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ABSTRACT

The dynamics exhibited by two-phase flows, which manifest themselves in a great variety of different flow
patterns, are intrinsically complex due to the relevant number of degree of freedom, the nonlinear interaction
of several phenomena and the uncertainty on the physical parameters. Therefore, an exhaustive mathematical
modelling of two-phase flow dynamics is very difficult not only to assess and validate but also to extend and
generalize to other applications. Nonetheless, a reliable model specifically oriented to the prediction of such
dynamics, would represent an interesting step ahead towards the possibility of developing diagnostic or
control tools for a variety of two-phase flow applications.
The present study proposes the assessment of a short term prediction model derived from the experimental
time series of the void fraction detected during an extensive experimental campaign for the characterization of
vertical upward air-water two-phase flows under variable water and air superficial velocities, wsl and wsg. The
identification strategy relies on the assessment of a NARMAX model (Nonlinear AutoRegressive Moving
Average with eXogenous inputs) implemented in an approximated and generalized form by means of an
optimized Multilayer Perceptron artificial neural network.
Reported results show that a satisfactory agreement is reached between simulated and experimental data,
showing that the model successfully predicts the time evolution of the void fraction dynamics. The
application of a recursive feedback scheme to the model outputs allows to observe that satisfactory
predictions can be obtained also for multiple steps ahead, though in the limits of a short-term predictability.
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1. INTRODUCTION

The occurrence of two-phase flows in pipes, is a
characterizing feature of a variety of physical phenomena as
well as of several fundamental components of industrial
plants with applications in power generation, oil, chemical
and process plants, food industry and many others. Even
restricting to the case of non-reacting phases and in the
absence of phase changes, the nature of this kind of flows is
extremely complex. This is due, in fact, to the coexistence
and the nonlinear interaction of several physical effects, such
as buoyancy, turbulence, inertia, surface-tension forces,
which, in turn, affect the mechanisms of pattern formation as
well as those governing instability generation and
propagation.
As a consequence, it is very difficult to describe with great

accuracy two-phase flows in specific systems. Moreover,
even when such descriptions are obtained, it is not easy to
generalize their validity to account for other systems, due to
the fundamental role played by the thermo-physical
properties of the two phases, by geometrical parameters, such
as the pipe inclination, the cross-section and the hydraulic
diameter, but also by the nature of the observed variables and
of the measurement technique correspondingly adopted.

This justifies the great effort towards the possibility of
realizing “black box” identification tools, often based on a
variety of strategies assessed within the field of artificial
intelligence, as summarized in [1]. In fact, on the basis of
limited information on the regime of a given system, the
identification approach is often able to accurately predict
some fundamental characteristics of the two-phase process,
such as the holdup, the pressure drop or the type of flow
pattern. Several study have shown how artificial neural
networks, ANNs, are particularly appropriate for this purpose
due to their simple implementation and generalization
capability.
In fact, referring to the class of two-phase flow in the

absence of phase changes, neural models have been proposed
for the prediction of fluid-dynamical outputs, such as pressure
drop, liquid holdup, pressure gradient or void fraction
correlation [2-9], but also for heat transfer coefficients or
flow pattern recognition [10-12]. Great interest towards
neural tools has been shown also in the field of nuclear
reactors, leading to several neural models for the
identification not only of the outputs previously mentioned
but, more specifically, of characteristic thermal aspects of
boiling phenomena, such as the onset of nucleate boiling, the
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critical heat flux and the boiling curve, extensively reviewed
in [13].
For all of the reported cases the predicted outputs represent

global characteristics of the flow, i.e. they are synthetic
expression of time-averaged flow characteristics, which do
indirectly depend on the dynamics but are not able todescribe
the evolution in time. As a matter of fact, due to their inherent
complexity, the prediction of the time evolution of two-phase
flows is a very onerous task that has been addressed on the
basis of numerical models. Nonetheless, these are either
computationally intensive, as it happens for distributed (i.e.
PDE) models, or affected by relevant simplifications, as it
happens for models which describe two-phase flows by
means of low order ODEs [14]. As a consequence, such
models are not always suitable for direct application as
diagnostic tools for industrial system and there is interest
towards the possibility of designing flexible, accurate and
computationally light tools for the prediction of two-phase
flow dynamics.
Therefore, the aim of the present study is to extend the use

of neural models, trained to learn from experimental
examples, in order to realize a tool for the short-term
prediction of the dynamics of two-phase flow. From a
mathematical standpoint, the general framework for the
assessment of identification models for nonlinear dynamical
systems is represented by the NARMAX strategy (Nonlinear
Auto-Regressive Moving Average with eXogenous input)
[15-16]. This approach would require a specific model for
each of the possible dynamics of a given system; nonetheless,
a single model valid in the entire range of the dynamics
expressed by the system, namely a generalized NARMAX
model, can be efficiently and flexibly implemented by a
Multilayer Perceptron neural network.
The training and testing of the neural model has beenbased

on the experimental time series of the void fraction detected
by a high resolution resistive probe during an extensive
campaign for the characterization of the dynamics of air-
water two-phase flows ascending in a vertical circular pipe, as
reported in [17]. Some preliminary results of the proposed
strategy were reported on [18]. The aim of the present study
is to propose a detailed discussion on the application of the
identification strategy and to extend and fully report the
obtained results.

2. NARMAX IDENTIFICATION

The NARMAX (Nonlinear Auto-Regressive Moving
Average with eXogenous inputs) identification represents a
general strategy for the assessment of non-linear input-output
models [15-16] of discrete time invariant non-linear systems
that are characterized by having lumped parameters and that
can be linearized in a neighborhood of their equilibria [19].
The main advantage of the strategy consists in the possibility
to realize a predictive tool just on the basis of experimental
time series, i.e. of input-output measurements, even without
any initial knowledge of the physics of the observed nonlinear
system. In particular, the ability in the prediction of the time
evolution of one or more of the system outputs, makes this
instrument very interesting for a variety of monitoring,
diagnostic and control tasks, especially when parameter
variations and uncertainty are strong and drastically affect the
reliability of other modeling approaches based on an explicit
mathematical description of the physics of the system.

In fact, the identification consists in a parametric
assessment of a non-linear function, F, which predicts a
system output y(k) at a given time sample k, from available
information on lagged inputs and outputs of the system,
measured at previous time steps. In accordance to the detailed
descriptions reported in [20-21], the NARMAX identification
of the output y(k) at time k of a SISO (Single Input - Single
Output) system, can be expressed as:

y(k)=F[y(k-1), …, y(k-ny), u(k-1), …, u(k-nu)] (1)

where u(▪) and y(▪) at the right-hand side are lagged inputs
and outputs, respectively, at previous time samples, with nu
depending on the nature of the input modulation and ny
representing the model order. This function is a valid
representation of the system just for the dynamical states
belonging to a neighborhood of the specific equilibrium on
which the linearized model is defined. Nonetheless, this limit
is very efficiently overcome thanks to the interpolation ability
of neural networks. In fact, a generalized NARMAX model,
i.e. a model valid for a variety of different equilibria and even
for piece-wise linear function F, can be approximated by
means of a Multi-Layer Perceptron Neural Network.
Moreover, such a choice is advantageous also because the
nonlinear input-output relation of a neural network allows to
bypass the linearization around the system equilibria.
With respect to classical modelling approaches, based on

mathematical descriptions, the parametric assessment of the
neural model is extremely simple and consists in learning by
known examples of the system dynamics during a training
phase. In particular, during the training of the neural model,
some input vectors are fed to the network and the calculated
outputs are compared with the desired targets corresponding
to the inputs; afterwards, the weights of the neural network,
which are the unknown parameters of the model and are
randomly assigned at the beginning of the training, are
recursively updated according to a specified training
algorithm that aims at minimising a cost function, usually
corresponding or related to the prediction error. In a general
mathematical framework, if a network with n inputs and m
outputs is considered, its global input-output relationship is a
function NN:Rn  Rm. Cybenko [22] and Funahashi [23]
demonstrated that, at the end of an appropriate training the
neural model NN:Rn  Rm is able to uniformly approximate
any continuous function F:D  Rn  Rm, where D is a
compact subset of Rn, so that equation (1) can be rewritten as:

y(k)  NN[y(k-1), …, y(k-ny), u(k-1),…, u(k-nu)] (2)

In other terms, if the training examples are sufficiently
representative of the set of possible dynamical conditions,
once that the training of the neural network has been
completed a generalised NARMAX neural model is obtained
that should be able to simulate the entire set of the system
dynamics encompassed by the conditions learned during the
training. Therefore, the prediction capability of the neural
model is typically verified on a testing data set not
overlapping with the training data set. In other terms, the
testing data set is formed by a series of input patterns and of
the corresponding output targets, similarly to the training set,
but is built with pieces of information corresponding to
dynamics unknown to the neural network.
The performances of the model can be analytically

assessed through the characterization of the prediction error,
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defined as the difference between experimental and simulated
time series. In general, the prediction of a model is
satisfactory when the normalized error (k) has zero mean
and is uncorrelated [24]. Such a condition can be usually
assumed to be fulfilled when the autocorrelation function of
the normalised error, (k), assumes (0)=1 at time k=0
and is elsewhere confined within a 95% confidence band
centred on (k)=0, which, calculating (t) over a window
of N samples, corresponds to the range  1.96 N-0.5.

3. APPLICATION OF THE NARMAX APPROACH TO
THE PREDICTION OF VOID FRACTIONDYNAMICS

In this study, the generalised NARMAX approach is used
in order to predict the experimental dynamics of air-water
two-phase flows in upward motion in vertical pipes. Full
details are reported in [17] concerning the experimental
apparatus and on the extensive set of experimental testing
conditions carried out by varying the air and water superficial
velocities within the entire range of their possible values. The
observed variable chosen for the analysis and characterisation
of the flow dynamics is the void fraction, which expresses the
volume fraction of air with respect to the total volume
occupied by the two phases. This was measured by means of
a resistive probe positioned at a distance of over 100 times
the diameter of the pipe from the mixing section in order to
ensure the observation of well-established flow regimes, i.e.
over the required entry region for two phase flows. Inorder to
ensure a high spatial and temporal resolution, the void
fraction probe was specifically designed and realised for the
experimental campaign. It consists of an impedance probe
operating in the resistive range. The sampling frequency was
set at 1 kHz and a cut-off frequency of 200 Hz was adopted
in order to allow the removal of the carrier frequency and to
avoid aliasing.
With respect to the observed variable, the general structure

of the NARMAX model expressed by equation (1) can be
reformulated for the case of interest as:

[vf(k)] = F [vf(k-1), vf(k-2), … , vf(k-ny), wsl, wsg] (3)

where vf(k) represents the measured void fraction at time k,
i.e. the output of the system that the model aims to predict,
whereas the inputs wsl and wsg represent the superficial
velocities of the liquid and gas phases, respectively. It is
worth observing that, in the present study, wsl and wsg are not
time dependent inputs for a given dynamical pattern, as both
the training and testing data set were extracted by
experiments performed at constant values of these terms.
Previous analyses of the experimental time series pointed

out that the dominant features of two-phase flow dynamics
are appropriately characterized by a limited number of
eigenvectors [25]; this implies that a low order is expected for
the NARMAX model, which corresponds to a limited number
of lagged outputs, ny, that is necessary to set in equation (3) in
order to obtain sufficiently accurate predictions. Nonetheless,
though this value is unknown, its choice can be performed on
the basis of a heuristic and more reliable strategy, as
proposed in [20]. In fact, the order of the model can be
progressively increased, starting from ny=1, until a beneficial
effect is observed on the autocorrelation of the prediction
error. In fact, the most the error is uncorrelated, the best is the
prediction performance of the neural network, as a low
correlation implies that the model is able to capture the

predictable part of the system dynamics. As soon as the
growth of ny is not effective, or even detrimental, its previous
value can be set as the appropriate model order.
Parenthetically, allowing the determination of the unknown
order of the model, the proposed approach can be adopted as
an initial step for the assessment of other types of model
where such an information is preliminary required.
For each model order, a family of three-layered neural

networks was trained, differing for the number of neurons
constituting the hidden layer. The input layer is made up of a
number of neurons corresponding to the arguments of F( . )
on the right-hand side of equation (3). These input neuronsdo
not perform any transformation of their input values, which
are transferred through weighted connections to all of the
neurons of the hidden layer. These implement the tangent-
sigmoid function and, hence, perform a nonlinear
transformation of their inputs, each of which is obtained as
the sum of the outputs of the previous layer weighted through
their connections. The third layer of the network, by its turn,
is made up of a single neuron that implements a linear
transformation of the weighted sum of the outputs of the
hidden layer and gives in output the model prediction, i.e. the
void fraction, vf, at the left-hand side of equation (3). As for
the choice of the best order, the optimal neural model within
a family of neural networks of the same order, was found by
increasing the number of hidden neurons until this is
beneficial with respect to the prediction error.

Table 1. Experimental conditions encompassed in the
training and testing data sets.

Experimental
condition

Training Set Testing Set

wsl [m/s] wsg [m/s]
wsl
[m/s] wsg [m/s]

1 0.002 0.031 0.345 0.031
2 0.588 0.031 0.769 0.031
3 1.550 0.031 1.202 0.031
4 0.273 0.063 0.559 0.063
5 1.085 0.063 0.834 0.063
6 0.603 0.094 0.866 0.094
7 0.117 0.126 0.499 0.126
8 1.092 0.126 0.684 0.157
9 0.002 0.157 0.121 0.188
10 0.925 0.157 0.757 0.188
11 0.215 0.220 0.509 0.220
12 1.038 0.220 0.247 0.251
13 0.090 0.283 1.038 0.283
14 1.290 0.283 0.772 0.314
15 0.032 0.314 1.123 0.471
16 1.217 0.314 0.484 0.628
17 0.075 0.942 1.064 0.628
18 1.592 0.942 0.693 0.942
19 0.060 1.570 0.205 1.256
20 0.693 1.570 0.482 1.256
21 1.516 1.570 0.940 1.256
22 0.075 2.511 0.463 1.884
23 0.452 2.511 0.891 1.884
24 1.488 2.511 0.134 2.197
25 0.122 2.825 0.678 2.197
26 0.753 2.825 1.230 2.197
27 1.424 2.825 0.878 2.511
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For each model order, ny, the training set is constituted of a
matrix having in its rows the training patterns and a target
vector, made up of the desired target corresponding to each
pattern. The patterns were selected as pieces of the void
fraction time series encompassing ny time steps, while the
corresponding target was the one-step ahead value of the time
series. The pattern-target couples used to train the network
were selected from the 27 experimental conditions sparsely
but thoroughly distributed over the entire set of 476 observed
conditions reported in [8], with the aim of encompassing a
sufficiently representative sample of the dynamics observed
at different values of the mean superficial velocity of the
liquid phase, wsl, and of the gas phase, wsg. For each of the
mentioned 27 experimental conditions, three separated
windows of 1000 samples were selected by the void fraction
time series. In particular, these windows were chosen with the
aim of describing different but highly recurrent waveforms
within the time series. Moreover, in order to reduce the
dimension of the training data set, each piece of time series
was preliminary decimated considering 1 out of 3 data, for an
actual length of 333 data; this means that the training goal is
focused on the dominant patterns of the dynamics while high-
frequency noisy components are cut-off. Such a choice
corresponds to setting the model time step, k, equal to 3ms.
In order to validate the predictive performances of the

NARMAX model, a testing data set was created on the basis
of the same criteria and with the same dimension chosen for
the training set, but extending the pattern-target couples
selection to the entire set of experimental conditions, in order
to verify the generalization capability of the NARMAX
model in the prediction of dynamics observed for values of
wsl and wsg different from those learned during the training.
The neural models were trained feeding it in batching, in

order to ensure higher training performances, and using the
Levenberg–Marquardt training algorithm [26]. The number
of epochs varied from network to network because the
training was performed with a contemporary testing of the
network prediction with a checking data set, analogous to the
testing data set and, hence, not participating to the adjustment
of the neural network weights. This allows to validate the
training and to avoid over-fitting, i.e. the tendency of a neural
model to forcibly reproduce the learned dynamical behaviors,
therefore contrasting to desired generalization attitude. On the
basis of this choice, the training phase is automatically ended
not through the choice of a predefined number of epochs or
as soon as a desired minimum of the error is reached but
when the testing performances on unlearned patterns get
worse at one epoch with respect to the previous.

4. RESULTS ANDDISCUSSION

As discussed in the previous section, a family of network
was obtained for each model order by varying the number of
hidden neurons, so as to allow the choice of the optimal
neural network on the basis of error analysis.
As an example, Table 2 reports the maximum absolute

value of the prediction error for the family of networks
implementing the sixth order model, as well as the results of
the analysis of the error autocorrelation (k). As previously
discussed, the error was considered uncorrelated when (k)
assumed k)=1 at time k=0 and was elsewhere confined
within a 95% confidence band centred on (k)=0. Hence, it
appears from reported results that the network with 11 hidden
neurons can be choose as the best performing for the sixth

order model. In a similar fashion, the optimal model order
can be obtained by increasing its value until this corresponds
to an improvement of the prediction performances, i.e. to a
reduction of the model error.

Table 2. Prediction errors for neural model of order ny=6.
In grey, the network with optimal performances

Hidden
neurons

Max(|error|) Error
autocorrelation

M
od

el
or
de

r

6

8 0.1945 Correlated error
9 0.1832 Uncorrelated error
10 0.1874 Uncorrelated error
11 0.1687 Uncorrelated error
12 0.1889 Uncorrelated error
13 0.2032 Correlated error
14 0.2163 Correlated error
15 0.2714 Correlated error

Table 3. Prediction error for the optimal neural networks
for increasing order. In grey, the optimal model, for ny=6.

Model
order

Hidden
neurons
(optimal)

Max
(|error|)

Error
autocorrelation

4 12 0.1794 Correlated error
5 11 0.1811 Correlated error
6 11 0.1687 Uncorrelated error
7 12 0.1889 Uncorrelated error
8 12 0.2163 Uncorrelated error
9 20 0.2714 Correlated error

Table 3 reports the synthesis of the best neural networks at
the various model orders and allows to state that the sixth
order neural network with 11 hidden neurons is the one that
best approximate the generalized NARMAX model defined
in equation (3). Therefore, the results reported in the
following refer to this optimal model.
Figure 1 shows the comparison between the experimental

time series of void fraction and the corresponding neural
network prediction in the experimental condition 21 of the
testing set (columns on the right-hand side of Table 1,
corresponding to a slug flow observed during the experiment
conducted with superficial liquid velocity wsl=0.940 m/s and
superficial gas velocity wsg=1.256 m/s. With respect to the
void fraction time series reported in Figure 1, it is useful to
point out that its structure is clearly related to the transit of air
bubbles alternated to liquid slugs. In particular, the passage of
the head of an air bubble is related to the initial progressive
growth of the measured void fraction, which reaches a value
that depends on the thickness of the liquid film enveloping
the bubble itself.
Afterwards, along the central region of the bubble, the

measured void fraction is relatively uniform, though relevant
oscillations may occur, especially if this region is sufficiently
developed, due both to waves travelling at the interface
between the air and its liquid envelope and to small air
bubbles aerating the liquid film. Finally, at the passage of the
tail region, the measured void fraction abruptly decreases to
approximately zero, though perturbations may occur due to
the passage of small dispersed bubbles entrained in the liquid
slug that follows the bubble.
The second plot of Figure 1 reports the prediction error

calculated as the difference between the testing target and the
output predicted by the optimal generalized NARMAXmodel
for testing condition 21, corresponding to a slug flow



239

observed at superficial liquid velocity wsl=0.940 m/s and gas
velocity wsg=1.256 m/s. The third plot reports the
autocorrelation function of the prediction error, (k).
Results reported in Figure 1 points out that the neural
network predictions are indeed satisfactory and indicate that
the training was appropriate and satisfactory ensured
generalization capabilities. In particular, even if the observed
experimental time series are complex, as manifested by their
non-periodic nature, the prediction error is nonetheless
sufficiently low and uncorrelated, demonstrating that the
neural model is able to capture the deterministic components
of the observed dynamics.

Figure 1Model results for testing condition 21 (from top):
experimental target vs simulated output; prediction error;

error autocorrelation.

This observation is reinforced by the analogous
comparisons reported in Figure 2 for the experimental
conditions 6 and 16 of the testing data set, respectively
corresponding to a cap flow and to a plug flow.
It is just mentioned that, though not reported, the analysis

of the error autocorrelation showed also for these conditions
that the prediction error is uncorrelated. Instead, what is
worth observing here is that this result is not surprising if one
accounts that the slug flow reported in Figure 1 and the cap
and the plug flows reported in Figure 2 can be considered to
share an analogous degree of complexity. In particular, it is
apparent that their characteristic oscillations have similar
morphology; in fact, they are determined by a non-periodic
yet relatively order alternate pulsating flow of air bubbles and
liquid slugs, being the main differences among them related
to the length and the diameter of the air bubble.
On the other hand, the comparisons between the

experimental target and the model prediction in Figure 3 refer
to more complex time series that characterize the
experimental dynamics, respectively, of test number 24 of the
testing data set, corresponding to a churn flow, and of test 27,
corresponding to an unstable slug flow.
Parenthetically, in the churn flow and in the unstable slug

flow the liquid film may continue to drain down the wall, as
in the plug flow, and occasionally the travelling waves at the
interface between the two phases may bridge with each other,

causing the liquid envelope to collapse within the tube.
Nonetheless, considering the high turbulence of this flow
regime, the liquid phase is typically highly aerated and, hence,
the void fraction is never too close to zero. Again, also for
these cases the error was observed to be uncorrelated and,
hence, notwithstanding the greater complexity, also for such
kinds of flow patterns the sixth order NARMAX model is
able to satisfactorily predict the flow dynamics.
More in general, a common feature of the results reported

insofar is that, though the prediction error is generally very
low, it is occasionally affected by “trains” or “pockets” of
perturbations characterized by relatively higher amplitudes
compared to those of the dominant patterns of the void
fraction time series. At a deeper insight it is possible to
observe that these perturbations are due to the gas phase
dispersed in small bubbles entrapped in the liquid phase.

Figure 2. Target vs simulated output and prediction error for:
test 6 (cap flow) and test 16 (plug flow).

Figure 3. Target vs simulated output and prediction error for:
test 24 (churn flow) and test 27 (unstable slug flow)
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Indeed, these represent high order and high frequency
noisy components of the two-phase flow dynamics that
cannot be predicted by the optimal NARMAX model in its
present form. Parenthetically, this inability may possibly be
determined by the choice of resampling the input-output
considering one out of three time samples, which corresponds
to cutting-off the high frequency disturbing dynamics.
The predictive ability shown and discussed with respect to

results shown in Figure 1, 2 and 3 has been confirmed for the
whole set of experimental conditions reported in Table 1. In
order to verify the extent to which the neural model is able to
predict the dynamics of the two-phase flow under study, the
recursive prediction procedure proposed in [24] and [26] has
been adopted. According to this procedure, the model
prediction at a given time step k is fed back to the input layer,
so as to be used in the input pattern of the neural network at
time step k+1. Iterating q times such a feedback scheme
corresponds to obtain a q-steps ahead prediction.
Figure 4 reports the comparisons between the target of the

neural network and the predicted outputs obtained in the 3, 6
and 9 steps ahead predictions for the same experimental test
discussed in Figure 1, which refer to the fundamental single-
step ahead prediction. Parenthetically, recalling that the
network input-output patterns were resampled with a
sampling time step of 3 ms, the prediction horizons of results
reported in Figure 4 are respectively of 9, 18 and 27 ms.

(a)

(b)

(c)

Figure 4. Experimental target vs simulated output for multiple
prediction steps, q: (a) q=3; (b) q=6, (c) q=9

From the analysis of these plots it is possible to observe
that, as expected, the predictive capabilities of the model
progressively diminish with the increase of the prediction
horizon. Nonetheless, by comparing the plots in Figure 1 (a)

and (b) with the plots in Figure 4 (a), it emerges that for q=3
a verylimited worsening of the prediction error occurs and, in
fact, the model output satisfactory predicts the experimental
target.
The results for q=6, reported in Figure 4 (b), show that,

though affected by a greater error, the model is still able to
predict the dominant patterns of the dynamics of the void
fraction; therefore, a prediction horizon q=6 can still be
appropriate for the design of a diagnostic system, especially if
a lower accuracy can be admitted with respect to secondary
noise-like fluid-dynamic phenomena, typically characterised
by higher frequencies and lower amplitudes.
Finally, from the analysis of the results for q=9 reported in

Figure 4 (c) it is apparent that the fitting between the desired
target and the output of the model prediction is unsatisfactory
and, therefore, the prediction error is high, showing that such
a prediction horizon cannot be reached. It is worth to recall
that this is not an inherent limitation of the proposed strategy
but is a consequence of the intrinsic short-term predictability
of the involved phenomena, which are strongly nonlinear.
Reported results show the potential of the proposed

strategy for the assessment of a diagnostic tool for the
monitoring of two-phase flows. With respect to the
methodology in itself, it is worth observing that the same
approach can be proposed:
- for other classes of two-phase flows, e.g., for gas-solid,

liquid-solid or liquid-liquid flows;
- for pipes or, in a broader sense, plant configuration,

characterised by generic inclination of the flow direction
and, correspondingly, for a variety of possible flow
patterns,

- for any choice of the monitoring variable chosen for the
characterisation of two-phase flow dynamics and of the
adopted measuring technique.

Moreover, predictive capabilities of the generalised
NARMAX model can be configured within more
sophisticated diagnostic tools, such as Control Charts
algorithms aiming at the early detection of undesired or off-
design operating conditions [27], or can be used to improve
reliability and adaptability of performances of experiment-
based analytical tools [28].

5. CONCLUSIONS

The aim of this study was to propose a novel tool for a
flexible and computationally light modeling of the dynamics
of two-phase flows, which are intrinsically complex due to

the relevant number of degree of freedom and the nonlinear
interaction of several phenomena. In order to assess such a

tool, a generalized NARMAX model was implemented by
means of artificial neural networks, which were trained and

tested through a set of void fraction time series detected
during an extensive experimental campaign for the
characterization of vertical upward air-water two-phase flows
under variable water and air superficial velocities, wsland wsg.

The proposed strategy is particularly appropriate for the
description of nonlinear dynamics of unknown but even

relatively high order; in fact, in the present study, in order to
assess the optimal order, this was progressively increased

until optimal prediction performances were observed for the
model of the sixth order. For such a model, reported results
show satisfactory agreement between the predicted and the
experimental void fraction over the entire range of testing
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conditions, encompassing from the cap flow to the slug, plug
and churn flow.
In order to verify the extent to which the predictionhorizon

of the model can be increased, the neural model was tested in
a recursive scheme. This allowed to show that, though
predictive capabilities are limited due to the intrinsic short-
term predictability of complex dynamics, a horizon of up to
six steps ahead was able to guaranteed satisfactory predictive
performances. In particular, these were observed to provide a
sufficiently accurate description of the dominant patterns of
the experimental void fraction, with an error that is mainly
due to an inadequate modelling of high order noisy
components, corresponding to secondary fluidynamic patterns
such as, for example, dispersed bubbles aerating the liquid
phase. Hence, the generalized NARMAX strategy can be
indeed implemented in advanced diagnostic tools for two-
phase flows characterization. With this respect, the proposed
approach can be flexibly modified in view of its application
to other type of two-phase flows, independently on the
differences concerning the nature of the two phases, the
geometrical configuration of the plant, or the characteristics
of the experimental time series chosen for monitoring the
two-phase flow.
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NOMENCLATURE

k Time sample
nu Number of lagged inputs to the model
ny Model order
q Number of prediction steps
u Input at the dynamical system
vf Void fraction
wsg Superficial gas velocity
wsl Superficial liquid velocity
y Output of the dynamical system

Greek symbols

 Prediction error
 Autocorrelation of the prediction error
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