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With the digital transformation of sports education and athletic training, the automated 
analysis and understanding of instructional sports videos have emerged as critical areas of 
research. Fine-grained action understanding models play an increasingly significant role in 
this context, as they are designed to accurately extract and analyze detailed motion 
information. Traditional approaches to action recognition have primarily relied on single-
scale feature extraction, which has proven inadequate for handling complex spatiotemporal 
information, especially in scenarios characterized by high variability and rapid motion 
transitions. These limitations often result in reduced accuracy and poor real-time 
performance. In recent years, multi-scale network models have been explored to enhance 
video analysis capabilities; however, challenges remain in balancing computational 
efficiency with precision. To address these shortcomings, a fine-grained action 
understanding model based on a hierarchical spatiotemporal pyramid network was proposed 
in this study. By constructing a multi-scale spatiotemporal pyramid prediction algorithm, 
this model can improve the extraction of spatiotemporal feature points of sports actions. In 
addition, by incorporating a temporal scale-based fine-grained action prediction algorithm, 
the model can capture intricate details within instructional sports videos accurately. By 
optimizing dynamic spatiotemporal characteristics and temporal dependencies, this study 
achieves improved accuracy and real-time performance in the prediction of fine-grained 
sports actions, offering a novel theoretical and technical foundation for the development of 
intelligent sports instruction systems. 
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1. INTRODUCTION

With the rapid advancement of digital technologies, the
application scenarios of instructional sports videos have 
become increasingly diverse [1, 2], serving as essential tools 
for enhancing athletic skills and strengthening instructional 
effectiveness. Traditional methods of sports education have 
gradually shifted toward video-based analysis and intelligent 
instructional paradigms [3-7]. Accordingly, the accurate 
interpretation of actions depicted in video sequences [8] and 
the automated analysis and feedback of motion patterns [9] 
have attracted significant attention in both academia and 
industry. As a core technology within artificial intelligence-
driven video analysis, fine-grained action understanding [10, 
11] requires the extraction of detailed behavioral features from
instructional videos [12]. A key challenge lies in the precise
extraction and analysis of spatiotemporal feature points under
complex and diverse motion conditions.

The task of action understanding in instructional videos 
typically involves processing large volumes of spatiotemporal 
information [13, 14]. Effectively extracting and interpreting 
this information across multiple temporal and spatial scales is 
critical for improving both the accuracy and real-time 

responsiveness of video analysis systems. Existing studies 
have predominantly focused on conventional deep learning 
models [15-17]. However, these models often struggle to 
simultaneously capture the dynamic spatiotemporal properties 
of motion and the intricacies of complex action patterns. In 
response to these limitations, a novel action understanding 
model based on a hierarchical spatiotemporal pyramid 
network was introduced in this study. This model enables the 
comprehensive extraction of spatiotemporal feature points 
from a multi-scale perspective while enhancing the precision 
of fine-grained action prediction. The proposed model offers a 
more efficient and accurate solution for analyzing instructional 
sports videos. 

However, several significant limitations remain in existing 
studies on fine-grained action understanding. Wang et al. [18] 
performed feature extraction using a single-scale approach, 
which failed to account for the diversity of action expression 
and the variability of spatiotemporal scales, ultimately 
resulting in suboptimal prediction performance. Tavcar et al. 
[19] concentrated on the recognition of holistic actions and
demonstrated limited capability in analyzing fine-grained
motion components. This limitation was particularly evident
in complex scenes, where the capture and precision of detailed
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behaviors were frequently compromised. Furthermore, 
although multi-scale network models have improved action 
recognition performance to some extent, challenges related to 
computational efficiency and real-time processing persist 
when handling large-scale sports video datasets. 

This study focuses on two core research components. First, 
a fast multi-scale spatiotemporal pyramid prediction algorithm 
was proposed for the computation of spatiotemporal feature 
points, in which a hierarchical spatiotemporal pyramid 
structure was constructed to enhance the processing capacity 
for multi-scale motion information. This design can 
significantly improve prediction accuracy and responsiveness. 
Second, a fine-grained action prediction algorithm for 
instructional sports videos based on temporal scale was 
introduced to investigate the temporal characteristics of 
different sports behaviors. This method can optimize temporal 
dependencies and the handling of fine-grained motion details 
throughout the action recognition process. Together, these 
contributions provide a novel framework and methodology for 
advancing fine-grained action understanding in instructional 
sports videos, offering important support for the application 
and development of intelligent instructional systems. 

2. MULTI-SCALE SPATIOTEMPORAL PYRAMID
PREDICTION ALGORITHM FOR COMPUTING
ACTION SPATIOTEMPORAL FEATURE POINTS

In the context of fine-grained action understanding in 
instructional sports videos, the motion patterns captured often 
exhibit high complexity and variability. This necessitates a 
model capable of precisely identifying and analyzing subtle 
motion details. Fine-grained action understanding requires the 
extraction of information across multiple temporal and spatial 
scales. By adopting a hierarchical spatiotemporal pyramid 
network architecture, features at various scales can be 
computed through a layered strategy, thereby enhancing the 
capacity for recognizing diverse motion behaviors. However, 
such an approach is often accompanied by high computational 
overhead and limited processing speed. Especially when real-
time performance is required, the computational efficiency of 
such an approach typically fails to meet practical demands, 
making it difficult for the model to run efficiently in dynamic 
and complex instructional sports environments. To overcome 
this bottleneck, a feature prediction algorithm based on inter-
scale layered image structures was introduced as a solution to 
improve real-time performance. This algorithm effectively 
preserves computational accuracy while accelerating feature 
computation across scales, thereby offering a more efficient 
and practical framework for fine-grained action understanding 
in instructional sports videos. The proposed methodology can 
be introduced in two key parts: (a) the principle of a fast 
spatiotemporal pyramid hierarchical computation strategy for 
the multi-scale features of fine-grained actions in instructional 
sports videos; (b) a fine-grained action understanding 
algorithm based on temporal scale for those instructional 
sports videos. 

To achieve accurate analysis and interpretation of athletes' 
movements and postures, precise feature extraction from video 
frames is essential. In this process, the selection of image 
scales plays a decisive role in the successful extraction of fine-
grained motion features. To effectively capture action details 
in instructional sports videos, multi-scale images (Uδ) were 
generated via upsampling and downsampling. In addition, 

their spatiotemporal feature points were extracted using the 
Hessian matrix. Let
h(a,b,s;δu;πu)=1/[(2τ)3δ4

uπ2
u]1/2×EXP(1(a2+b2)/2δ2-s2/2π2

u) 
and Maa=∂/∂a2h(δu,πu)×I(a,b,s), and the Hessian matrix 
composed of second-order partial derivatives can be expressed 
as follows: 
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The Hessian matrix, as a scale-invariant feature extraction 
tool, enables the accurate and stable localization of salient 
feature points in images. Given the significant temporal and 
spatial variability of actions in instructional sports videos, 
traditional feature extraction methods often fail to adapt 
effectively to such variations. In contrast, the Hessian matrix 
ensures consistent detection of critical motion features across 
multiple scales, and it provides robust support for the precise 
localization and extraction of important spatiotemporal feature 
points, particularly in fine-grained action recognition. To 
further simplify the computation and to ensure that the 
Gaussian kernel accurately selects appropriate spatial and 
temporal scales, denoted as δ0 and π0, a γ-normalization 
process was applied to the Hessian matrix, enhancing both 
computational efficiency and accuracy. The absolute value of 
the determinant of the Hessian matrix is expressed as: 

( )
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NORM NORM NORM NORM
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o w
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T DE G M M M
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where, o=5/2, and w=5/4. 

(a) Single feature map

(b) Feature map pyramid

(c) Hierarchical pyramid

(d) Feature pyramid network

Figure 1. Various strategies for multi-scale feature extraction 
and fusion 
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Figure 1 illustrates different strategies for multi-scale 
feature extraction and fusion. Traditional spatiotemporal 
pyramid approaches perform repeated resampling of image 
data across various scales. The input images are divided into 
multiple hierarchical groups, each further subdivided into 
finer-scale layers. While this method enables the extraction of 
a rich set of spatiotemporal features, it incurs a substantial 
computational burden. In particular, repeated sampling at each 
scale results in significant inefficiencies. In real-world 
instructional sports video analysis, systems are required to 
respond rapidly and deliver real-time feedback. This is 
especially critical in live instructional settings, where both 
instructors and learners depend on the immediate analysis of 
motion details. The traditional multi-scale spatiotemporal 
pyramid strategy faces significant real-time issues in practical 
applications, making it difficult to meet the dual requirements 
of real-time performance and accuracy. 
 

 
 

Figure 2. Schematic diagram of the fast multi-scale 
spatiotemporal pyramid prediction model 

 
To overcome the aforementioned limitations, a fast multi-

scale spatiotemporal pyramid prediction algorithm was 
introduced in this study to accelerate the computation of 
spatiotemporal features without compromising accuracy. The 
structure is illustrated in Figure 2. Through this algorithm, 
redundant computational steps were eliminated, significantly 
reducing the processing time required per video frame. In this 
scheme, video images were initially divided into multiple scale 
groups following conventional methods. However, unlike 
traditional approaches, only a single downsampling operation 
was performed for each group, reducing the repetitive 
calculation of each scale. Specifically, images at scales of 1/2 
and 1/4 were computed, and the determinant of the Hessian 
matrix, denoted as |DET(GNORM)|, was utilized to extract the 
values of feature points. This approach substantially reduces 
computational complexity by eliminating the need for repeated 
operations across all layers, effectively accelerating the 
extraction of spatiotemporal feature points. To further enhance 
efficiency, a feature point computation strategy based on the 
prediction algorithm was adopted in this study. After 
calculating the feature point values T at the 1/2 and 1/4 scales, 
these known values were then used to predict the feature point 

values at adjacent scales. The prediction algorithm infers 
feature point values of other scales based on the relationship 
between neighboring scales, avoiding the need for 
computation at every individual scale. 
 
 
3. FINE-GRAINED ACTION UNDERSTANDING IN 
INSTRUCTIONAL SPORTS VIDEOS BASED ON 
TEMPORAL SCALE 

 
In the context of fine-grained action understanding for 

instructional sports videos, athlete movements often exhibit 
distinct characteristics across different temporal and spatial 
scales. To analyze these complex spatiotemporal patterns, a 
temporal scale-based prediction algorithm was employed in 
this study to efficiently extract spatiotemporal feature points 
under varying motion frequencies. The core principle of this 
algorithm lies in analyzing the relationship between the 
temporal and spatial scales of each spatiotemporal feature 
point, thereby intelligently predicting and computing the 
positions of feature points across multiple temporal scales. For 
instance, fast-paced actions such as shooting or sprinting are 
typically associated with smaller temporal scales, whereas 
slower actions such as standing or preparing involve larger 
temporal scales. In the case of a waving gesture, if the 
frequency of waving is high, the corresponding spatiotemporal 
feature points are concentrated at smaller temporal scales. 
These shorter temporal scales are capable of capturing rapid 
motion transitions, enabling more precise representation of 
hand movement details. Conversely, when the waving 
frequency is lower, the associated feature points shift to larger 
temporal scales, reflecting slower motion transitions and 
producing feature point calculations characterized by extended 
temporal scales. Figure 3 illustrates the computation of action-
related spatiotemporal feature points under varying motion 
frequencies. 

 

 
(a) High-frequency motion 

 

 
(b) Low-frequency motion 

 
Figure 3. Illustration of spatiotemporal feature point 

computation under varying motion frequencies 
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In fine-grained action understanding for instructional sports 
videos, the concept of scale space was utilized to analyze and 
recognize complex motion sequences through multi-level 
smoothing operations. Within this context, the scale space can 
be defined as a family of image smoothing operators Sπ, 
representing the degree of processing applied to each frame of 
the video. By progressively increasing the scale π, the degree 
of smoothing is intensified, allowing low-frequency noise to 
be suppressed while enhancing the visibility of fine-grained 
action features present in the video. Each smoothing operator 

Sπ in the scale space can be understood as applying different 
levels of blurring to incrementally capture and refine 
variations in motion, which is critical for the accurate 
recognition of actions in instructional settings. As the value of 
π varies, a continuous transition from localized motion to more 
global action patterns is exhibited, enabling effective 
differentiation and recognition of fine-grained actions across 
scales—such as the nuanced progression of actions like 
shooting a basketball or kicking a soccer ball. 

Figure 4. Temporal reasoning illustration of the hierarchical spatiotemporal pyramid network 

In the hierarchical spatiotemporal pyramid network 
architecture adopted in the model, the use of scale space 
further enhanced the spatiotemporal pyramid structure of the 
video. By progressively extracting features at varying scales 
from video data, fine-grained action recognition was achieved. 
More specifically, the scale space was employed to construct 
multi-layered, cross-scale feature extraction pathways within 
the network, enabling the capture of subtle motion variations 
across spatiotemporal scales. Under the influence of this multi-
scale framework, the network is capable of performing scale 
transitions using the operator Sπ+g,π, facilitating precise 
modeling of complex behaviors. Through the progressive 
refinement enabled by the scale space, the model was 
equipped to interpret and recognize a broad range of 
instructional sports actions in fine detail, including action 
initiation, transitional movements, and termination. Figure 4 
illustrates the temporal reasoning process within the 
hierarchical spatiotemporal pyramid network. 

In this study, the temporal scale configuration follows a 
recursive principle, whereby the spatiotemporal pyramid 
structure of the video is divided into v layers, with each layer's 
temporal scale defined as a multiple (π, 2π, ..., vπ) of a base 
unit π. This design enables the effective capture of hierarchical 
temporal and spatial variations within the video. At different 
scales, features can be extracted layer by layer, and the 
mapping between scales π and π+g through Sπ+v iterations 
yields fine spatiotemporal variation features. As a result, both 
low-frequency global motions and high-frequency local 
details are precisely modeled at each layer of the model. 
Specifically, the recursive structure of the scale space is 
redefined as follows: 

( )
( )

( )
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2 1

1

, , ; , *

, , ; , 2 *

, , ; , *v v
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

(3) 

Finally, the temporal scale-based prediction algorithm 

further optimizes the action understanding model by 
calculating the ratio of the determinants of the Hessian matrix 
across different spatial and temporal scales: 
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1 1 1 1 11
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aa bb ss aa bb ss

u u u aa bb ss u aa bb u u ss

M M M M M MT
T M M M M M M

δ π δ δ π
δ π δ δ π

= = ⋅ (4) 

Based on experimental results, the following relationship 
was established: 
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Therefore, it can be concluded that: 
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Since the temporal scale is defined as a multiple of π, it 
follows that πu=uπ. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results presented in Figure 5 reveal
substantial differences in performance among the models 
employing different pyramid prediction algorithms, 
particularly in multi-scale action prediction and Receiver 
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Operating Characteristic (ROC) curve behavior across video 
segments. In the performance comparison based on mean 
Average Precision (mAP), the proposed method exhibited the 
highest predictive accuracy. As the duration of the video 
segments increased, prediction performance improved 
steadily, ultimately reaching an mAP value of 0.623. In 
contrast, ST-PoolNet and ST-GCN demonstrated inferior 
results. ST-PoolNet maintained consistently low performance, 
achieving a maximum mAP of only 0.2076 over time. ST-
GCN performed moderately better, reaching 0.0692, yet 
remained far below the performance of the proposed approach. 
The weakest performance was observed in STAPNet, which 
attained a peak value of merely 0.0231 across multiple 
temporal scales. These results indicate that the proposed 
hierarchical spatiotemporal pyramid prediction algorithm 
provides a clear advantage in fine-grained action 
understanding for video segments, significantly enhancing the 
model’s multi-scale information processing ability and 
predictive accuracy. 

(a) mAP

(b) ROC curve

Figure 5. Comparative performance of different pyramid 
prediction algorithms 

From the ROC curve analysis, the proposed method also 
outperformed the comparative models across all threshold 
values. The curve approached the ideal value of 1.0, with an 
accuracy of 0.9 achieved at a threshold of 0.8. These findings 
suggest that the proposed algorithm is highly effective in 
capturing spatiotemporal features in video segments and 
excels in complex action recognition tasks. By contrast, ST-
PoolNet, ST-GCN, and STAPNet exhibited notably weaker 
performance in the ROC evaluation. Although all three models 

approached a maximum near 1.0, significant performance 
disparities were observed across the threshold range of 0.2 to 
0.8, where the proposed method consistently maintained 
superior accuracy. In summary, the multi-scale spatiotemporal 
pyramid prediction algorithm presented in this study 
effectively integrates spatiotemporal features, optimizes 
temporal dependencies in actions and the processing of motion 
detail, thereby substantially increasing the precision of fine-
grained action prediction and understanding in instructional 
sports videos. 

Table 1. Prediction results for fine-grained actions in 
different instructional sports videos 

Action Type Training Set 
Accuracy 

Validation Set 
Accuracy 

Demonstration 67.25% 85.32% 
Error correction 71.23% 91.25% 

Imitative practice 72.59% 91.36% 
Interactive questioning 73.65% 92.35% 
Performance display 71.79% 90.51% 

The prediction results presented in Table 1 indicate that the 
proposed hierarchical spatiotemporal pyramid network 
architecture demonstrates superior performance in 
recognizing fine-grained actions across various types of 
instructional sports videos. The model achieved consistently 
high accuracy on both the training and validation sets for each 
category of instructional behavior. Specifically, an accuracy of 
67.25% was achieved for “demonstration” in the training set 
and 85.32% in the validation set. For “error correction,” the 
training accuracy reached 71.23%, while the validation 
accuracy improved to 91.25%. “Imitative practice” resulted in 
training and validation accuracies of 72.59% and 91.36%, 
respectively. In the case of “interactive questioning,” 
accuracies of 73.65% and 92.35% were recorded, and for 
“performance display,” the model achieved 71.79% and 
90.51% on the training and validation sets, respectively. These 
results demonstrate that the proposed method is capable of 
effectively processing fine-grained instructional actions across 
diverse video scenarios. In particular, the high validation 
accuracies reflect the model’s strong generalization ability. 

Table 2. Experimental results of the proposed model on 
different types of datasets 

Dataset Training Set 
Accuracy 

Validation Set 
Accuracy 

MultiSports 91.25% 97.56% 
FineDiving 91.27% 97.52% 
FineSports 91.36% 96.32% 

Average 91.58% 97.54% 

As shown in Table 2, the proposed hierarchical 
spatiotemporal pyramid network architecture achieved 
consistently high performance across multiple dataset types. 
High accuracy and stability were observed on both the training 
and validation sets. For example, on the MultiSports dataset, 
accuracies of 91.25% and 97.56% were recorded for the 
training and validation sets, respectively. On the FineDiving 
dataset, the training and validation accuracies reached 91.27% 
and 97.52%, respectively. Similarly, the FineSports dataset 
yielded accuracies of 91.36% (training) and 96.32% 
(validation). These results demonstrate that the proposed 
model consistently achieved strong predictive performance 
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across varied datasets. In particular, the validation set 
accuracies were observed to be consistently higher than those 
of the training set, indicating strong generalization capability 
during the training process. Overall, the model achieved 
average accuracies of 91.58% on the training sets and 97.54% 
on the validation sets, further validating the effectiveness of 
the proposed method. 
 
Table 3. Comparative experimental results of different action 

prediction networks 
 

Network Model MultiSports FineDiving FineSports 
FineGym 81.2% 82.4% 81.8% 
SlowFast 83.6% 84.2% 84.5% 

Temporal Segment 
Networks 84.5% 85.9% 83.9% 

Temporal Excitation 
and Aggregation 85.6% 86.7% 84.3% 

Temporal Difference 
Networks 86.9% 87.4% 86.2% 

MotionLLM 87.5% 88.7% 86.4% 
Proposed model 91.6% 90.4% 90.7% 

 
As shown in Table 3, the hierarchical spatiotemporal 

pyramid network architecture proposed in this study 
demonstrated a clear performance advantage when compared 
with other action prediction networks across all evaluated 
datasets. Notably, the proposed model consistently achieved 
the highest accuracy scores on three datasets. For example, on 
the MultiSports dataset, an accuracy of 91.6% was attained, 
surpassing MotionLLM (87.5%) and Temporal Difference 
Networks (86.9%). On the FineDiving dataset, the proposed 
model achieved 90.4%, outperforming MotionLLM (88.7%) 
and Temporal Excitation and Aggregation (86.7%). Similarly, 
on the FineSports dataset, the proposed approach reached 
90.7%, exceeding the performance of MotionLLM (86.4%) 
and SlowFast (84.5%). These results confirm the superior 
effectiveness of the proposed hierarchical spatiotemporal 
pyramid network in fine-grained action prediction across 
diverse instructional sports video datasets. 

As shown in the confusion matrices presented in Figure 6, 
in the MultiSports dataset, the classification accuracy for the 
“demonstration” category reached 1.00, indicating perfect 
recognition. However, 25% of the “error correction” samples 
were misclassified as “imitative practice,” and 50% of the 
“imitative practice” samples were misclassified as “interactive 
questioning.” For the FineDiving dataset, both 
“demonstration” and “performance display” achieved perfect 
accuracy (1.00). In contrast, 25% of the “error correction” 
samples were misclassified as “performance display,” and 
25% of the “imitative practice” samples were assigned to 
“interactive questioning.” In the FineSports dataset, the 
accuracy for “demonstration” again reached 1.00. However, 
75% of the “error correction” samples were misclassified as 
“interactive questioning.” Additionally, 25% of the “imitative 
practice” samples were assigned to “demonstration,” and 25% 
of “interactive questioning” samples were misclassified as 
“performance display.” 

Overall, the model demonstrated exceptional accuracy in 
recognizing the “demonstration” and “performance display” 
categories across all datasets, indicating strong discriminative 
ability for these action types. However, misclassifications 
were more common among the “error correction,” “imitative 
practice,” and “interactive questioning” categories. This may 
be attributed to the intrinsic similarity in their features, which 

complicates the model’s ability to differentiate between them. 
The observed variation in misclassification patterns across 
datasets also reflects the influence of dataset-specific 
characteristics on recognition performance. These findings 
suggest that further refinement is needed to enhance the 
model’s ability to distinguish between closely related 
instructional behaviors, thereby improving the overall 
performance of the model in fine-grained action understanding 
in instructional sports videos. 

 

 
(a) MultiSports 

 

 
(b) FineDiving 

 

 
(c) FineSports 

 
Figure 6. Confusion matrices of the proposed model across 

different dataset types 
 

 
5. CONCLUSION 
 

The proposed hierarchical spatiotemporal pyramid network 
architecture has significantly advanced the task of fine-grained 
action understanding in instructional sports videos through 
two core innovations. First, a fast multi-scale spatiotemporal 
pyramid prediction algorithm for computing action-related 
spatiotemporal feature points was introduced. This approach 
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enhanced the model’s ability to process multi-scale motion 
information, thereby improving both prediction accuracy and 
real-time performance. Second, a temporal scale-based fine-
grained action prediction algorithm was proposed, enabling 
the detailed analysis of temporal features across different types 
of sports actions and optimizing both temporal dependencies 
and fine-detail processing in the recognition process. The 
integration of these two innovations resulted in substantial 
improvements in the accuracy and interpretability of action 
recognition within instructional sports video contexts. 
Furthermore, this framework provides new insights for the 
development of intelligent instructional systems, offering 
considerable potential for practical deployment and further 
advancement. 

Despite the promising results achieved across multiple 
datasets, several limitations remain. First, the current model 
exhibits relatively high training and inference latency, 
particularly when deployed on large-scale video datasets. This 
presents challenges for real-time applications due to the 
demand for substantial computational resources. Second, 
although the proposed approach effectively processes multi-
scale spatiotemporal features, performance may still degrade 
in highly complex and dynamically evolving behavioral 
scenes. The ability in handling long-duration sequences or 
actions with elevated structural complexity should be further 
enhanced. Future research efforts should focus on improving 
computational efficiency and enhancing the model’s capacity 
to process spatiotemporal information in challenging scenarios 
and exploring the lightweight models tailored for real-time 
applications. Additionally, as the diversity of instructional 
sports videos continues to grow, expanding the generalization 
capabilities of the model will be essential to ensure reliable 
performance across a wider range of behavioral categories. 
 
 
REFERENCES 

 
[1] Zhu, X., Zhang, Z. (2023). Precise recommendation 

algorithm for online sports video teaching resources. EAI 
Endorsed Transactions on Scalable Information Systems, 
10(2): e11. https://doi.org/10.4108/eetsis.v10i1.2578 

[2] Mącznik, A.K., Schneiders, A.G., Athens, J., Sullivan, 
S.J. (2018). The development of an instructional video 
for the teaching of acupressure for pain management in 
acute musculoskeletal injuries: A knowledge translation 
study. Physical Therapy in Sport, 29: 34-42. 
https://doi.org/10.1016/j.ptsp.2017.10.005 

[3] Gómez, R.S. (2020). La enseñanza de las actividades 
físicas de incertidumbre ambiental en Educación Física: 
en busca de una performance inteligente para los 
jugadores de la naturaleza. Ágora para la Educación 
Física y el Deporte, 22: 296-319. 
https://doi.org/10.24197/aefd.0.2020.296-319 

[4] SueSee, B., Pill, S., Edwards, K. (2018). Interrogating 
assumptions of a curriculum: queensland senior physical 
education syllabus. Physical Educator, 75(5): 850-879. 
https://doi.org/10.18666/TPE-2018-V75-I5-8283 

[5] Zeng, B., Zhao, J., Wen, S. (2023). A textual and visual 
features-jointly driven hybrid intelligent system for 
digital physical education teaching quality evaluation. 
Mathematical Biosciences and Engineering, 20(8): 
13581-13601. https://doi.org/10.3934/mbe.2023606 

[6] Li, C., Liu, B., Kim, K. (2023). Intelligent unsupervised 
learning method of physical education image resources 

based on genetic algorithm. Neural Computing and 
Applications, 35(6): 4225-4242. 
https://doi.org/10.1007/s00521-022-07021-x 

[7] Xu, Q., Yin, J. (2021). Application of random forest 
algorithm in physical education. Scientific 
Programming, 2021(1): 1996904. 
https://doi.org/10.1155/2021/1996904 

[8] Gayathri, T., Mamatha, H.R. (2023). How to improve 
video analytics with action recognition: A survey. ACM 
Computing Surveys, 57(1): 9. 
https://doi.org/10.1145/3679011 

[9] Nguyen, L.Q., Choi, J., Dang, L.M., Moon, H. (2024). 
Background debiased class incremental learning for 
video action recognition. Image and Vision Computing, 
151: 105295. 
https://doi.org/10.1016/j.imavis.2024.105295 

[10] Yıldız, M., Keskin, H.K., Oyucu, S., Hartman, D.K., 
Temur, M., Aydoğmuş, M. (2025). Can artificial 
intelligence identify reading fluency and level? 
comparison of human and machine performance. 
Reading & Writing Quarterly, 41(1): 66-83. 
https://doi.org/10.1080/10573569.2024.2345593 

[11] Sharma, V., Gupta, M., Pandey, A.K., Mishra, D., 
Kumar, A. (2022). A review of deep learning-based 
human activity recognition on benchmark video datasets. 
Applied Artificial Intelligence, 36(1): 2093705. 
https://doi.org/10.1080/08839514.2022.2093705 

[12] Fernández-Ramírez, J., Álvarez-Meza, A., Pereira, E. 
M., Orozco-Gutiérrez, A., Castellanos-Domínguez, G. 
(2020). Video-based social behavior recognition based 
on kernel relevance analysis. The Visual Computer, 
36(8): 1535-1547. https://doi.org/10.1007/s00371-019-
01754-y 

[13] Naylor, A., Spence, S.E., Poed, S. (2019). Using video 
modelling to teach expected behaviours to primary 
students. Support for Learning, 34(4): 389-403. 
https://doi.org/10.1111/1467-9604.12274 

[14] Yoon, H.Y., Kang, S., Kim, S. (2024). A non-verbal 
teaching behaviour analysis for improving pointing out 
gestures: The case of asynchronous video lecture 
analysis using deep learning. Journal of Computer 
Assisted Learning, 40(3): 1006-1018. 
https://doi.org/10.1111/jcal.12933 

[15] van Dam, E.A., Noldus, L.P., van Gerven, M.A. (2020). 
Deep learning improves automated rodent behavior 
recognition within a specific experimental setup. Journal 
of Neuroscience Methods, 332: 108536. 
https://doi.org/10.1016/j.jneumeth.2019.108536 

[16] Teterja, D., Garcia-Rodriguez, J., Azorin-Lopez, J., 
Sebastian-Gonzalez, E., Net al. (2024). A Video 
Mosaicing-Based Sensing Method for Chicken Behavior 
Recognition on Edge Computing Devices. Sensors, 
24(11): 3409. https://doi.org/10.3390/s24113409 

[17] Rezaei, F., Yazdi, M. (2021). Real-time crowd behavior 
recognition in surveillance videos based on deep learning 
methods. Journal of Real-Time Image Processing, 18(5): 
1669-1679. https://doi.org/10.1007/s11554-021-01116-9 

[18] Wang, X., Song, Y., Hou, F., Zhang, M., Richardson, A. 
G., Lucas, T.H., Van der Spiegel, J. (2022). Design of a 
real-time movement decomposition-based rodent tracker 
and behavioral analyzer based on FPGA. IEEE 
Transactions on Very Large Scale Integration (VLSI) 
Systems, 30(9): 1133-1143. 
https://doi.org/10.1109/TVLSI.2022.3168783 

735



[19] Tavcar, A., Kuznar, D., Gams, M. (2017). Hybrid multi-
agent strategy discovering algorithm for human

behavior. Expert Systems with Applications, 71: 370-
382. https://doi.org/10.1016/j.eswa.2016.11.036

736


	1. Introduction



