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This work focuses on using level set curves for medical image segmentation through the 
DRLSE (Distance Regularization Level Set Evolution) algorithm, recognized for its 
effectiveness and adaptability. Traditional systems face limitations in computation time and 
efficiency when implementing this algorithm. To overcome these challenges, FPGA (Field-
Programmable Gate Arrays) are used for their parallelism and low resource consumption. 
The objective is to optimize medical image segmentation by implementing the DRLSE 
algorithm on FPGA while ensuring efficient resource and computation time management. 
The Algorithm was first simulated in MATLAB and tested on a database of brain, breast, 
and other medical images, demonstrating its robustness and flexibility. The results validate 
the effectiveness of the DRLSE algorithm and highlight the advantages of the FPGA in 
terms of speed and precision. Despite the limited documentation on implementing DRLSE 
on FPGA Our approach is distinguished by the use of DDR memory, which provides 
increased capacity to overcome the limitations of BRAM memory. Parameter optimization 
ensures better performance and efficient management of hardware resources. This work 
underscores the potential of FPGA-based implementations for accelerating computationally 
intensive tasks like medical image segmentation while maintaining high accuracy and 
efficiency. 
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1. INTRODUCTION

The level set method is an advanced numerical technique
developed by Osher and Sethian in 1988 [1], based on the 
evolution of a curve by solving partial differential equations 
and using the concept of implicit functions, allowing it to 
efficiently handle topological changes. The level set method 
has applications in various fields, including computer vision, 
medical image segmentation, and many others. 

The evolution of the function ϕ(x,y) follows Eq. (1) of the 
level set curves [2]: 

𝜕𝜕∅(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

+ 𝐹𝐹. |∇∅| = 0 (1) 

where, F is a scalar function representing the speed of the 
curve’s motion, and ∣∇ϕ∣ is the magnitude of the gradient of ϕ 
ensuring evolution occurs normal to the level set.  

This formulation (2) allows the function ϕ to propagate 
along the level curve by adjusting its signed distance while 
maintaining the regularity of the curve.  

The scalar speed function F depends on the local properties 
of the curve Fprop, external parameters related to the image 
gradient Fcurv, as well as additional terms for curve 
propagation Fadv. 

𝐹𝐹 =  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 (2) 

The propagation term 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: This term controls the global 
movement of the curve. For example, in the context of image 
processing, 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 can be related to the image intensity gradient, 
causing the curve to move towards regions of high contrast. 

The curvature term 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 : This component acts as a 
regularization force, encouraging the smoothness of the curve. 
It depends on the curvature κ, which is defined as Eq. (3): 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  −𝜀𝜀 𝑘𝑘 (3) 

with: 𝑘𝑘 =  ∇. � ∇∅
|∇∅|

� 
where, ∇ denotes the divergence operator. The inclusion of this 
term helps reduce irregularities in the shape of the curve. 

The advection term 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎   in Eq. (4): Advection can also 
help the curve move more efficiently by guiding its 
propagation towards regions of interest while avoiding 
unwanted areas. This improves the convergence of the 
segmentation model. 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑈𝑈��⃗  (x, y, t). 𝑛𝑛�⃗  (4) 

The level set associated with the segmentation process can 
then be written as Eq. (5):  

𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 𝐹𝐹0|∇∅| +  𝑈𝑈��⃗  (𝑥𝑥, 𝑦𝑦, 𝑡𝑡). ∇∅ =  𝜀𝜀. 𝑘𝑘. |∇∅| (5) 
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The term 𝐹𝐹0|∇∅| is influenced by the term g∣∇I∣ [3], which 
represents a decreasing function of the image gradient 
amplitude I. The most commonly used function g∣∇I∣ is given 
by Eq. (6): 
 

g(|∇I|) =  1
1+|∇Gσ∗I|P  (6) 

 
where, p can be 1 or 2, and Gσ is a Gaussian kernel with 
standard deviation σ convolved with the image intensity I. 
This function (6) aims to stop the evolution of the active 
contour when it reaches the boundaries of the target object 
corresponding to strong image gradients. The construction of 
the distance function ϕ is crucial in the level set method; it 
must satisfy the condition ∣∇ϕ∣=1 while preserving its 
configuration as a signed distance function from the front C(t) 
throughout its evolution [4]. 

To maintain the stability of the curve while preserving 
equidistance between its levels (∇ϕ=1), a reinitialization of the 
distance function is performed every n iterations [5]. This is 
done by solving the specific Eq. (7): 
 

𝜕𝜕∅
𝜕𝜕𝜕𝜕

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∅0)(1 − |∇∅|)  (7) 
 

 
2. DRLSE APPROACH 
 

Medical image processing and segmentation are essential 
for diagnosis and therapeutic planning. Traditional algorithms 
can be limited by their computational demands and real-time 
performance. Level sets can develop irregularities during their 
evolution, losing their form as a signed distance function, 
which can lead to numerical errors and compromise stability. 
In this context, some studies [6-8] proposed a new formulation 
of level sets, with the DRLSE algorithm introducing a distance 
regularization term that stabilizes contour evolution and 
accelerates segmentation, while inherently maintaining 
regularity and eliminating the need for reinitialization. It is 
widely used for image segmentation and contour detection in 
complex images, producing faster and more accurate results. 
Optimizations, such as the use of adaptive coefficients and 
dynamic adjustments of terms, further enhance the accuracy 
and speed of the results [9]. This new approach uses an energy 
function composed of three terms [7], as shown in Eq. (8): 
 

𝐸𝐸(∅) =  𝜇𝜇 𝑃𝑃(∅) + λ 𝐿𝐿𝑔𝑔(∅) +  𝛼𝛼 𝐴𝐴𝑔𝑔(∅)  (8) 
 

With: 
µ: Distance regularization parameter. 
λ: Contour length regularization parameter. 
α: Surface repulsion parameter. 
The Regularization Term in Eq. (9) ensures that the function 

retains its distance function form throughout the evolution [6]. 
 

𝑃𝑃(∅) =  ∫ 1
2

(|∇∅| − 1)2 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑   (9) 
 

The Length Term in Eq. (10) helps position the active 
contour close to the object boundary of interest [8]. 
 

𝐿𝐿𝑔𝑔(∅) = ∫ 𝑔𝑔(𝑥𝑥, 𝑦𝑦)𝛿𝛿𝜀𝜀|∇∅|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (10) 
 
where, δϵ is the Dirac function, defined as Eq. (11): 
 

𝛿𝛿𝜖𝜖(𝑥𝑥) =  �
0                                |𝑥𝑥| > 𝜖𝜖
1

2𝜖𝜖
�1 + cos (𝜋𝜋𝜋𝜋

𝜖𝜖
 )�  |𝑥𝑥| ≤ 𝜖𝜖   (11) 

with ϵ as the regularization parameter, and g is a weight 
function that adjusts the impact of the length term based on the 
specific application or the region of interest, guiding the curve 
evolution effectively. 

The Area Term in Eq. (12) accelerates the evolution speed 
of the active contour when it is far from the object of interest, 
facilitating faster convergence. 
 

𝐴𝐴𝑔𝑔 (∅) =  − ∫ 𝑔𝑔(𝑥𝑥, 𝑦𝑦) 𝐻𝐻(−∅)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  (12) 
 

The Heaviside function H(−ϕ(x,y)) selects the region 
outside the contour. 

The DRLSE model [10] incorporates a distance 
regularization term to stabilize the contour evolution function, 
thus improving segmentation speed and eliminating the need 
to reinitialize the function. The evolution becomes as Eq. (13): 
 

∂ϕ
∂t

=  μdiv�dp(|∇∅|)∇∅� + λδϵ (∅)div �g ∇∅
|∇∅|

� +
 αgδϵ(∅)  

(13) 

 
μ, λ, and α are constants that control the influence of each 

term. 
dp is a function given by the formula (14): 

 
dp (s) ≅ p′(s)

s
  (14) 

 
where, p is a potential function used for distance regularization 
[8].  

For better distance regularization, the double-well potential 
function p2 is used, expressed as Eq. (15). 
 

𝑃𝑃2 =  �
   ( 1

2𝜋𝜋
)2(1 − cos(2𝜋𝜋𝜋𝜋)), si  𝑠𝑠 ≤ 1

1
2

  (𝑠𝑠 − 1)2 ,          si               𝑠𝑠 ≥ 1
  (15) 

 
 

3. DRLSE ALGORITHM 
 

We present the DRLSE flowchart describing its operation 
in Figure 1. 

Our DRLSE algorithm starts with an image preparation step 
to make it suitable for segmentation processing, including pre-
processing and user-selected parameters. This is followed by 
an initialization step of the level set function (LSF) as a binary 
function, where a rectangular region represents the initial 
contour to evolve. It is also possible to initialize multiple 
contours simultaneously by defining several initial regions. A 
main loop is used to evolve the level set curve over a 
predefined number of outer iterations. At each iteration of the 
outer loop, the function drlse_edge updates the LSF using the 
equations of the Distance Regularized Level-Set Evolution 
model. These equations incorporate several energy terms: 
• Weighted Length Term: Favors smooth contours by 
minimizing the curve length. 
•  Distance Regularization Term: Maintains the regularity 
of the LSF based on the Euclidean distance. 
• Weighted Area Term: Helps segment objects by favoring 
interior regions over edges. 

A well-chosen potential function plays a crucial role in 
Level-Set segmentation. For example, a single-well potential 
is effective for modeling homogeneous regions, where 
contours are less complex and a clear separation between 
regions is desired. In contrast, a double-well potential is suited 
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for models that need to distinguish both edges and more 
uniform interior regions. It helps stabilize the level set curve 
around complex contours by offering a more diverse energy 
landscape that can capture both abrupt transitions and 
smoother regions. 

Calculation of the Distance Regularization Term with a 
Double-Well Potential: 

The MATLAB function distReg_p2(phi) demonstrates how 
the distance regularization term is calculated using a double-
well potential. This calculation uses gradients of the level set 
function (phi) to estimate local distance and applies a suitable 
regularization function dp(s) that promotes stability in the 
segmentation process. 

Figure 1. Flowchart of the DRLSE method 

The Dirac function is used in the length term (Lg) to 
quantify the proximity of pixels to the contour. It is often based 
on the Heaviside function, which determines the boundaries of 
regions in the image by distinguishing pixels inside from those 
outside the segmented region. 

The MATLAB function NeumannBoundCond(f) applies 
Neumann boundary conditions to the function f, meaning that 

the normal derivative of f is kept zero along the boundaries. 
This ensures that the values of f remain constant at the 
boundaries, stabilizing calculations and improving result 
accuracy in image processing and numerical simulation 
applications. 

In summary, these concepts and functions are fundamental 
for the effective implementation of image segmentation 
methods based on Level-Sets [11], in particular to master 
regularization via DRLSE, boundary conditions, and contour 
precision in complex images [12]. 

4. FPGA IMPLEMENTATION

Our implementation is based on the PYNQ-Z2 FPGA board,
a development platform using the Xilinx Zynq-7000 SoC. This 
board integrates both a Processing System (PS) and 
Programmable Logic (PL), providing a comprehensive 
solution for embedded hardware and software development 
[13, 14]. The model of the PC processor is Intel Core i7-
3317U.1.70GHz. MATLAB runs on Windows10. 

4.1 Implementation step 

We present in Figure 2 the block diagram of the steps we 
followed during the implementation. 

Figure 2. Simplified block diagram of the HLS approach 

In the development process, we first write our program in C 
using Visual Studio Code (VS Code). We then run a 
simulation to verify its functionality. We compared the results 
with those obtained from MATLAB. Before generating 
VHDL code, we perform extensive testing and simulation of 
our C code in Vitis HLS, which allows us to identify and fix 
potential errors early in the development cycle [15]. Once the 
code is validated, we configure the necessary interfaces for the 
ports (e.g., AXI, BRAM, etc.). We then proceed to synthesize 
the code into a register transfer level (RTL) and ensure its 
accuracy by reviewing the generated reports. HLS directives 
(Pragma HLS) are used to optimize performance, resource 
utilization and latency. 

The exported RTL file is used to generate IP blocks, which 
are then integrated into Vivado. This process is repeated for 
each IP block, ensuring continuous optimization of the system. 

Using Vivado, we create a block design for the main system 
to be deployed on the FPGA, which includes the previously 
generated IPs [16]. Once the block design is validated, we 
create an HDL wrapper that converts the architecture diagram 
into an HDL program.  

721



Once the block design is validated, it is converted to an 
HDL wrapper for synthesis and implementation. Vivado then 
optimizes the logic and resource utilization and generates 
detailed reports to ensure the quality of the design. Finally, a 
bitstream file is generated that configures the FPGA to execute 
the specified functions. 

The block design is also exported as a TCL script and HWH 
file to allow the processor (CPU) to recognize the FPGA 
architecture and its various operations [17]. 

The final phase of the implementation takes place in Jupyter 
Notebook using Python. We prepare an SD card with the 
PYNQ image, then connect the FPGA board to the PC via 
Ethernet and USB to establish communication with the 
processor using the notebook's IP address [18]. 

The necessary files (bitstream, TCL, HWH and input data 
in .CSV format) are imported. An overlay is then created using 
the PYNQ. Overlay module, which allows control of the 
programmable logic (PL). The IP blocks are mapped to 
memory addresses using the MMIO class. Memory is 
allocated for each block, and input data is written to the 
appropriate buffer. A flush function is used to ensure the 
accessibility of the data, ensuring reliable and efficient transfer. 

This process completes the implementation and ensures that 
the system operates correctly on the deployed FPGA.  
 
4.2 Implementation of the DRLSE algorithm on FPGA  
 

The first part of the implementation is subdivided into three 
distinct blocks, as shown in Figure 3: convolution, g 
computation, and gradient (g) computation. This subdivision 
allows for more efficient management of hardware resources 
by storing the outputs of each block in DDR memory and then 
duplicating them for use by subsequent blocks. Using DDR 
memory in an FPGA environment improves system 
performance by efficiently storing intermediate results, 
minimizing redundant computation, and optimizing parallel 
processing with seamless data flow. It also overcomes the 
limitations of internal memory, such as BRAM, which is often 
insufficient for complex tasks. In addition, DDR memory 
provides fast access to large data sets, enabling effective 
workload management and improved system adaptability. 

 

 
 

Figure 3. Diagram of the DRLSE algorithm 
 
Each block corresponds to a top function, which we develop 

in the C language and simulate in VS Code, and to an IP block, 
which we create in Vitis HLS.  

The "LSF Evolution" function takes the initial distance 
function 𝜙𝜙𝑖𝑖, g, gx, and gy and produces 𝜙𝜙f as an output. During 
each iteration, 𝜙𝜙𝑓𝑓  is computed using an evolution equation 
that combines these data. The image contours (g) act as an 
external force that attracts the boundary of ϕ  towards the 
detected contours in the image, allowing the LSF to follow the 
contours precisely. The gradients (gx) and (gy) are used to 
adjust the boundary to follow the intensity and texture changes 

in the image, ensuring accurate and detailed segmentation.  
The block design provides a modular structure for the 

efficient implementation of the DRLSE algorithm on FPGA. 
Each block is designed to execute a specific function optimally, 
allowing for a robust and high-performance implementation of 
the algorithm in an FPGA environment. We rigorously test 
each step and verify the overall system's functionality to 
achieve performance and accuracy goals.  
 
 
5. RESULTS AND DISCUSSION 
 

We will present the results of the DRLSE model 
segmentation simulated on MATLAB for synthetic and 
medical images. We also discuss the implementation of the 
DRLSE algorithm on FPGA. The effectiveness of this method 
in segmentation of these images is evaluated by adjusting the 
parameters to observe their impacts on the segmentation 
results. 
 
5.1 Results of the DRLSE model simulated on MATLAB 
for synthetic images 
 

The DRLSE algorithm demonstrates successful 
segmentation of an image (Figure 4(b)) of a puzzle using two 
initial rectangular contours (Figure 4(a)) representing adjacent 
pieces of the puzzle. 

We also tested the segmentation method on a synthetic 
image with several distinct geometric shapes. For initialization, 
we used a large outer contour that included all shapes (Figure 
5(a)). 

 

            
(a) Initial contours       (b) Segmented image 

 
Figure 4. Segmentation result with the DRLSE algorithm on 

a puzzle image 
 

             
(a) Initial contour             (b) Segmented image 

 
Figure 5. DRLSE algorithm result on a synthetic image with 

multiple geometric shapes 
 

Although the DRLSE algorithm is effective for segmenting 
concave and multiple objects, it may round off sharp corners, 
reducing precision for sharp anatomical structures (Figure 
5(b)). Nevertheless, it remains promising and adaptable, 
particularly for medical segmentation needs. 
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5.2 Results of the DRLSE model simulated on MATLAB 
for medical images 
 

Medical images present unique challenges due to their 
contrast variations, noise and complex anatomical structures. 
We illustrate the segmentation results of these images with the 
DRLSE algorithm, adjusting the weighting parameters (α, λ, 
and μ) seen in Eq. (6), to evaluate their impact on segmentation 
efficiency. 
 
5.2.1 Adjustment of Parameters α, λ, and μ  

Adjustment of Parameter α Figure 6 shows the results of the 
DRLSE algorithm on the image from the "Brain Tumor Data" 
database with different values of α, with 100 iterations. 

For low values of α such as α=0.5, the contour evolves 
slowly, creating a conservative segmentation that closely 
follows the initial contours, ideal for capturing fine details. For 
medium values of α, such as α=1.5, these values accelerate 
contour evolution, allowing for fast segmentation suitable for 
medium-sized objects. A high value for α (α=2.5) intensifies 
contour evolution, allowing expansive or contractive 
segmentation suitable for very large objects.  

The α parameter should be positive for outer contours and 
negative for inner contours to ensure accurate segmentation. 

 

       
(a) α = 0.5                (b) α = 1.5            (c) α = 2.5 

 
Figure 6. Results of the DRLSE algorithm on a medical 

image 
 

Adjustment of λ Parameter Figure 7 shows the results of the 
DRLSE algorithm on a medical image with various values of 
λ with 100 Iterations. For low values of λ (λ=1), the contour 
follows the fine details and noise of the image, resulting in 
more irregular contours suitable for objects with complex 
edges. A moderate value such as λ=5 promotes smoother and 
more regular contours, suitable for objects with clear and well-
defined edges. A high λ value (λ=8) produces very smooth and 
refined contours, particularly suited for segments that require 
maximum edge precision and significant noise reduction. 

μ Parameter Adjustment Figure 8 shows the results of 
segmentation on a medical image by varying the values of μ 
and 100 Iterations. 

For low values of μ, e.g. μ=0.02 distance regularization is 
minimized, allowing abrupt variations in the level set function. 
This can accelerate adaptation to local variations but risks 
introducing instability and artifacts. 

For medium values of μ (μ=0.04), we offer a balanced 
compromise between stability and adaptability, ensuring a 
smooth level set function while allowing some flexibility to 
follow local variations.  

A high μ value (μ=0.5) implies strong distance 
regularization, maintaining a very regular level set function 
and avoiding abrupt changes. This ensures robust convergence 
but limits the local adaptability of the algorithm.  

The specific parameters and equations influence how the 
level set curve evolves, optimizing segmentation for more 
precise and detailed results. 

      
λ=1                                 λ=5 

 
λ=8 

 
Figure 7. Segmentation results on a medical image 

 

      
m μ = 0.02                             m μ = 0.04 

 
m μ = 0.5 

 
Figure 8. Results of the DRLSE algorithm on a medical 

image with different values of μ 
 
5.3 Results on breast MRI images 
 

    
a-Initial contour                     b-Segmented image 

 
Figure 9. Segmentation result with the DRLSE algorithm 

 
After several parameter adjustments, applying the DRLSE 

algorithm to this new medical image produced a less precise 
results in terms of segmenting the structures of interest. This 
observation prompted us to consider other approaches to 
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improve segmentation quality. Figure 9 shows the 
segmentation result on breast MRI with α=1.5, λ=5, and 
μ=0.02. 

5.4 Results on brain MRI images 

To achieve accurate segmentation of medical images, we 
have carefully tuned the parameters α, λ, and μ, which play a 
critical role in the performance of the DRLSE algorithm. 
These parameters control key aspects of the level set evolution, 
such as the smoothness of the contour (α), the fitting to the 
object boundaries (λ), and the regularization of the level set 
function (μ). 

Using an empirical approach, we iteratively adjusted these 
values to obtain the best segmentation results for the images 
shown in Figure 10. Specifically, for brain MRIs, we found 
that setting α=0.5, λ=6, and μ=0.02 provided optimal 
segmentation results. These values effectively balance the 
trade-off between contour smoothness and accuracy in 
detecting object boundaries. 

The segmentation process required several iterations to 
refine these parameters, highlighting the importance of 
adapting them to the specific characteristics of the images 
being analyzed. The results confirm the robustness of the 
DRLSE algorithm in delimiting structures in medical images. 

Figure 10. Segmentation result. with the DRLSE algorithm 

5.5 Results of MRI and echographic images 

The algorithm's effectiveness depends on the initial position 
of the level set curve and the defined parameters, with bad 
choices potentially leading to inaccurate segmentations. In 
cardiac MRIs, low contrast transitions complicate contour 
evolution, especially in poorly defined anatomical areas.  

After several attempts, we successfully segmented some 
cardiac MRI and echographic images.  

In Figure 11, we present the segmentation results applied to 
both MRI and ultrasound images, obtained using the DRLS 
(Distance Regularized Level Set) algorithm. The parameters 
used to segment MRI and ultrasound images were selected 
after several tests to achieve precise and rigorous segmentation 
that accurately defines the target contour.  

Using the parameters μ=0.04, λ=5, α=-1, σ=5 and 200 
iterations, the segmentation of the cardiac ultrasound image 
demonstrates the effectiveness of the DRLSE algorithm in 
accurately detecting the edges of the cardiac wall, even in the 
presence of noise (Figure 11(a)). The moderate regularization 
ensured by μ=0.04 preserves the details of the contours, while 
λ=5 strikes a balance between contour attraction and stability. 
The parameter α=−1 enhances the algorithm’s ability to handle 
noisy regions, and σ=5 reduces noise while maintaining 
critical transitions in the image. 

The set of parameters μ, λ, α, and σ allows for accurate and 
robust segmentation, proving the adaptability of the algorithm 
to the challenges posed by ultrasound images. 

For the MRI heart image, the segmentation with the 
parameters μ=0.2, λ=1, α=1, σ=6, and 200 iterations 
demonstrates the DRLSE algorithm's ability to effectively 
highlight contrasts between different tissues, allowing for 
precise localization of the targeted contour (Figure 11(b)). 

(a) The cardiac ultrasound image

(b) The cardiac MRI image

(c) The ultrasound image

Figure 11. Segmentation results of MRI and echographic 
images 

For the image shown in Figure 11(c), segmentation with the 
parameters μ =0.2, λ =5, α =-1, σ =6, and 200 iterations 
produces a satisfactory result. The segmented contours are 
both sufficiently sharp and well defined, while maintaining a 
certain smoothness that prevents the influence of noise. These 
parameter values provide an optimal compromise between 
fidelity to the image intensity data and contour smoothness, 
resulting in accurate segmentation while minimizing 
imperfections due to artifacts or noise. 

However, the approach based on local information 
(gradients) has limitations when dealing with complex 
structures or artifacts, highlighting the need for global 
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information integration to achieve accurate segmentation.  
 
5.6 Results of the DRLSE model implementation on FPGA 
 

In FPGA design, a block-based design uses predefined 
modules. Each block represents a specific functionality, such 
as processors or memory controllers, and the blocks are 

interconnected via standardized interfaces to enable 
communication between them. This modular approach 
facilitates the efficient use of FPGA resources, simplifying the 
overall FPGA design process [19].  

Figure 12 represents the final block design of our 
architecture for the implementation of the DRLSE algorithm. 
 

 

 
 

Figure 12. Block design for FPGA implementation of the DRLSE segmentation algorithm 
 

By using the same parameter configuration and initial 
contour as in the MATLAB simulation, we implemented the 
DRLSE method on the FPGA. The visual results, shown in 
Figure 13, demonstrate the algorithm’s effectiveness in 
segmenting medical images. 

 

          
 Initial contour           Segmented image 

 
Figure 13. Result of implementing the DRLSE method 

 
The implementation of the DRLSE algorithm on FPGA 

demonstrated satisfactory segmentation accuracy, with a 
rigorous visual comparison to the results obtained through 
MATLAB simulation [20]. No significant differences or errors 
were observed in the contours generated from the ϕ function. 

We present the utilization and power reports for the DRLSE 
(Distance Regularized Level Set Evolution) algorithm 
implementation on FPGA. This implementation involves 
examining several crucial factors to assess the performance 
and efficiency of the algorithm in hardware. Specifically, the 
hardware resource usage is analyzed, including the 
consumption of Look-Up Tables (LUTs), Block RAMs 
(BRAMs), and Digital Signal Processing (DSP) slices, which 
are summarized in Table 1 these metrics offer insight into how 
effectively the FPGA's resources are utilized for the 
algorithm’s operations. Additionally, an estimation of the 
power consumption associated with the DRLSE algorithm's 
FPGA implementation is provided in Table 2 This power 
report highlights the energy efficiency of the design and can 

serve as an essential guideline for optimizing power 
consumption in hardware accelerators. 
 

Table 1. Utilization report summary 
 

Consumption Utilization Report (%) 
LUT 59 

LUTRAM 6 
FF 37 

BRAM 95 
DSP 74 

 
Table 2. On-chip power distribution 

 
Component Power (W) Percentage 

Dynamic 1.940 92% 
Clocks 0.057 3% 
 Signals 0.159 8% 
 Logic 0.107 5% 
BRAM 0.042 2% 

DSP 0.047 2% 
 PS7 1.527 79% 

Device Static 0.163 8% 
 

To achieve these results, we optimized our computations by 
consolidating them into a single execution phase. This 
approach required the use of buffers for matrix updates, which 
significantly impacted the utilization of computational 
resources. Specifically, the need for these buffers increased the 
consumption of both memory and processing units within the 
FPGA, leading to a rise in resource usage. As a result, the 
overall execution time of the algorithm was extended, with a 
total processing time of 105.8523 seconds. 

A distinctive feature of our approach was the frequent 
subdivision of computational blocks into smaller sub-blocks. 
This strategy was particularly aimed at optimizing memory 
usage by favoring DDR (Double Data Rate) memory over the 
FPGA’s Block Ram (Bram). While DDR memory provides a 

725



larger available space for storing data, it generally offers 
slower access speeds compared to BRAM, which is situated 
closer to the FPGA’s logic and thus facilitates faster data 
retrieval. Despite this inherent drawback, our decision to rely 
on DDR memory was driven by the goal of maximizing the 
overall memory efficiency, particularly when handling large 
datasets that would exceed the capacity of BRAM alone. This 
trade-off between memory efficiency and data access speed 
was a key consideration in balancing resource utilization and 
performance. 
 
 
6. CONCLUSION 
 

Our project has successfully addressed several key technical 
challenges, marking a significant advancement in the field of 
medical image segmentation. The DRLSE algorithm, based on 
distance regularization, has demonstrated its ability to deliver 
stable and precise segmentation. However, the DRLSE 
algorithm faces limitations in accurately segmenting sharp 
anatomical structures. Additionally, it utilizes DDR memory 
on the FPGA, which has lower performance compared to 
BRAM, potentially leading to slower data access and 
processing. 

To overcome these limitations, several solutions are 
proposed. First, the integration of more robust neural networks, 
coupled with data augmentation techniques, could enhance the 
algorithm's ability to process complex structures more 
effectively. Second, a hybrid memory architecture combining 
DDR and BRAM is suggested to optimize data throughput, by 
storing critical data in BRAM for faster access, while utilizing 
DDR for less time-sensitive data. Finally, incorporating 
traditional segmentation methods, such as active contours, 
could complement the DRLSE algorithm to improve its 
handling of fine anatomical structures. 

These proposed improvements would enhance the 
algorithm’s efficiency, making it better suited for real-world 
applications. We have successfully implemented the algorithm 
on an FPGA platform after conducting a comprehensive 
analysis of resource utilization, execution time, and 
segmentation accuracy, comparing the results to those 
obtained using MATLAB. This FPGA implementation 
represents a crucial step toward achieving our goal of 
providing highly efficient image segmentation solutions 
tailored for embedded environments. Furthermore, it lays the 
groundwork for potential precision improvements through 
optimized use of advanced hardware resources, highlighting 
the strategic importance of our approach in meeting the 
stringent requirements of real-time, embedded applications, 
and reinforcing our commitment to innovation in the medical 
field. 
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