8]. When 

performing seismic imaging, the speed of reflection of the 

sound wave from salt (4.5 km/s) is greater than from other 

structures. Due to this difference in reflection velocity, 
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distinguishable boundary lines are formed in the imaging. 

These details reflected in seismic images are used to detect salt 

areas. The location of salt domes can also be used to detect oil 

and natural gas deposits [9]. Salt domes and the fossil fuels 

under them are shown in Figure 1. 

 

 
 

Figure 1. Salt dome oil and gas traps [10] 

 

Seismic imaging is used to determine the location of fossil 

fuels underground and to get information about how deep they 

are located. By interpreting the information obtained with this 

imaging process, it is determined where drilling operations 

should take place. Drilling operations are costly and time 

consuming. In order for these operations to be carried out 

correctly and effectively, experts are required to interpret 

seismic images. Experts use their knowledge and experience 

in interpreting seismic images. As a result of these knowledge 

and experience being affected by special circumstances, 

drilling operations carried out in areas that are incorrectly 

predicted can cost companies or countries in terms of time and 

cost. This situation also causes environmental pollution due to 

the carbon emission of the machines operated unnecessarily 

during the drilling process. As a result of unnecessary 

operations, it leads to the formation of a significant carbon 

footprint [11]. In the process of locating fossil fuels, there are 

artificial intelligence studies in which the results are more 

successful than classical methods in the interpretation of 

seismic images. Artificial intelligence performs operations 

such as prediction, classification and segmentation by learning 

with data. Deep learning method, one of the artificial 

intelligence methods, uses complex and large data. It works 

similar to the human brain and can learn and analyze 

information in its layered structure. With these layered 

structures, it increases its performance for the result by 

learning a feature of the data at each layer transition. The 

deeper the number of layers, the deeper the learning becomes. 

Seismic images contain complex data due to their structure. 

Deep learning methods using seismic images can make 

accurate predictions by making deep analyzes with its multi-

layered structure [10, 12]. The importance of seismic images 

in the detection of fossil fuel areas such as oil and natural gas, 

which are highly utilized in energy production, has increased 

even more with the inclusion of deep learning methods in the 

process. Among deep learning methods, especially the UNet 

architecture has achieved high segmentation success on 

seismic images [13]. The UNet architecture, one of the deep 

learning methods, has achieved high success by first working 

on biomedical images. In seismic images, such as biomedical 

images, it is very important to interpret large and complex 

images accurately, quickly and correctly. Fast and accurate 

data processing by experts using these methods supports all 

processes in the detection of fossil fuel areas. Thus, the errors 

to be made with this process will be minimized [14]. 

Compared to other layered deep learning architectures, the 

UNet architecture can produce high accuracy by training with 

fewer data sets. In order to improve the results of the system, 

additional modules can be used to increase the performance of 

the system [15]. Additional modules used in the UNet 

architecture enhance the meaning to be derived from the data 

by assigning different levels of importance to different parts of 

complex images. The modules selectively focus on important 

areas in the data. In the architecture created with the SCSE 

(Concurrent Spatial and Channel Squeeze & Excitation) 

module, it identifies the areas to be focused on spatially and 

channel-based on the images and enables the model to focus 

on them. Thus, the success of the segmentation performed by 

the model increases [16]. The Atrous Spatial Pyramid Pooling 

(ASPP) module processes the feature maps obtained. These 

feature maps are provided by the Atrous convolution layer 

with different expansion rates. Thus, it helps to accurately 

segment objects and details at different scales on our images 

[17]. With the Hypercolumn structure, it ensures that the 

intrinsic features obtained in the previous layers are delivered 

to the last layer as a vector. Thus, it realizes more accurate 

results by taking spatial location information [18]. By 

integrating these modules into the UNet architecture, the 

model can capture fine details and learn large-scale structures. 

The segmentation performance obtained as a result of the 

system can increase significantly. In addition, the precision 

and sensitivity of the model created on complex data such as 

seismic images can be increased. With the additional modules 

added to the models, the generalization capability of the 

system can be increased, and it can be more robust against 

overfitting [19].  

Our hypotheses that we hope to observe as a result of our 

study. 

SCSE, ASPP and Hypercolumn modules will improve the 

performance of the system when integrated individually. We 

also hypothesize that the system created by adding all modules 

together will provide the highest accuracy and generalization 

performance by combining the improvements provided by 

each module individually. 

As a result of our study, we aim to realize a higher 

performance model by obtaining the performance results of 

the modules added to our system both individually and 

together on the UNet model. In general, in our study, the UNet 

model was designed to detect fossil fuel reserves and segment 

salt domes using seismic images. SCSE, ASPP and 

Hypercolumn modules were added to the system to increase 

the performance results of the model. The results were 

evaluated with different metrics. These metrics are accuracy, 

IoU, F1 and mAP. Mc Nemar and Cohen's Kappa tests were 

used to see the significance levels of the obtained metrics. The 

rest of the paper is organized as follows: 

Section 2 shows how artificial intelligence methods using 

seismic data have been applied in the literature. Section 3 

describes the material and methodology of the study, including 

the pre-processing steps applied to the images in the dataset 

and a detailed review of the modules to be added to the system. 

Section 4 presents the results. Section 5 presents the results of 

the effect of the modules on the system we have created its 

place in the literature and information about future work.
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2. RELATED WORK  

 

Seismic imaging and analysis have long been used to locate 

fossil fuels [20]. In classical methods, in the discovery of 

resources such as oil and natural gas, the images must first be 

interpreted and positioned by experts. This process is both 

time consuming and prone to misinterpretation. Artificial 

intelligence methods are used in seismic image analysis to 

minimize these problems [5]. The study by Zhang et al. [21] 

focuses on the classification of subsurface rock types as sand 

and shale using seismic data. The study was applied on 3720 

samples from 13 wells in China. Convolutional neural network 

(CNN) and deep neural network (DNN) architectures from 

deep learning methods were applied. The effect of continuous 

wavelet transforms (CWT), a signal preprocessing approach, 

on these architectures was investigated. As a result of the 

study, the CWT-CNN model obtained the highest F1 value 

with 85.9 among CNN, DNN, CWT-CNN, CWT-DNN 

models. With this study, it is understood that not only artificial 

intelligence methods but also models that can be added to the 

system can increase the result performances in seismic 

analysis processes. High success rates have been achieved in 

many studies using salt fields in the detection of fossil fuel 

areas. In this study, a CNN-based model was designed for 

salt/sediment detection from seismic data. In the model, 

exponential linear units (ELU) activation function, lovasz-

softmax loss function, stratified K-fold cross validation 

features were selected, and the sensitivity of the system was 

investigated. As a result of the system, it is stated that CNN, 

one of the deep learning architectures, is successful in 

analyzing and classifying seismic data [22]. In a study aiming 

to detect salt in seismic images, the performance of the images 

was investigated using the edge prediction branch. 

Hypercolumn, SCSE, edge prediction branch was added to a 

deep learning-based model to improve performance. The 

results were evaluated with IoU and mAP. The system was run 

with learning rate 0.01 and epoch value 100. As a result, the 

mAP value was obtained as 87.39. In the results of the system, 

first of all, high sensitivity on edge detection is indicated [23]. 

The contribution of deep learning in analyzing seismic images 

is increasing. In another study on salt area detection, transfer 

learning methods were used. The system was designed using 

the pre-trained ResNeSt model. In addition, SCSE and OCNet-

block were added to the system to increase its sensitivity. The 

performance results of the system were measured with IoU and 

mAP metrics. 87.32 mAP value was obtained in the system 

run with 160 epochs. As a result, it is stated that the results are 

suitable for analyzing complex data such as seismic data [5]. 

Detection of salt areas in studies on seismic images has been 

studied many times in the literature. In the study by 

Milosavljević [8], one of these studies is on salt area detection 

using deep learning methods from seismic images. In their 

system, UNet, ReSNet and DenseNet architectures were 

influenced. The training set was divided into 80/20 training 

and validation. Adam was chosen as the optimizer and binary 

crossentropy as the loss function. The result values were 

interpreted with accuracy and IoU. As a result of the study, it 

was stated that the model obtained high accuracy compared to 

many other models. Bodapati et al. [24] also conducted a study 

on salt detection from seismic data. UNet, one of the deep 

learning architectures, was used. Resizing and normalization 

operations were applied to the images as preprocessing. The 

system was designed by choosing learning rate 0.01 and loss 

function binary cross entropy. The result of the study was 

evaluated with the IoU metric. In the system run with 200 

epochs, the IoU value was obtained as 85.60. The studies show 

that deep learning methods have achieved fast and successful 

results with seismic data integration. In a study by Li et al. [25] 

applied inversion and multiple distillation methods to the 

UNet architecture and evaluated its performance. The aim of 

the study is to realize salt area detection in seismic images with 

the highest accuracy. In the results obtained, 95% accuracy 

was achieved. Bochu et al. [26] study aims to identify salt 

segments in ground seismic images using deep learning 

techniques. In the study, a UNet based model is implemented 

and data augmentation techniques are used to ensure accurate 

identification of salt segments in seismic images. Various 

transformations are applied to augment the dataset, solving the 

problem of limited labeled data. Within the scope of the 

methodology, the Adam optimization algorithm and the cross-

entropy loss function were used during model training to 

provide a more efficient learning process. In order to achieve 

a higher accuracy, hyperparameter optimization was 

performed in the study. An accuracy of 93% was achieved in 

the performance of the model. It is concluded that artificial 

intelligence methods used in salt area detection have a positive 

effect on the process. Challenges encountered when working 

with seismic images include low generalization, incomplete 

labeling, and task-specific models. In order to overcome these 

obstacles, Sheng et al. [27] created a transformer-based 

seismic foundation model (SFM). It is aimed to make precise 

evaluations with the designed system. By multiplying the 

seismic images with data duplication methods, the system was 

enabled to work with more images. Thus, a more precise and 

detailed segmentation was realized. During the operation of 

the system, different optimization techniques were used, and 

the performance results were observed. It has contributed to 

the literature by reaching higher IoU values compared to 

traditional artificial intelligence methods. In another study, 

squeeze-extraction pyramid network (Se-FPN) was designed 

for salt area detection. The aim is to design a system that can 

work with information at different scales. For this, Feature 

Pyramid Networks (FPN) architecture was utilized. In this 

way, the useful parts of the images are highlighted, and the 

background parts are suppressed. SeNet was used as the 

backbone in the system. At the end of the system, information 

from different multi-scales was combined with the 

hypercolumn module. As a result of the study, the IoU value 

of 86 was obtained and the system proved to be very successful 

in salt detection [28]. The study by Chung et al. [29] used a 

deep learning model for salt dome detection. The prominent 

element in this study is the separation of images from noise by 

performing data cleaning in the data preprocessing stage. In 

artificial intelligence models, the introduction of clean data 

into the system directly affects the system performance. Noise 

in seismic images can cause the system to misinterpret the data 

during the training phase. In this study, Kullback-Leibler (KL) 

divergence algorithm is used to filter the noise data. System 

performance is evaluated with IoU and Dice metrics. The 

results of the study show that noise removal improves the 

accuracy of the system. In addition, such preprocessing steps 

contribute to the accuracy of the system. Zhou et al. [15] 

designed a system with seismic images generated in the Gulf 

of Mexico. The system is a UNet-based model created with a 

layered structure. They included some modules to improve the 

performance of the model. These modules are SCSE, FPA 

(feature pyramid attention) and AG (attention gate). The aim 

is to emphasize the important areas in the images and draw 
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other areas to the background. Thus, while training the model, 

it will draw attention to important information areas. As a 

result of the study, it is stated that the modules used increase 

the performance of the system and high accuracy is achieved. 

The aim of this study is to create a modern solution by 

adding modules to the deep learning model we have designed 

in order to increase its performance in detecting reserve areas. 

The modules we added are SCSE, ASPP and hypercolumn 

modules, which are frequently used especially in complex and 

small data sets. Although UNet and its derivatives have been 

widely used in seismic image processing in the literature, the 

detailed examination of the results and the use of these 

modules together is limited in the literature. In addition to the 

individual effects of these modules, the performance effect of 

the system created together is also investigated. The aim of 

using the modules together is to eliminate the deficiencies that 

occur when used separately. In this way, performance 

improvements are provided especially for small, precise and 

complex segmentation operations such as the detection of salt 

domes. In addition, the created system has a wide application 

potential not only in seismic images but also in precise 

segmentation studies such as medical images and satellite 

images. In this respect, measuring its usability in different 

areas forms a basis for future studies. As a result of this 

integration, we have proven the success of the modules in our 

system. The use of the three modules together has increased 

both the sensitivity and accuracy of the system. In addition, by 

analyzing the seismic image, it has contributed to the literature 

in the field of reserve management and energy production in 

the detection of fossil fuel areas. 

3. PROPOSED METHODOLOGY

In our study, we developed a customized UNet for detecting 

salt domes from seismic images, which is an important 

criterion for detecting fossil fuel areas. To improve the 

performance of our system, various attention mechanisms and 

advanced modules have been added to our system. SCSE, 

ASPP and hypercolumn modules were added to our system. 

Thus, our system has improved its performance by obtaining 

both spatial and multilayer feature representations from 

images. The system and procedures developed for salt dome 

detection are shown in Figure 2. 

3.1 Dataset 

The dataset was shared by TGS-NOPEC Geophysical 

Company (TGS) through a contest on kaggle 

(https://www.kaggle.com/). The dataset consists of 101*101 

seismic images. The TGS Salt Identification Challenge dataset 

is a dataset prepared for the segmentation of underground salt 

bodies in seismic images, obtained from many areas of the 

earth's surface. It was developed to accurately analyze the 

complex and heterogeneous structure of underground salt 

formations. The data consists of 2D image slices of a 3D view 

of the Earth's interior. 4000 labeled images are provided as 

training data, and each image contains mask images in binary 

format indicating regions with and without salt bodies. There 

are 18000 seismic images with png extension as test data. In 

the dataset, depth information is shared in feet, but the exact 

location of these depth values on the image is not specified. 

The depth information of the images is shown in Figure 3. Figure 2. System diagram 
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Figure 3. The depth information of the images 

In Figure 3, the graph shows the depth distribution for the 

training and test datasets. The graph is constructed with a 

histogram and accompanying density curves comparing the 

distribution of depths (z) in both datasets. It can be seen that 

the z-values of the training and test data range from 0 to 1000 

and both datasets show a similar distribution. Both 

distributions are symmetric, almost bell curve shaped, with 

average depth values concentrated at 500. This shows that the 

training and test datasets are homogeneous in terms of depth 

and the model has the chance to learn and test samples at 

different depth levels. 

3.2 Image pre-processing 

3.2.1 Re-size 

In our study, the dimensions of the original images are 

101×101 pixels, and they have been resized to 128×128 pixels 

so that our system can use the data effectively and work in 

harmony with our model. The resized images allow more 

detail and information to be processed. The resizing was done 

for ease of processing and to optimize memory requirements 

in system processing. Example images for the original and 

rescaled images are shown in Figure 4. 

Figure 4. Sample resized image 

In the studies conducted, image size increase operations in 

deep learning systems have been stated as an important step to 

increase image quality [30]. It also defined the possibility of 

processing more details and better interpretation of 

information on images. Thus, it is aimed to increase the limited 

performance and learning capacity of the model. By making it 

compatible with the layered structure of the UNet architecture, 

we have contributed to the system performance. In addition, 

by increasing the capacity of our system to process the input 

data, our segmentation process has provided more successful 

results. 

3.2.2 Data augmentation 

Data augmentation is a method that enables the expansion 

of the data set by artificially duplicating images in small data 

sets [31]. It performs various transformations and adjustments 

on the data to artificially reproduce it. It aims to reproduce the 

data by playing with horizontal-vertical reflection, rotation at 

various angles, scaling in different dimensions, light and color 

adjustments. In systems trained with limited data, the 

generalization ability of the system may be limited. With data 

augmentation methods, the generalization capability can be 

increased, and overlearning can be reduced by increasing the 

data presented to the system. The expanded data set enables 

the developed system to be more robust to different constructs 

and thus perform well. 

Since the dataset used in our study contains images and their 

masks in the training folder, attention should be paid to the 

mask and image matching when performing data 

augmentation operations. The data augmentation operations 

were processed simultaneously with the masks. The data 

augmentation method primarily used in our study is the 

horizontal flip method. This method is a general method used 

in many studies. Horizontal mirroring mirrors the images and 

allows them to be viewed from different angles. As the number 

of images that the system will see increases, the learning 

capacity will also increase. With the horizontal mirroring 

method, our training images are doubled, and the system is 

exposed to more data. Another data augmentation technique 

used in the study is the rotation of the images by 90, 180 and 

270 degrees. With this technique, it is aimed to reduce the 

direction dependency by enabling the model to learn objects 

in different directions. These augmentation techniques have 

contributed to higher accuracy and segmentation success, 

especially by addressing uncertainties and variations in 

seismic images. 

3.3 Used deep learning technologies 

3.3.1 UNet 

Convolutional neural networks were first introduced by 

LeNet in 1998 [32]. It has achieved high success especially in 

the field of computer vision. The general use of convolutional 

networks is to classify the image input into one of the output 

classes. Convolutional neural networks have limitations due to 

the size of the data sets and the length of the network 

structures. One of these limitations is the need for large data 

sets for the training process. However, due to reasons such as 

time, cost and hardware, there may be difficulties in creating 

these datasets. Data such as biomedical and seismic images are 

difficult to collect. To overcome these limitations, the UNet 

architecture was announced in 2015 as a type of CNN 

approach with the proposal of better segmentation on 

biomedical images [33]. UNet architecture consists of two 

parts: encoder and decoder. There are 9 layers in the designed 

network. Of these layers, 4 are encoder and 4 are decoder. The 

code structure of the model aims to extract increasingly 

complex features by increasing the number of channels at each 

stage from the input. Initially starting with a low number of 

neurons, the model is able to learn deeper and more complex 

features by increasing the number of channels in each 

downsampling stage. Each downsampling stage is performed 

with two 3×3 Conv2D layers and then the “Relu” function is 
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used as the activation function. This helps the model to learn 

non-linear relationships. Then, in each post-sampling layer, 

different proportions of dropout layers were chosen as a 

precaution against overfitting. In the middle part of the model 

is the bottleneck layer, which extracts the features at the 

highest level. The number of channels is 16 times the initial 

number of neurons and additional features are learned. After 

the bottleneck layer, upsampling layers are applied to the 

model in an inverted structure. In each upsampling stage, the 

feature maps are concatenated with the corresponding 

downsampling layers to preserve the previously extracted 

features. At the end of the model, a 1×1 Conv2D layer 

processes the output with a sigmoid activation function for a 

two-class segmentation problem and returns a probability 

value for each pixel. This structure allows the model to work 

on low-dimensional inputs and produce high-quality 

segmentation outputs at the same time. Other hyper-

parameters used in the study are given in Table 1. 

 

Table 1. Other hyperparameters used in the study 

 
Input size 128*128*1 

Optimizer Adam 

Batch size 64 

Epoch 20 

Loss fun. binary_crossentropy 

min_lr 0.001 

Score Accuracy, F1, IoU, mAP 

 

3.3.2 Spatial and Channel Squeeze & Excitation (SCSE) 

SCSE blocks aim to implement both spatial and channel-

based attention mechanisms. Therefore, it combines 

compression and excitation mechanisms. This method, which 

is frequently used in segmentation problems, is basically a 

twersion of SENet (Squeeze-and-Excitation Networks) [16]. 

With this module, a wide-area information gathering process 

that includes both attention mechanisms are achieved. 

The module consists of two block components (Figure 5). 

Spatial Squeeze & Excitation (sSE) and Channel Squeeze & 

Excitation (cSE). 

With the cSE blog, it adds special attention to the channels 

and realizes that separate filters learn different features. In this 

way, it is aimed to obtain a more meaningful representation by 

highlighting meaningful feature maps and discarding 

unnecessary ones. 

The sSE blog processes individual spatial locations to 

identify valuable information in specific areas. One of the 

advantages of SCSE blocks is that they perform both spatial 

and channel-based information processing simultaneously, 

improving the overall performance of the model. This 

structure offers a richer attention mechanism than traditional 

SE blocks [16, 34]. In our study, compression is performed 

based on the size of the input tensor in the channel’s axis, 

where the number of channels is assigned to the filters variable 

and the shape of the tensor is transformed into (1, 1, filters) 

dimensions. In the SE block, an intermediate fully connected 

layer (Dense) of size filters//16, obtained by reducing the 

number of channels by a factor of 16, is created and the relu 

activation function is used. The ‘he_normal’ method is used to 

initialize the weights. The second fully connected layer is 

weighted by a sigmoid activation according to the input 

channel size. Finally, the excitation process is completed by 

multiplying the squeezed data by the input tensor. 

 

 

 
 

Figure 5. The SCSE module used in our system 
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3.3.3 Hypercolumn 

Hypercolumn is a technique that aims to combine feature 

maps from various layers of a deep learning model so that each 

pixel has a much richer representation. This method is used in 

image segmentation, object recognition and other computer 

vision applications [18]. Its working principle is based on the 

idea that each pixel of an image is represented by combining 

activation values from different levels of the network (deep 

and surface layers). In deep learning architectures consisting 

of layered structures, data creates different degrees of 

information in each layer. In these architectures, simple and 

low-level features are created in the initial layers (Figure 6). 

As the lower layers are reached, more detailed, abstract and 

high-level features are learned. With the hypercolumn 

structure, different degrees of information from these layers 

are collected. In this way, both low-order feature details and 

high-order conceptual information captured from the image 

are met simultaneously [18].  

By incorporating hypercolumn into our system, we can 

achieve better performance results by aggregating pixel 

classification in our images with different degrees of 

information [35]. Since they are not specific to a particular 

architecture, they can be used in image segmentation problems 

[36]. In the system designed in our study, the UpSampling2D 

layer used in the Keras library was enlarged by increasing the 

size of the input feature map by scale factors of 2*2, 4*4, 8*8. 

In this way, it is aimed to keep the information loss at low 

levels. Hypercolumn improves the performance of the result, 

especially by capturing the details in the image. With the 

Concatenate command, all layers brought to the same spatial 

dimension are collected on the depth axis. A 1*1 convolution 

is performed on the output layer and a sigmoid activation 

function is performed. As a result, it creates a single output 

pixel. Thus, it establishes a segmentation mask. 

Figure 6. Hypercolumn module 

3.3.4 ASPP 

ASPP is a module that realizes the detection of multi-scale 

features. It is used in segmentation problems as it generally 

improves performance results. Extended convolution layers of 

different values are used simultaneously to perform 

information extraction. In this way, image-specific details and 

large-scale structures are collected in a sequence of layers 

[17]. This module is useful when the complexity of the image 

data is high, object boundaries are not clear, and objects are of 

different sizes in each image. The ASPP module is used to 

prevent the loss of information that can occur in classical 

convolution layers. By capturing context information, it 

ensures that the model created preserves detailed features [36]. 

The ASPP module contributes to the sharper and more 

accurate detection of the areas to be distinguished in the image. 

Especially in complex images such as seismic images, it 

provides better generalization of the system by capturing and 

collecting structural information at all levels. A combination 

of Atrous convolution layers is applied in our study. During 

the convolution process, gaps are added between kernel 

elements to enlarge their detection area. To capture the 

surrounding contextual information without increasing the 

kernel size, different gap ratios are given. The gap ratios given 

in our study are 6, 12, 18. Thus, feature information in the 

image can be analyzed in a larger area. The outputs generated 

as a result of the module are summed with the concatenate 

function. In this way, the feature maps obtained from different 

gap ratios can be used together. With the ASPP module, 

information from different levels is combined to create a 

broader representation. 

The modules used in the study increase the performance of 

the created system. In seismic images, due to their structure, 

unclear boundaries and low contrast can cause important 

details to be lost [37]. The image complexity and noise level 

in the data negatively affect the performance of the created 

system. At this point, the SCSE module can emphasize 

important features and suppress less important places. Thus, it 

can direct the attention of the system to certain features [38, 

39]. It also increases the effect on performance by reducing the 

complexity of the model. It can achieve success in missing 

data situations by providing less calculations. In this respect, 

the SCSE module provides flexibility and performance to the 

system [40]. High values were obtained when working with 

complex background, noise, and low-contrast objects in image 

data [38]. In the comparisons made by taking these situations 

into account, it was stated that it offers better performance than 

FPN structures [41]. Seismic data may contain structures at 

different scales (small details, large geometric structures). The 

ASPP module prevents information loss by bringing together 

convolutions of different amplitudes. Therefore, it is important 

in terms of improving the overall performance of the model by 

increasing the extraction of multi-scale features. Thus, it 

increases the representation power of the network [42]. Studies 

conducted with the ASPP module show that it facilitates the 

segmentation of small objects by simultaneously addressing 

different cortices and increases the speed of the model [43]. In 

addition, it is stated in studies conducted with a small number 

of data sets and in dealing with data imbalance [44]. Due to 

the structural complexity of seismic images, difficulties are 

encountered in detecting the regions to be distinguished [37]. 

Hypercolumn aims to better represent high-level geometric 

and topological features in the image. Thus, the detection of 

edges and shapes in the image will be more sensitive [45]. 

Since deep network architectures generally do not combine 

information from different layers, they limit the simultaneous 

use of both low-level (edges, textures) and high-level (object 

identities) features. The hypercolumn module provides 

convenience in detecting existing structures in the image by 

combining the excitations of pixels in different directions for 

each image. It can create richer information by combining 

information from different layers in the image in image 

processing processes [46]. The hypercolumn module was 

selected because it performs operations on the image in a 

simple and effective way and works on pixel-level details. The 
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reflection of seismic waves from different layers underground 

and representing underground structures with the created 

image is a very sensitive and important process. Traditional 

methods may be insufficient in detecting structurally different 

areas in the image [10]. Studies show that the use of 

hypercolumn in the detection of reserve areas provides better 

interpretation when used with the developing system [47]. 

 

3.3.5 Evaluation score 

In our study, we used accuracy, IoU, F1 and mAP metrics 

to evaluate the performance of our model. Accuracy is defined 

as the ratio of the number of samples that our model can 

correctly classify to the total number of samples. It provides 

information about the overall success of the model [48]. 

However, it can be misleading in irregular data sets. This is 

because accuracy is calculated without taking into account the 

class distributions in the data set. The IoU evaluation score is 

a measure of how well the system's predicted region matches 

the correct region. Since it is a method that evaluates pixel-

level accuracy, it is frequently used in segmentation and object 

detection [49, 50]. The F1 evaluation score makes a 

calculation by considering the precision and recall values. In 

this calculation, the harmonic mean of these two values is 

taken. It gives more reliable results especially in irregular data 

sets. It measures the balanced performance of the created 

system by using false positives and false negatives when 

calculating the evaluation [51]. mAP evaluation score shows 

the agreement between precision and recall values. It 

expresses the sensitivity of the designed system to false 

positives and false negatives [52]. After performing the 

evaluation process of our study, Mc Nemar and Cohen's Kappa 

statistical methods were checked to measure the significance 

of the systems created. The McNemar test is a statistical 

method used to compare the performance of two dependent 

classification algorithms and is widely used to evaluate 

significant differences, especially in binary classification 

problems [53]. It is also used in the field of artificial 

intelligence to statistically test the results of the system [54]. 

Cohen's Kappa statistical method is a metric that evaluates the 

agreement between two raters or classifiers. This metric 

performs the test by taking into account the coincidental 

agreement between the raters [55].  

In our study, we aim to evaluate the system performance 

from different aspects with the metrics we use to evaluate the 

results of our model. Detecting false positives and negatives 

from systems where complex images such as seismic images 

are used can have serious consequences in applications. In the 

literature, the IoU metric is often used to evaluate the result in 

salt field detection [56-58]. The IoU metric aims to prevent 

possible misidentifications by understanding how much the 

real mask and the estimated mask overlap. The salt dome 

incorrectly defined in the images can cause time-consuming 

and costly errors in drilling processes. 

The overall performance of the model we created was aimed 

to evaluate the balance between accuracy and sensitivity with 

the F1 score used in our study. The improvements observed in 

the evaluation metrics can translate into more sensitive and 

reliable results in real-world applications [59, 60]. The results 

obtained from these metrics in the industrial field contribute to 

better decision-making processes. 

Another metric that we evaluate the performance of the 

created model is to analyze the prediction performance in 

different class areas with mAP. This metric provides 

information about the general sensitivity and performance of 

the model by calculating the average accuracy for each class. 

In particular, the mAP value should be high to increase the 

reliability of the model's predictions [61]. The improvements 

made by taking the mAP metric into account provide ease in 

detecting different structures on seismic data. In real-world 

applications, it is very effective in the efficient use of resources 

with its effect on the sensitive detection process. For this 

reason, using the mAP evaluation metric is important both for 

comprehensively investigating the model performance and for 

highlighting its practical results in seismic segmentation 

methods. 

 

 

4. RESULTS  

 

With segmentation methods, certain areas and objects can 

be identified in image data. The segmentation process, which 

was first used in medical images, is now used in every field. 

In our study, we investigated the contribution of SCSE, ASPP 

and hypercolumn modules to salt area detection in the UNet 

model, which is a deep learning method using TGS Salt 

Identification Challange seismic images. We conducted our 

study on the Kaggle platform using the provided GPU 

infrastructure at 100% capacity. Python programming 

language was preferred to train and evaluate our deep learning 

model. In the Python environment, Keras and TensorFlow 

libraries were used to manage modeling and training 

processes, while NumPy, pandas, scikit-learn were preferred 

for data processing and analysis. In order to compare the time 

spent by each module for computational operations during the 

training period in the created system, the times spent per epoch 

are presented in Table 2. This analysis reveals the reactions of 

the modules added to the system to the processing load in a 

more comprehensive way. Thus, it is evaluated which model 

contributes more efficiently to the training process in terms of 

computation of the system.  
 

Table 2. Time the system spends per epoch 
 

Model Time 
Unet 95s 
SCSE 114s 

Hypercolumn 97s 
ASPP 162s 

All 191s 
 

In our study, we designed a segmentation system for salt 

area detection on seismic images using UNet architecture, one 

of the deep learning methods. In order to successfully capture 

the complex features on the data, some pre-processing steps 

were applied. The image size was increased from 101×101 

pixels to 128×128 pixels to increase the learning capacity and 

to make it compatible with the layered structure. In addition, 

pixel values were normalized between 0 and 1. Thus, the 

training process of the system was made faster and more 

stable. Subsequently, data augmentation processes were 

applied on the images to increase the generalization capability 

of the system and to provide resistance to overfitting. Among 

the data augmentation methods, horizontal projection and 

rotation of the images by 90, 180 and 270 degrees were 

applied.  

In the study, the integration of SCSE, ASPP and 

Hypercolumn modules into the created UNet architecture is 

precisely designed. The SCSE module is added after the 

conv2D layers in the encoder and decoder blocks. In this way, 
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attention mechanisms are provided in both spatial and channel 

dimensions. With the ASPP module added to the Middle 

block, a wide range of information is created by combining 

features from different scales. The Hypercolumn module is 

added to the last layer to perform detailed segmentation using 

feature maps from different layers. It is aimed to contribute to 

the system performance from different areas with all three 

modules. The effect of these contributions on the result 

evaluation is investigated by using them together. While the 

SCSE module ensures the selection of important features 

without losing details, the ASPP module provides multi-scale 

comprehensive data. With the Hypercolumn module, the 

general performance is increased by collecting information 

from different areas. This combination offers a solution for 

better analysis of complex structures on seismic images. 

In the study, performance results are observed for the 

contribution of each module and combination to the system. 

The effects on performance measurement metrics were 

investigated by performing their combinations with individual 

and other modules. In addition to the individual effects of the 

modules, the performance of their binary combinations was 

also investigated. In binary combination evaluation studies, it 

was observed that the system results contributed, but this 

increase was measured to be limited compared to the case 

where all modules were used together. It was observed that 

there was a significant synergy when all modules were used 

together and in this case the system could perform better 

analysis of more complex boundaries. With these results, it is 

evaluated that the proposed approach offers a framework that 

is applicable not only for seismic image segmentation but also 

for other segmentation problems. 

In our study, first of all, a UNet network designed without 

adding any modules was created. SCSE, ASPP and 

hypercolumn modules were added to this network and 

performance values were compared. The obtained train and 

validation loss and IoU values are shown in Figure 7. 

In our study, we use SCSE, ASPP and hypercolumn 

modules together within the same model structure to enable 

the model to capture more comprehensive and richer 

information at different levels of feature extraction. The 

combination of these three modules strengthens not only the 

precision of the model, but also its ability to understand more 

complex and multi-scale features. The results show that the 

added modules improve the original performance of UNet.  

The ASPP module increased the accuracy of the added 

modules more than the others. The same results were observed 

in the F1 metric. When the modules were added individually, 

the SCSE module was found to improve the system the least. 

The highest accuracy value was obtained when all modules 

were used together. The highest value obtained in the F1 score 

calculated by taking into account the accuracy and sensitivity 

metrics is the model where all modules are used together. It 

was observed that the hypercolumn module was not effective 

enough in improving the system performance. Considering all 

metrics, the best measurements were obtained from the system 

using all modules. The performance measurement results 

obtained from the systems are shown in Figure 8. 

We compare our developed system with other studies. As 

seen in Table 3, it has shown better performance than existing 

methods. The created system reached 86.34 as the IoU metric.

 

 
UNet 

 
SCSE Module 
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ASPP Module 

 
Hypercolumn Module 

 
SCSE+ASPP+Hypercolumn 

 

Figure 7. Loss and IoU graphs of modules added to the UNet model (20 epochs) 

 

Table 3. Some segmentation results in the literature 

 
Method-Reference Metric Result 

UNet+SE-Resnet [62] IoU 84 

UNet [56] IoU 70 

Reverse attention UNet [57] IoU 86 

UNet [24] IoU 85.8 

DCNN [63] Accuracy 80 

UNet-ResNet34 [64] IoU 85.2 

UNET+SE+RESNET [22] IoU 84 

3D UNet [59] F1 86.07 

CNN [65] F1 64 

Our Study IoU/F1 86.34/87.33 
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Figure 8. Performance of the modules 

Mc Nemar and Cohen's Kappa methods were applied to 

understand the statistical significance of the results. The Mc 

Nemar test is usually applied to show whether there is a 

significant difference in the proportions of a particular 

attribute between two conditions. This difference is called z 

score [53]. In Mc Nemar's method, the arrowheads (←,↑) in 

Table 3 indicate which of the two systems performs better. The 

z scores next to the arrowheads indicate how statistically 

significant the results are. The higher the z score, the more 

significant the difference between the performance of the two 

models. The z score is calculated using Eq. (1): 

𝑧 =
(|𝑁𝑠𝑓 − 𝑁𝑓𝑠| − 1)

√𝑁𝑠𝑓 + 𝑁𝑓𝑠
(1) 

Here, Nsf and Nfs denote the number of paired observations 

between two models, where one model succeeds and the other 

fails. Table 4 shows that the model with the highest system 

performance in all comparisons is the All model in which all 

modules are used together. Among the modules added to the 

UNet model, it is seen that the ASPP module increases the 

performance of the system the most. 

Table 4. Mc Nemar’s test results 

ASPP Hypercolumn SCSE UNet 

All 2.13← 3.80← 3.34← 4.35← 
ASPP 5.07← 5.31← 1.80← 

Hypercolumn 1.94↑ 4.45← 

SCSE 3.07← 

Cohen's Kappa is a statistical method that measures the 

agreement between two raters or classifiers. Since it takes 

random agreement into account, it provides a more meaningful 

measure than simple accuracy calculations [55]. By analyzing 

the results we obtained in our study with Cohen's Kappa 

statistical method, we also examined our models from a 

different perspective. Thus, we compared our model results 

and measured the agreement between them with a different 

method. 

According to the results I obtained in Table 5, Cohen's 

Kappa values of all models are above 0.8. This shows that the 

models work with very high accuracy and give consistent 

results in classifications. The model using all modules together 

provides the highest Kappa value (0.8304). This clearly shows 

that the combination of modules improves the performance of 

the model. The ASPP module is observed to significantly 

increase the Kappa values. According to Cohen's Kappa 

analysis, it can be concluded that the combination of all 

modules (SCSE, ASPP and Hypercolumn) improved the 

classification agreement of the model and provided the highest 

performance. 

Table 5. Cohen’s Kappa’s test results 

Model Cohen's Kappa Value 

UNet 0.8002 

Hypercolumn 0.8171 

SCSE 0.8232 

ASPP 0.8297 

All 0.8304 

5. CONCLUSIONS

In our study, a deep learning based model was developed to 

improve the segmentation task using seismic image data and 

the effects of SCSE, Hypercolumn and ASPP modules on the 

system were investigated to improve the performance of the 

model. Before proceeding with the system design, a resizing 

process was applied on the data. Since the number of data is 

4000 images and 4000 mask images, data replication was 

performed. The UNet model was designed as the main system 

in the study, which achieved high performance even with low 

data sets. Additional modules were added to improve the 

performance of the designed system. Accuracy, IoU, F1 and 

mAP metrics were used to evaluate the system performances. 

At the end of the study, Mc Nemar and Cohen's Kappa 

statistical methods were used to analyze the significance of the 

result values. This study examines a deep learning-based 

model developed on seismic image segmentation and aims to 

use it for reserve/fossil fuel detection. As a result of the study, 

it was observed that when the ASPP module is added alone, it 

provides a significant improvement in segmentation accuracy 

by effectively capturing details at different resolutions (IoU 

77.75). On the other hand, the simultaneous integration of 

scSE, ASPP and hypercolumn modules further improved the 

segmentation performance of the model, leading to the highest 

performance values (IoU 86.34). This combination enabled the 

model to learn fine details more effectively, especially in 

complex data, and to increase its overall accuracy. These 

results show that the combination of modules strengthens the 

model's ability to learn details more comprehensively and 

contributes positively to the generalization performance of the 

model. Compared to traditional U-Net models previously used 

in the literature, the integration of SCSE, ASPP and 

hypercolumn modifications showed significant improvements 

in both IoU and F1 scores [8, 32]. 

However, the model has some limitations. In particular, the 

challenges faced during the study, especially with the limited 

amount of labeled data and the processing power demand of 

some modules, were significant obstacles. The longer training 

time made it difficult to repeat the experiments and 

necessitated a more careful examination of the hyperparameter 

settings. 

The generalization ability of the system created with the 

small amount of data in the training set was limited and there 

was a risk of over-learning. Data augmentation techniques 

were applied to prevent this situation. The performance 
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metrics shown by the model were carefully analyzed. In 

addition, it took time to determine the optimal combinations 

of the modules added during the adjustment of the hyper 

parameters of the system. While analyzing the effect of the 

modules on the system performance, it was observed that their 

contributions in some modules were limited compared to other 

combinations. In our future studies, it is planned to test the 

system in the future if access to wider and more diverse data 

sets is provided. Thus, the performance results of the created 

system with more complex and dense seismic structures can 

be observed and its understanding of the data and 

generalization capacity can be measured. It is also considered 

to investigate the effect of modules in transformer-based 

approaches on seismic data. Such architectures can be 

effective in complex and different-scale data such as seismic 

data. In this way, it can be investigated that the system is 

effective in wider application areas. 

By testing the model on a larger dataset and experimenting 

with alternative modules, the performance of the model can be 

evaluated more comprehensively. Furthermore, comparing the 

model with modules added in different deep learning 

architectures (e.g., UNet++ or ResUNet) may provide a new 

perspective to the literature. 
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