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An improved version of the Fuzzy C-Means (FCM) method called Kernel Weighted Fuzzy 

Local Information C-Means (KWFLICM), which incorporates a Kernel Distance Measure 

(KDM), and a trade-off Weighted Fuzzy Factor (WFF) for image segmentation is proposed. 

The WFF considers spatial distance and the intensity difference of all pixels in the 

surrounding area simultaneously. The KWFLICM algorithm uses WFF to precisely 

determine the damping extent of pixels next to one another. The target function is improved 

by adding KDM, making it even more robust to noise and outliers. Adaptive kernel 

parameters are determined using an efficient bandwidth selection mechanism. The distance 

variance of each data point is used to calculate these parameters via a process of comparison. 

The KDM and the parameter-free WFF trade-off improve the segmentation accuracy of the 

KWFLICM algorithm. Simulation results on actual and simulated images show that the 

KWFLICM algorithm performs well against noisy images. KWFLICM’s combination of 

kernel mapping and spatial weighting enables it to produce better segmentation and 

classification results in lung cancer identification. The KWFLICM algorithm’s noise 

resilience, accurate boundary detection, and sensitivity to small or complex tumor structures 

make it especially valuable in lung cancer detection on two benchmark databases, including 

LIDC and ELCAP. 
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1. INTRODUCTION

The lung is the primary respirational organ for many air-

breathing creatures, such as fish and snails. In mammals and 

other more advanced living forms, the two lungs are situated 

on either side of the heart of the mammals, adjacent to the 

vertebral column. Their main jobs involve moving oxygen 

from the surrounding air into the bloodstream and releasing 

carbon dioxide into the atmosphere from the bloodstream. A 

patchwork of specialized cells that combine to produce 

millions of small, incredibly thin-walled air sacs known as 

alveoli offer the vast surface area needed for this gas exchange. 

Understanding the anatomy of the lungs requires 

understanding the airflow through the mouth and nose to the 

alveoli. The nasopharynx, as well as the pharynx, larynx, and 

trachea, are involved in the flow of air through the mouth or 

nose. The trachea bifurcates into two primary bronchi, which 

subsequently diverge into a network of bronchi and 

bronchioles in the left and right lungs, ultimately arriving at 

the alveoli. In this, many alveoli, carbon dioxide and oxygen 

exchange gases. 

Uncontrolled cell proliferation in lung tissues characterizes 

lung cancer, a malignant tumor of the lung. This tumor can 

spread outside of the lung by metastasizing it into nearby 

tissue or other body parts if left untreated. Primary lung 

cancers, sometimes referred to as epithelial-derived 

carcinomas, constitute most lung malignancies. The two most 

common primary types of lung cancer are non-small-cell lung 

cancer and small-cell lung cancer [1]. The most typical 

symptoms include weight loss, chest pain, hemoptysis, and 

shortness of breath, and coughing up blood. 

2. RELATED WORKS

An automated algorithm for correctly recognizing and 

classifying lung cancer is described by Naseer et al. [2] using 

Computed Tomography (CT) scans. It makes use of 

techniques from the field of computational intelligence. 

Generally, the process begins with segmenting the lobe, then 

moves on to remove any possible nodules, and ends with 

classifying them as benign or malignant. A Hybrid Vision 

Transformers for Lung cancer detection (HViT4Lung) is 

provided by Nejad and Hooshmand [3]. This innovative and 

effective technology enhances lung cancer diagnosis. A Deep 

Learning (DL) based hybrid system has been described to 
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detect lung nodules and assess their abnormal severity. 

A new method for identifying lung nodules is described by 

Jaya and Krishnakumar [4]. The input image is preprocessed 

using Histogram Equalization (HE), followed by a hierarchies-

based segmentation approach that uses an improved balanced 

iterative reducing method. Then, the nodules are classified 

using an optimum Convolutional Neural Network (CNN) 

using statistical features from the clustered image. A thorough 

and perceptive analysis of the various approaches for 

classifying and identifying lung nodules by machine learning 

techniques is provided by Shamas et al. [5]. To improve the 

segmentation process, multilevel thresholding and the Markov 

Random Field are explained by Aziz et al. [6]. The three 

options for the Markov random field employed for the 

segmentation process are the Gibbs sampler, the metropolis 

method, and the iterated condition mode. Nageswaran et al. [7] 

developed a technique for precisely classifying and predicting 

lung cancer with machine learning and image processing is 

covered. The geometric mean filter is employed during image 

preprocessing and segmented using the FCM technique. Then, 

machine learning-based categorization techniques are applied 

for the classification. Many machine learning techniques, such 

as ANN, KNN, and RF, are applied. 

For classifying lung cancer, Cloud-based Lung Tumor 

Detector and Stage Classifier (Cloud-LTDSC) is provided by 

Kasinathan and Jayakumar [8]. It is a hybrid lung tumor 

segmentation strategy employing active contour models. In 

addition, standard benchmark images have been used to train 

and validate a multilayer CNN for classifying the different 

lung cancer stages. A comprehensive approach by Said et al. 

[9] detects lung cancer early in CT scan imaging. At first, a 

segmentation module is created on top of the UNETR network, 

and then a classification part that classifies the segmentation's 

output as benign or malignant using a self-supervised network 

is developed. A generalized framework using lung CT scans 

for early diagnosis is discussed by Salama and Aly [10]. To 

identify CT lung scans as positive or negative, DL models such 

as ResNet50 and VGG16 are used. The popular U-Net is 

employed for CT lung image segmentation before 

classification. An approach by Vinod and Menaka [11] detects 

the presence of lung nodules and classifies them into multiple 

groups simultaneously. An auto-encoder helps with the 

segmentation process after preprocessing. A useful method for 

figuring out the size and location of a lobe is the segmentation 

of lung nodules. 

An anisotropic diffusion filter is used after HE to reduce 

noise further and enhance the image [12]. The firefly 

algorithm and FCM method is employed for nodule 

segmentation. Then, a support vector machine classifier is 

used to classify lung cancer’s stages. To differentiate benign 

and malignant nodules, a framework for reliably identifying 

lung cancer is addressed by Meraj et al. [13]. To accurately 

diagnose lung nodules, the adaptive thresholding, and 

semantic segmentation are applied during the pre-processing 

step after denoising. Wang et al. [14] developed an approach 

for identifying and categorizing nodules in chest CT scans 

using CNN. CNN will extract features, allowing for the nodule 

identification based on their sizes, locations, and wide range 

of variations. The Faster-RCNN algorithm determines the 

classification, while the segmentation process uses the 

clustering methodology. Numerous machine learning methods 

are used for the same goal and several DL-based nodule 

detection systems have recently been developed [15-22]. 

 

3. METHODS AND MATERIALS 

 

The proposed KWFLICM method for lung cancer diagnosis 

is discussed briefly in this section. 

 

3.1 Lung cancer database 

 

The Early Lung Cancer Action Program (ELCAP) and Lung 

Image Database Consortium and Image Database Resource 

Initiative (LIDC-IDRI) datasets are extensively used in lung 

cancer identification, particularly in computer-aided diagnosis 

(CAD) and detection systems. Here’s an in-depth look at each 

dataset’s contributions and specific features relevant to lung 

cancer identification: 
 

3.1.1 ELCAP database 

The ELCAP dataset is derived from a pioneering study 

focused on identifying lung cancer through Low-Dose CT 

scans (LDCT). Its purpose is to assist in early detection, 

particularly in populations at high risk, such as smokers. The 

key attributes for lung cancer identification are as follows: 

➢ LDCT Scans: LDCT is a preferred method for lung 

cancer screening due to lower radiation exposure, 

making it safer for regular screening. However, LDCT 

presents challenges in maintaining high image quality, 

which tests the robustness of CAD algorithms to 

identify nodules despite lower contrast. 

➢ High-Risk Population Focus: The scans are taken from 

individuals at high risk (e.g., heavy smokers) for lung 

cancer, providing data that simulates real-world 

screening conditions. This focuses on a high-risk 

demographic aid in developing algorithms more 

sensitive to early lung cancer signs. 

➢ Detailed Nodule Annotations: Many CT images in 

ELCAP are annotated with nodule characteristics, 

including size, shape, location, and type (ground-glass 

opacities solid, or part-solid). These labels help 

algorithms learn to detect and classify lung nodules 

accurately. 

➢ 3D Image Slices: ELCAP images are formatted in thin 

axial slices, allowing for volumetric (3D) analysis. This 

is particularly useful for distinguishing subtle nodules 

that may be hard to detect on single 2D slices but more 

evident when viewed across multiple slices. 

The relevance’s of ELCAP for lung cancer identification are: 

➢ Early Detection Focus: Since ELCAP aims to diagnose 

lung cancer, it is crucial for training and validating 

CAD algorithms focused on early-stage cancer 

identification. 

➢ Volume Change Tracking: Some cases in ELCAP 

include follow-up scans, allowing for tracking of 

nodule growth over time. Growth rate is a significant 

indicator of malignancy, so this longitudinal data helps 

develop algorithms that can detect rapid growth 

patterns indicative of cancerous nodules. 

 

3.1.2 LIDC database 

The LIDC dataset contains many CT scans and detailed 

nodule annotations. The key attributes of LIDC for lung cancer 

identification are as follows: 

➢ Large Number of Cases: LIDC includes over 1,000 

thoracic CT scans, providing a substantial dataset for 

training and testing lung cancer detection models. 

➢ Multi-Rater Annotations: Each scan has been annotated 
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by up to four radiologists independently, with each 

radiologist identifying nodule locations and providing 

detailed annotations. This multi-rater approach 

captures inter-observer variability, giving a realistic 

benchmark for CAD systems to match human 

performance. 

➢ Detailed Nodule Characterization: Nodules larger than 

3mm are annotated with several attributes, such as: 

• Nodule Diameter: Indicates the size of each nodule, 

with larger sizes potentially correlating with 

malignancy. 

• Sphericity and Spiculation: Shape attributes that 

help distinguish between malignant and benign. 

The former one often has irregular shapes and 

spiculated edges. 

• Subtlety: The subjective difficulty in detecting the 

nodule, allowing for testing of CAD algorithms’ 

sensitivity. 

• Malignancy Rating: Each radiologist rates the 

likelihood of malignancy on a scale, providing 

CAD systems with data on suspected malignancy 

levels to help them learn these distinctions. 

• Various Nodule Types: LIDC includes diverse 

nodule types. They can vary widely in appearance 

and malignancy risk. Nodule types included in 

LIDC are ground-glass, part-solid, and solid 

nodules. These samples are critical for training 

algorithms that can accurately segment and 

classify the different presentations of lung nodules. 

The relevance’s of LIDC for lung cancer identification are: 

➢ Malignancy Prediction: LIDC malignancy ratings 

allow algorithms to go beyond simple nodule detection 

and learn to assess the risk of cancer, making it useful 

for both detection (identifying nodules) and diagnosis 

(determining likelihood of malignancy). 

➢ Inter-Rater Consistency Studies: The multiple 

annotations by different radiologists enable studies on 

how consistently different observers identify and 

classify nodules. This is essential for training CAD 

systems to handle the inherent uncertainty and 

variability in human annotation. 

➢ Segmentation and Classification Benchmarks: Since 

LIDC provides rich, detailed annotations, it is 

commonly used as a benchmark for testing the 

accuracy of segmentation algorithms in delineating 

nodule boundaries and classifying nodules as 

malignant or benign. 

3.2 Image segmentation and image engineering 

 

The process of creating a section of an image or object is 

known as segmentation. Pattern recognition and image 

analysis are the first steps in image segmentation. Segmenting 

videos with dynamic backgrounds is an almost essential area 

of research in computer vision. Most functions related to 

image processing and analysis include evaluating or assessing 

images. The technique of splitting an image into separate, 

homogeneous, or somewhat similar sections is known as 

image segmentation. Consequently, characterization, 

delineation, and visualization of the region of interest in each 

image are critical components of image segmentation. 

Depending on whether a pixel's intensity value is larger or 

lower than a predetermined threshold, the image is separated 

into white and black pixels. Three layers of image engineering 

are shown in Figure 1. The upper layer is used for image 

understanding, the middle layer is used for image analysis, and 

the bottom layer is used for image processing. The result of 

image segmentation is significantly influenced by the 

precision of feature measurement. As image segmentation is a 

computer-aided process, the automation of segmentation is 

essential for medical imaging applications. The image 

segmentation and image engineering application areas are 

depicted in Figure 1. 

 

3.3 FCM algorithm 

 

The fuzzy clustering and hard clustering are two clustering 

strategies. Usually, just one cluster is assigned to each data 

point using hard clustering techniques. As a result, every pixel 

in an image belongs to one cluster, yielding extremely accurate 

results in image clustering. The effectiveness of hard 

clustering algorithms is diminished by several factors, 

including the intensity of homogeneities, the lack of contrast, 

the insufficient spatial resolution, overlap, and noise. The 

fuzzy clustering technique has been extensively researched 

and used to the process of image clustering and segmentation. 

It is a soft segmentation approach because it can withstand 

ambiguity and maintain more information than hard 

segmentation techniques. The FCM approach is used more 

often than other fuzzy clustering algorithms. This is among the 

reasons why it is so popular. For determining the optimal 

division, iterative FCM clustering is used to minimize the 

weighted within-group sum-of-squared error objective 

function. 

 

 

 
 

Figure 1. Image engineering and image segmentation 
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where, 𝑌 = {𝑌1, 𝑌2, . . . . 𝑌𝑀} ⊆ 𝐼𝑅𝑚  data that is stored in m-

dimensional vector space, M consists of the total amount of 

data pieces, d refers to the total number of clusters that 2 ≤
𝑑 < 𝑀, 𝑢𝑎𝑏 is the extent to which one is a member of 𝑌𝑎 in the 

tha  cluster, p the weighting exponent that is applied to each 

fuzzy membership status, 𝑉𝑏  is an example of the center of 

cluster prototype iteration (b), 𝑑2(𝑌𝑎, 𝑉𝑏) a measurement of 

the distance between two objects 
aY and cluster center 𝑉𝑏. An 

answer to the problem of the object function 𝐾𝑝  attainable 

using an iterative procedure, which is carried out in the 

following manner: 

 

(1) Values for d, p and ∈ are set 

(2) Initialize the Fuzzy partition matrix (0)U  

(3) Set the Loop counter b as b=0. 

(4) Compute the Cluster centers 𝑉𝑏
(𝑏) with 𝑈(𝑏) using Eq. 

(2): 
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Figure 2. (a) Noisy image; (b) FCM result 

 

(5) Compute the membership matrix suing Eq. (3): 
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(6) If max {𝑈(𝑏) − 𝑈(𝑏+1)} <∈  then stop, otherwise, set 

1a a= +  and go to step 4. 

Figure 2 presents a comparison of the clustering results 

obtained by the FCM after applying it to a synthetic test image. 

 

3.4 FLICM algorithm 

 

One novel and trustworthy FCM framework developed in 

this paper is the Fuzzy Local Information C-Means (FLICM) 

method. Although the approaches discussed in the preceding 

section produced satisfactory results for image clustering, they 

do have certain shortcomings. They aren't strong enough to 

withstand noise and anomalies, particularly when the noise is 

unknown in advance, even if using local spatial information 

makes them more noise resistant. A key parameter, denoted as 

𝛼 (or 𝜆), is incorporated into their objective functions to strike 

a balance between the efficacy of image detail preservation 

and resistance to noise. Choosing it usually requires some trial 

and error or expertise. It is expected that the new component 

will possess several unique qualities: 

➢ For preserving robustness and noise insensitivity via the 

use of fuzzy integration of local spatial and local 

intensity information. 

➢ To control the influence of neighboring pixels in direct 

proportion to the distance between them and the anchor 

pixel. 

➢ In order to preserve all of the nuances of the initial 

image without making any preparations before the 

process. Consequently, the new fuzzy factor is defined 

as the following: 
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where, the 𝑚𝑡ℎ local window center is denoted by the pixel, 

reference cluster is referred as n, 𝑝𝑡ℎ it is recommended that 

the pixel be included in the accumulation of neighbors falling 

into a window inside the system, the 𝑚𝑡ℎ  pixel (𝑀𝑚) , 𝑑𝑖𝑗 

represents as the spatial Euclidean distance between each pair 

of pixels i and j, 𝑢𝑘𝑖  means the extent to which one is a 

member of the 𝑝𝑡ℎ pixel in the 𝑛𝑡ℎ cluster, O is the weighted 

exponent that is applied to each fuzzy membership, and 𝑈𝑛 is 

the model of the center of cluster that is developed. n is a 

significant role played by 𝐻𝑛𝑚 the application of the method 

will also be shown in the part that comes after this one. By 

using the definition of 𝐻𝑛𝑚 the FLICM clustering technique is 

described as a robust framework for image clustering that 

utilizes fuzzy convolutional neural networks. It includes 

information about the local spatial and intensity level into its 

objective function, which is expressed in terms of 𝐽𝑚 in below 

equation. 
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Thus, the FLICM algorithm is given as follows: 

(1) Initialize the fuzzification parameter (m), cluster 

prototypes (c), and the stop condition ∈ 

(2) Initialize the Fuzzy partition matrix. 

(3) Initialize the Loop counter b as b=0. 

(4) Compute c using Eq. (6). 

(5) Compute the Membership values using Eq. (7). 

(6) 𝑚𝑎𝑥𝑖𝑗{𝑈
(𝑏) − 𝑈(𝑏+1)} <∈  then stop, otherwise, set 

b=b+1 and go to step 4. 

Figure 3 shows the comparison of clustering results on 

synthetic test image by the FCM and FLICM techniques. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3. (a) Original image; (b) FCM Result; (c) FLICM 

Result 

 

3.5 Proposed KWFLICM algorithm 

 

The proposed KWFLICM algorithm enhances image 

segmentation by accurately detecting irregular shapes and 

boundaries of lung cancer tissues. This section shows how 

KWFLICM improves upon traditional clustering techniques 

like FCM and FLICM, especially in lung cancer detection. The 

challenges in lung cancer identification are as follows: 

➢ Irregular Shapes: Lung cancer lesions often have 

irregular shapes and textures, making them difficult to 

capture with simple clustering. 

➢ Noise and Artifacts: Medical imaging can introduce 

noise, especially in complex areas like lung tissue. 

➢ Fuzzy Boundaries: The boundary between cancerous 

and non-cancerous tissue can be indistinct, so precise 

boundary detection is critical. 

KWFLICM addresses these challenges by integrating 

kernel methods with spatial weighting, making it especially 

effective for lung cancer image segmentation. FCM lustering 

algorithm calculates a membership value for each pixel based 

solely on pixel intensity, which limits its ability to handle noise 

and fuzzy boundaries. FLICM incorporates spatial 

information from neighboring pixels to improve noise 

resilience, but it may still struggle with complex textures and 

irregular boundaries in lung images. KWFLICM improves 

upon these by using kernel functions and weighted local 

spatial information, enabling better differentiation of 

cancerous regions. The key enhancement in KWFLICM is the 

kernel function, which transforms data to a higher-

dimensional space. This allows KWFLICM to: 

➢ Capture Nonlinear Patterns: The higher-dimensional 

representation makes it easier to capture complex 

relationships and patterns within lung tissues, often 

irregular in shape. 

➢ Differentiate Lung Nodules: The transformation allows 

KWFLICM to differentiate small, irregularly shaped 

nodules and other lung cancer features from normal 

tissue more effectively. 

KWFLICM uses a weighted local spatial information 

mechanism that considers both the intensity and spatial 

proximity of neighboring pixels. This helps in: 

➢ Enhancing Noise Robustness: Weighted spatial 

information helps distinguish noise from actual 

cancerous patterns, crucial in lung CT scans where noise 

or artifacts can obscure critical details. 

➢ Improving Boundary Accuracy: KWFLICM applies 

spatial weighting in the transformed kernel space, 

allowing it to more accurately detect fuzzy boundaries 

typical of lung cancer lesions. 

The KWFLICM algorithm optimizes an objective function 

that minimizes: 

➢ Kernelized Distance: The kernel function transforms 

pixel values, making it easier to distinguish clusters in a 

higher-dimensional space. 

➢ Weighted Local Information: Local spatial weighting 

accounts for neighboring pixel similarity, making 

clustering more accurate and reducing noise 

interference. 

 

The KWFLICM algorithm follows these steps in lung 

cancer identification: 

➢ Initialization: Initial cluster centers and memberships 

are set. 

➢ Kernel Transformation: To map the data to a higher-

dimensional space, each pixel’s intensity is transformed 

via the kernel function.  

➢ Membership Update: Membership values are computed 

based on kernelized distance and weighted local 

information. 

➢ Cluster Center Update: Centroids are updated by 

averaging the membership-weighted pixel values. 

➢ Iteration: The process repeats until the objective 

function converges, stabilizing cluster assignments. 
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In lung cancer identification, KWFLICM’s combination of 

kernel functions and weighted spatial information improves 

the algorithm’s ability to handle noise, detect complex 

boundaries, and capture small, irregular cancerous regions. 

This enhances the accuracy of segmentation, making 

KWFLICM a powerful tool for identifying and analyzing lung 

cancer in medical imaging. Kernel parameters are typically 

chosen in the KWFLICM algorithm for lung cancer 

identification: The choice of kernel function is as follows: 

➢ Common Kernel Types: The Gaussian (RBF) kernel and 

polynomial kernel are frequently used in KWFLICM 

due to their adaptability for medical imaging. 

➢ Gaussian (RBF) Kernel: Suitable for capturing non-

linear relationships within lung tissues, this kernel is 

popular in medical imaging because it can distinguish 

between subtle intensity variations. 

➢ Polynomial Kernel: Effective in separating clusters 

when the structure is less complex; higher-degree 

polynomials can capture more intricate patterns. 

➢ Selection Process: The choice is often based on trial 

experiments. For instance, Gaussian kernels are 

generally preferred when lung lesions have complex 

shapes and textures, while polynomial kernels are 

considered if the relationship between cancerous and 

normal tissue regions appears relatively linear. 

 

The RBF kernel parameter (σ) controls the smoothness of 

the Gaussian curve, influencing the radius of influence for 

each pixel’s similarity with neighboring pixels. The optimal 

values for σ are often found through cross-validation by 

comparing different values on a set of sample images, 

selecting the one that achieves the best segmentation accuracy. 

For lung cancer images, σ is usually chosen based on pixel 

intensity ranges and the image resolution, as lower σ values 

capture finer details, while higher σ values generalize more. 

The degree (d) in polynomial kernel controls the complexity 

of the polynomial surface. Higher degrees can capture more 

complex relationships but can also lead to overfitting. The 

coefficient (c) shifts the polynomial surface, controlling the 

sensitivity of the kernel function to pixel intensity differences. 

Typically, the values of d range from 2 to 4 ensure the 

polynomial function is neither too simple nor too complex for 

the lung images. The coefficients are manually adjusted based 

on visual inspection of segmentation results; high values may 

enhance contrast but also risk introducing artifacts. 

The fuzzy clustering approach is the most essential 

clustering method for image segmentation since it can 

preserve more information about the image than the hard 

clustering method. The FCM approach is a popular fuzzy 

clustering method for image segmentation. Many 

considerations must be satisfied for a fuzzy clustering method 

to function as intended. Concerns about the initialization of the 

clustering method, cluster size and form, cluster distribution, 

cluster number in the data, and cluster number are at the heart 

of these problems: 
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where, 𝑢𝑖𝑗 is the degree of membership of 
kY  in the cluster k, 

m is any real number larger than 1, the d-dimension center of 

the cluster is 𝐴𝑙 , along with that ‖𝑌𝑘 − 𝐴𝑙‖  represents any 

norm that expresses the degree of similarity between a set of 

measured data and the center of the set and thi of d-

dimensional measured data is 𝑌𝑘 . The process of fuzzy 

partitioning may be carried out by performing an iterative 

optimization of the objective function that is provided before, 

with the status of membership being updated during the 

process. 𝑢𝑖𝑗 and the cluster centers 𝐴𝑙 by: 
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After 𝑚𝑎𝑥𝑖𝑗{|𝑢𝑖𝑗
(𝑘+1)

− 𝑢𝑖𝑗
𝑘 |} <∈ , the iteration will stop, 

where, ∈= [0,1] a termination criterion and the iteration steps 

are denoted by k. This process converges with a saddle point 

of 𝐽𝑚 or local minimum. When it comes to noise-free images, 

the FCM methods outperform more traditional algorithms. 

However, images contaminated with noise, outliers, and other 

imaging aberrations cannot be segmented using this method. 

FCM generates findings that are not robust for several reasons, 

the most significant of them are the use of a Euclidean distance 

and the absence of spatial contextual information in the image 

that is not robust. Many other FCM algorithms that have been 

improved have been offered in attempt to find a solution to the 

first difficulty. Each of these algorithms incorporates local 

geographical data into the FCM goal function that is first 

developed. Within the framework of the FCM_S algorithm, 

the spatial neighborhood term is included to bring about a 

modification to the mission function of FCM. 

One of the most significant downsides of FCM_S is that the 

computation of the spatial neighborhood term requires a 

significant amount of time during each iteration step. This 

presents a significant challenge for the algorithm. It is decided 

to construct two distinct versions of FCM_S, namely FCM_S1 

and FCM_S2, to lessen the amount of computing effort that is 

needed by FCM_S. To improve the overall performance of the 

model, the neighborhood term of FCM_S is changed to a 

median-filtered image in FCM_S2, while an additional mean-

filtered image is included into FCM_S1 to further improve its 

performance. 

The capacity to calculate the mean- and median-filtered 

images in advance results in a reduction in the operating 

expenses associated with processing. Enhanced FCM 

(EnFCM) is created for accelerating the process of image 

segmentation. For producing a linearly weighted sum image, 

it makes use of the original image as well as the average grey 

level of each pixel in the surrounding neighborhood. The 

combined image's grey level histogram is then used for 

categorization. The computational complexity of EnFCM is 

less. However, these methods do not allow for the direct 

application of the source image. To manage the balance 

between robustness against noise and detail preservation 

efficacy, they require certain parameters, denoted by an or λ. 

To address these issues and improve image segmentation 

performance, a new parameter-free robust FLICM is 

introduced. By defining a new fuzzy factor, FLICM supplants 

parameter a, which has been used by all prior methods and 

variations. 
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One of the objectives is to develop a trade-off WFF that is 

capable of being used for the purpose of adaptively controlling 

the local spatial connection. The distance that separates 

neighboring pixels and the difference in intensity levels 

between them are the two factors that define this section. To 

enhance the FLICM method, a trade-off WFF and kernel 

approach are employed. Both the intensity and the spatial 

distance between adjacent pixels are considered by the 

tradeoff WFF. Moreover, there are no parameters for the 

kernel distance measure, or the tradeoff WFF. Following 

segmentation using the FCM, FLICM, and KWFLICM 

algorithms, the tumor region from the segmented image is 

shown separately. Figure 4 displays the algorithm's flow chart. 

 

 
 

Figure 4. Flow chart representation of KWFLICM algorithm 

 

The following is a concise summary of the algorithm that 

has been proposed: 

➢ Define c as the number of cluster prototypes, 
iN  is 

window size, m fuzzification parameter and the 

stopping condition. 

➢ The fuzzy cluster prototypes should then be initialized 

in a random manner. 

➢ Loop counter 𝑏 = 0 is set after this. 

➢ To determine the changed distance measurement, 

calculate 𝐷𝑖𝑘
2 . The weighted fuzzy component of the 

trade-off 𝑊𝑖𝑗. 

➢ Adjust the cluster prototypes and the partition matrix as 

necessary. 

 

If 𝑚𝑎𝑥|𝑉𝑛𝑒𝑤 − 𝑉𝑜𝑙𝑑| <∈ then stop, otherwise, set 𝑏 = 𝑏 +
1 and go to step 4. 𝑉 = 𝑉1, 𝑉2, . . . 𝑉𝑐 are vectors that represent 

the prototypes of the clusters. After the algorithm has reached 

a point of convergence, the defuzzification procedure is 

carried out to provide a segmented image that is clear and 

distinct. 

 

3.6 Membership function 

 

Fuzzy sets' Membership Function (MF) is a simplified 

version of classical sets' indicator function. As an expansion 

of value, the MF in fuzzy logic stands for the degree of truth. 

Although they are conceptually different, degrees of truth and 

probabilities are sometimes used interchangeably. Fuzzy truth, 

on the other hand, denotes membership in nebulously defined 

sets rather than the probability of a certain occurrence or 

situation. A membership function for a fuzzy set A on the 

universe of discourse X is denoted as: 𝑋 → [0,1], where each 

element of X is mapped to a value in between to 0 and 1. 

 

3.6.1 Cluster prototype 

Fuzzy modeling, data analysis, image processing, pattern 

recognition, and FCM algorithms are just a few of the 

applications that have made extensive use of fuzzy clustering 

approaches based on objective functions. Using fuzzy 

clustering techniques, it is feasible to ascertain an underlying 

structure that exists within the data. The data set is divided into 

groups that overlap with one another, which is one instance of 

these methodologies. To obtain better results, a technique that 

employs fuzzy clustering must consider a variety of distinct 

elements. The configuration of the clustering method, the 

number of clusters present in the data, the form and size of the 

clusters, and the distribution of the data pattern should all be 

taken into consideration. Computing the morphologies of the 

clusters is accomplished via the use of methods that combine 

point prototypes with the distance measure. Data points from 

linked clusters with membership 1.0 should be included in the 

cluster prototypes, which should also extend a certain distance 

from the cluster centers, according to this suggestion. This is 

not a characteristic of current clustering methods. The 

sensitivity of fuzzy clustering algorithms to initialization is 

well-known. It is common practice to randomly start the 

algorithms numerous times in the hope that one of them would 

yield a good clustering result. A very diverse distribution of 

data patterns makes the system more sensitive to startup. 

 

3.6.2 Trade-Off weighted fuzzy factor 

The noise resistance asset of the proposed KWFLICM 

mainly relies on the fuzzy factor 𝐻𝑚𝑛  as shown in below 

equation. 

 

1 1

(1 ) (1 ( , ))
N c N

m m

mn mn ab mn a m

i k i j

H u V V J Y U
= = 

= − −   (11) 

 

To what extent the adaptive trade-off WFF considers local 

intensity-level and geographical constraints are context 

dependent. The spatial constraint is defined as the amount to 

which neighboring pixels with respect to spatial distance from 

the center pixel (in terms of both 𝑝𝑖 and 𝑞𝑖) dampen the effect 

of pixel 𝑥𝑖. 
 

1

1
sc

ij

W
d

=
+

 (12) 

 

where, the 𝑖𝑡ℎ local window center is denoted by the pixel 𝑁𝑖 

and the 𝑗𝑡ℎ  pixel is a representation of the collection of 
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neighbors that have fallen into the window surrounding it the 

𝑖𝑡ℎ pixel, 𝑑𝑖𝑗 refers to the Euclidean distance between the two 

points in space 𝑗𝑡ℎ  the pixel at the center, as well as the 

neighboring particles. The impact of the pixels included inside 

the local window may change in a flexible way according to 

their distance from the center pixel because of the specification 

of the spatial component. This is because the local window is 

a locally contained area. Because of this, it is possible to make 

use of extra information that is in the immediate vicinity. Table 

1 shows a 3×3 layout that depicts the window with noise as 

well as the dampening extent of the neighbors. 

An instance of this may be seen in Table 1(a), which shows 

a 3×3 window taken from the noise image, and Table 1(c) 

shows how its neighbors' damping extent varies with spatial 

distance. By including the fuzzy factor, Table 2 illustrates the 

changes in membership values corresponding to Table 1(a). 

Table 2 shows that when the iteration counts get up, the 

membership values of noisy and no-noisy pixels converge on 

a common value, and the noisy pixels are ignored. The method 

converges after five rounds. In this scenario, the intensity level 

values of the noisy pixels are distinct from those of the other 

pixels included inside the window, while the fuzzy component 

contributes to the overall pattern (𝐺𝑘𝑖 ) balances their own 

membership values. Every single pixel that is included inside 

the window is a member of the same cluster. Accordingly, the 

factor incorporates both the intensity level and the spatial 

limitations, which together form the combination 𝐺𝑘𝑖 , the 

impact of the noisy pixels should be suppressed. 

The element 𝐺𝑘𝑖  is also decided automatically rather than 

being set synthetically. It does not know any information about 

the noise. Hence, the algorithm becomes more resistant to the 

outliers being used. Following that, the coefficient of variation 

at the local level 𝐶𝑗 for each pixel j as 𝐶𝑗 =
𝑣𝑎𝑟(𝑥)

𝑥2
 is obtained. 

𝐶𝑗  displays how consistent the intensityscale of the window 

that is around it is. Because of this, the values are low in 

regions, while the values are high at edges or in locations 

where there is noise corruption. According to the data point 

distance variance, the degree of aggregation that exists around 

the clusters may be determined. Although there is just a little 

amount of variance, the clusters are somewhat near to one 

another and are spread out around their cores. To restate, it is 

envisaged that membership will be shown separately if the 

dataset contains recognizable clusters. Members will be 

exhibited individually. 

 

Table 1. Noise and the amount to which neighbors dampen it are shown in a 3×3 window (a) No noise in the central pixel;  

(b) Noisy pixels have ruined the center pixel; (c) The surrounding area's level of moisture 

 

A90 22 13  87 99 116  0.414 0.5 0.414 

2 20 35  90 20 67  0.5  0.5 

28 B120 27  110 88 77  0.414 0.5 0.414 

(a)  (b)  (c) 

 

Table 2. Membership values (a) Initial membership values; (b) After a single phase; (c) Subsequent to two iterations;  

(d) three times through the process; (e) Subsequent to four iterations; (f) Similar membership values 

 
0.576 0.477 0.962  0.782 0.877 0.926  0.877 0.997 0.949 

0.626 0.242 0.736  0.923 0.842 0.963  0.969 0.981 0.984 

0.626 0.496 0.710  0.896 0.776 0.970  0.985 0.837 0.982 

V1=50, V2=100  V1=32, V2=128  V1=28, V2=126 

(a)  (b)  (c) 

 

0.881 0.994 0.972  0.882 0.992 0.981  0.882 0.992 0.982 

0.962 0.992 0.984  0.954 0.996 0.989  0.954 0.996 0.989 

0.979 0.852 0.996  0.973 0.865 0.998  0.972 0.865 0.998 

V1=26, V2=122  V1=21, V2=119  V1=19, V2=120 

(d)  (e)  (f) 

 

 

4. RESULTS AND DISCUSSION 

 

The ELCAP [23] and LIDC benchmark datasets [24, 25] 

are used to assess how well the suggested method performs 

in lung nodule identification. The DIOCOM format is used 

to store lung CT images, and each scan has 512 pixels in 

width and 512 pixels in height. Figure 5 displays the image 

of a human lung with a tumor that is used as the input image. 

The input image is clustered using the FCM technique and 

then the clustered output is segmented into the tumor region 

using the histogram approach. The FCM algorithm takes less 

time to execute than the FLICM and KWFLICM algorithms, 

but it is unable to cluster images with outliers or noise like 

salt and pepper. The FCM clustering and segmentation image 

is displayed in Figure 6. Given an input image, the FLICM 

algorithm is utilized to do the clustering. The tumor zone is 

divided from the FLICM algorithm's clustered output using 

the histogram approach. While the FLICM approach takes 

longer to execute than the other two, it produces better 

clustering results when compared to FCM in cases where the 

image contains outliers or salt and pepper noise. Figure 7 

shows the FLICM segmentation and clustering image. 
 

 
 

Figure 5. Input image 
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(a) 

 

 
(b) 

 

Figure 6. (a) FCM clustering image; (b) segmented image 
 

 
(a) 

 

 
(b) 

 

Figure 7. (a) FLICM output; (b) segmented image 

For clustering the input image, the KWFLICM algorithm 

is applied. After that, the tumor region is separated from the 

clustered output of the KWFLICM method using the 

histogram approach. When it comes to clustering results, the 

KWFLICM method performs faster than other FLICM 

algorithms and produces superior results when images 

contain outliers or salt and pepper noise. The KWFLICM 

segmentation and clustering image is displayed in Figure 8.  

The KWFLICM algorithm has shown promising results in 

lung cancer identification, particularly in segmenting and 

detecting cancerous nodules from CT images. The findings 

from studies applying KWFLICM to lung cancer detection 

reveal several advantages over traditional algorithms, 

especially in handling the challenges of lung image data, such 

as noise, irregular shapes, and low contrast. Here’s an 

overview of these key findings: 

(1) Improved Segmentation Accuracy 

Fine Boundary Detection: KWFLICM’s Kernelized 

approach enables it to better capture the fuzzy boundaries 

typical of lung cancer nodules. This allows it to differentiate 

between cancerous and non-cancerous tissues more 

accurately than traditional FCM and FLICM techniques. 

Enhanced Shape Sensitivity: Lung nodules can have 

irregular shapes and textures, especially in early-stage 

cancers. KWFLICM’s kernel transformation helps to detect 

these irregular shapes, leading to improved segmentation of 

nodules with complex, non-spherical boundaries. 

(2) Noise Robustness 

Weighted Local Information: The integration of spatial 

weights in KWFLICM enhances its resistance to noise, 

which is especially beneficial for low-dose CT images that 

can have low contrast and higher noise levels. This allows the 

algorithm to differentiate real nodule structures from image 

noise, crucial for accurate identification in low-quality scans. 

Smoothing of Image Artifacts: KWFLICM’s weighted 

approach also reduces the impact of artifacts often found in 

CT images, minimizing false positives from these artifacts 

and resulting in a cleaner segmentation output. 

(3) Enhanced Detection of Small and Subtle Nodules 

Sensitivity to Small Nodules: The kernel function in 

KWFLICM allows for mapping pixel intensity into a higher-

dimensional space, which makes the detection of small, low-

intensity nodules more effective. This is important for early 

lung cancer detection, where nodules may be tiny and less 

distinct. 

Identification of Ground-Glass Opacities: Lung cancer is 

often presented as part-solid or ground-glass nodules, which 

can be challenging to detect with conventional methods. 

KWFLICM’s ability to capture subtle pixel variations makes 

it better at identifying these less opaque nodules, a key 

feature for early diagnosis.  
 

  
(a) (b) 

 

Figure 8. (a) KWFLICM clustered image; (b) segmented image 
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Table 3. Results comparison of FCM, FLICM and KWFLICM 

 
Parameters FCM FLICM KWFLICM 

Input 

   

Function 

Euclidean distance between 

pixels is used to perform 

clustering 

The local spatial information is 

used 

The local spatial information and 

kernel metric is used 

Clustering Output 

   

Noise Tolerance 
Could not segment image with 

salt and pepper noise or outlier 

Provide better results compared 

with FCM 

Provide complete tolerance 

towards salt and pepper noise as 

well as outliers 

Segmentation Result 

   

SD 18.7697 19.6324 20.9823 

Elapsed Time 4.2576 28.7979 19.4958 

Accuracy 87.24 88.12 90.76 

 

A comparison of the suggested system with the FCM and 

FLICM techniques is presented in Table 3. 

(4) Reduced false positives 

Improved Specificity: Due to noise and ambiguity in CT 

images, traditional FCM and even FLICM often have a higher 

false positive rate. KWFLICM reduces false positives by using 

kernelized fuzzy clustering, which can better distinguish 

between lung nodules and other lung structures (like blood 

vessels or non-cancerous nodules). 

Efficient Noise Discrimination: By accounting for local 

spatial information and applying kernel functions, KWFLICM 

improves its ability to distinguish noise and artifacts from 

actual lung structures, further minimizing false detections. 

(5) Scalability and Computational Efficiency 

Fast Convergence: KWFLICM’s implementation has been 

observed to converge faster than standard FCM and FLICM, 

particularly due to the influence of kernel functions that 

streamline the clustering process. This makes it feasible for 

real-time diagnostic applications. 

Adaptive Parameter Tuning: The kernel parameters in 

KWFLICM can be fine-tuned to different datasets, enabling 

the algorithm to adapt to varying image quality or resolution, 

which is often encountered across different CT scanners or 

patient profiles. 

(6) Comparison to Other Methods 

Superior to FCM and FLICM: Studies comparing 

KWFLICM to FCM and FLICM show that KWFLICM 

achieves higher accuracy and sensitivity in detecting 

cancerous nodules, especially in cases with low contrast or 

noisy backgrounds. It is particularly effective in identifying 

challenging different nodule types in the LIDC and ELCAP 

databases. 

Comparable with Advanced Machine Learning Models: In 

some cases, KWFLICM’s performance is competitive with 

machine learning approaches, especially in terms of nodule 

segmentation accuracy. While it may not match DL methods 

in complex classification tasks, KWFLICM offers a simpler, 

interpretable approach with strong performance in 

segmentation. 

KWFLICM demonstrates several critical advantages in lung 

cancer identification: 

➢ Higher accuracy in detecting and segmenting irregularly 

shaped cancerous nodules. 

➢ Reduced false positives through enhanced noise 

discrimination. 

➢ Sensitivity to small, subtle nodules, which are essential 

for early detection. 

➢ Adaptability to different lung cancer imaging conditions 

and efficient performance. 

These findings highlight KWFLICM as a robust option for 

early-stage lung cancer identification and segmentation, 

particularly in cases where image quality and noise pose 

significant challenges. 

 

 

5. CONCLUSIONS 

 

The kernel approach has been used to address the problem 

of unsupervised clustering. Through the development of an 

unsupervised FCM technique that is based on a kernel metric, 

which is intended to segment images contaminated by noise 

and intensity in homogeneities. It has been proved that the 

combination of KDM and WFF is an efficient approach for 

constructing a trustworthy image clustering method. A trade-

off between the amount of noise and the amount of image 

information can be established by the KWFLICM algorithm 

as it included a reformulated spatial constraint, and a trade-off 

WFF as a local similarity metric. Furthermore, the unique 

trade-off weight is mostly determined by the spatial limitations 

in the local area and the distribution of local information. This, 

in turn, influences the damping extent of pixels next to one 

another. 
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It is possible that it now includes local facts or information 

with more precision than it did in its previous iterations. In 

addition, the KDM and the trade-off WFF are fully 

independent of the computation of the parameters that have 

been altered via experimentation, enabling automated 

applications. The suggested algorithm's experimental result on 

an experimental image demonstrates how much it enhances 

image segmentation performance and robustness against 

various types of noise. The tumor region is then divided into 

discrete sections using the histogram approach. In comparison 

to previous segmentation techniques like FCM and FLICM, 

the KWFLICM method yields more reliable results for the 

identification of lung cancer. If some extra features are 

included, it can identify lung tumors more quickly and 

accurately and the kernel metric algorithm is modified. 

Simultaneously, techniques must be examined to illustrate the 

long-term consequences of the specific defects associated with 

the disease. The future work for KWFLICM in lung cancer 

identification encompasses a multifaceted approach that 

includes: 

➢ Integrating with advanced machine learning models. 

➢ Enhancing parameter optimization and adapting to real-

time clinical conditions. 

➢ Expanding into 3D volumetric analysis and multi-modal 

imaging. 

➢ Focusing on the detection of subtle nodules and 

incorporating texture analysis. 

➢ Conducting clinical trials to validate its effectiveness 

and integrating it into existing CAD systems. 

➢ Developing intuitive user interfaces and engaging in 

interdisciplinary collaborations to enhance clinical 

relevance. 

These strategies aim to enhance KWFLICM’s capabilities, 

making it a powerful tool for improving lung cancer detection 

and enhancing patient care. 
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