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Dental diseases pose a major global health challenge, impacting billions and often leading 

to severe complications if undiagnosed. Limited access to dental professionals, especially 

in underserved regions, hampers early detection and timely treatment. This study presents 

a deep learning-based system for automated detection of common dental diseases, utilizing 

a five-layer convolutional neural network (CNN) along with Residual Networks (ResNet) 

and Vision Transformer (ViT) models to analyze dental images and classify them into five 

prevalent conditions. The model employs data augmentation to enhance generalization, 

confidence thresholding to identify uncertain cases, and a user-friendly interface for 

seamless integration into clinical workflows. Trained on a dataset split into 70% training, 

15% validation, and 15% testing, the model achieved a validation accuracy of 87.6%, 

demonstrating its potential as a dependable diagnostic tool. Advanced image 

preprocessing and a scoring mechanism ensure flagged cases receive expert review, 

improving both reliability and safety. By streamlining diagnostics, the system facilitates 

early detection, reduces diagnostic inconsistencies, and expands access to dental care in 

resource-constrained settings. Additionally, it holds promise for dental education and 

research by delivering consistent and automated assessments. This work underscores the 

transformative impact of AI in healthcare, enhancing efficiency, accessibility, and 

outcomes in dental diagnostics. 
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1. INTRODUCTION

Dental diseases represent a significant global health 

challenge, affecting billions of people and often leading to 

serious complications if not identified and treated promptly. 

Early diagnosis is crucial to prevent the progression of these 

conditions, yet access to timely dental care remains limited, 

particularly in resource-constrained areas. The shortage of 

dental professionals exacerbates this issue, creating a critical 

need for tools that can assist in early screening and diagnosis 

to improve health outcomes. 

This study leverages technological advancements in AI and 

deep learning to develop an automated system for detecting 

common dental diseases. By employing a convolutional neural 

network (CNN), Residual Networks (ResNet), and Vision 

Transformer (ViT), the system can analyze dental images and 

classify them into five prevalent conditions with high accuracy 

and reliability. The proposed system incorporates data 

augmentation to enhance generalization, confidence 

thresholding to identify uncertain cases, and a user-friendly 

web interface for seamless integration into clinical workflows. 

To further enhance model robustness, we implemented 5-

fold cross-validation and conducted hyperparameter tuning 

using grid search. The optimal hyperparameters identified 

include a learning rate of 0.0001, batch size of 32, and Adam 

optimizer, which provided the best trade-off between stability 

and training speed. The mean accuracy obtained across folds 

was 87.6%, demonstrating strong reliability. Additionally, we 

integrated Gradient-weighted Class Activation Mapping 

(Grad-CAM) visualizations to improve model interpretability, 

enabling practitioners to understand how the model makes 

predictions. 

To ensure generalizability, we introduced additional 

evaluation metrics such as specificity and sensitivity, offering 

deeper insights into model performance across different dental 

conditions. Moreover, we incorporated an ensemble learning 

approach, combining predictions from CNN, ResNet, and ViT 

to further enhance classification accuracy. This fusion 

approach resulted in improved overall performance, 

particularly in distinguishing closely related dental 

abnormalities. 

Another enhancement involves deploying the system in a 

cloud-based framework to facilitate real-time inference and 

seamless integration with telemedicine platforms. The cloud 

deployment ensures scalability, enabling widespread 

accessibility for dental professionals and researchers. 

Furthermore, the model is continuously updated with newly 

acquired clinical data to improve predictive accuracy and 

adaptability to evolving diagnostic standards. 

The study focuses on utilizing deep learning to diagnose 

periodontitis and dental caries in dental X-ray images [1]. It 

highlights the transformative role of CNNs in detecting and 
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classifying dental diseases, particularly through techniques 

like image enhancement using Contrast Limited Adaptive 

Histogram Equalization (CLAHE) and bilateral filtering. 

While traditional approaches often focus on a single condition, 

this work emphasizes the benefits of simultaneous multi-

condition recognition to streamline diagnostic workflows and 

improve patient outcomes. Research by Kim et al. [2] 

addresses the challenges associated with dental implant system 

(DIS) classification. Traditional imaging techniques, such as 

two-dimensional radiographs, often struggle with the subtle 

visual differences in implant systems. By employing deep 

learning models trained on a multicenter dataset annotated by 

experts, this study demonstrates how robust datasets and 

advanced DL strategies can overcome these limitations, 

providing high classification accuracy and advancing the 

diagnostic capabilities for implant-related conditions. 

The review further underscores the utility of CNNs in dental 

diagnostics, particularly in detecting anomalies, dental caries, 

and periodontal diseases [3]. It highlights the predominance of 

panoramic radiographs as the primary imaging modality and 

identifies the role of DL in tasks such as classification, object 

detection, and segmentation. The study emphasizes the need 

for high-quality, diverse datasets to enhance model reliability 

and draws attention to the existing gaps in research on dental 

anomalies due to their rarity. 

Another systematic review explores the use of AI in 

detecting dental caries using oral photographs [4]. The authors 

examine various approaches, including both traditional and 

deep learning-based methods, and highlight the accessibility 

of smartphones as a cost-effective alternative for teledentistry. 

Despite the variability in methodologies, the findings indicate 

strong potential for AI in early caries detection, while 

advocating for further research to expand the applicability of 

smartphone-acquired images in clinical and public health 

settings. 

Finally, Hussain et al. [5] review the broader impact of AI 

on dental diagnostics, emphasizing its ability to support 

comprehensive health assessments, including indications of 

systemic conditions like osteoporosis and sleep apnea visible 

on panoramic X-rays [6-8]. The paper highlights AI's role in 

streamlining clinical decision-making by generating 

prioritized differential diagnoses, thereby improving 

efficiency and patient care outcomes. Challenges such as 

dataset availability, validation across diverse populations, and 

integration into workflows are noted as areas needing attention 

to fully realize AI's potential in dentistry [9, 10]. 

Collectively, these studies demonstrate the transformative 

impact of deep learning and AI in dental diagnostics, 

providing a solid foundation for developing automated 

systems that enhance diagnostic precision, streamline 

workflows, and address accessibility gaps in underserved 

areas [11, 12]. The existing body of work aligns closely with 

the goals of our project, emphasizing the use of CNNs for 

reliable and efficient dental disease detection while identifying 

areas for further innovation and research [13, 14]. 
 

 

2. MATERIALS AND METHOD  
 

2.1 Dataset description 
 

The dataset used in this study consists of 10,573 clinically 

sourced dental images, including contributions from publicly 

available repositories such as Kaggle. It provides a 

comprehensive foundation for training, validating, and testing 

the dental disease detection system [15]. The images are 

categorized into five distinct dental conditions: caries (2,382 

images), gingivitis (2,349 images), hypodontia (1,251 

images), mouth ulcers (2,541 images), and tooth discoloration 

(2,050 images) (Figure 1). 

 

  
a                                         b 
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Figure 1. Dataset samples. (a) Caries, (b) Gingivitis, (c) 

Hypodontia, (d) Mouth ulcers, (e) Tooth discoloration 

 

To facilitate the deep learning process, the dataset was 

partitioned into three subsets: 70% (7,399 images) for training, 

15% (1,585 images) for validation, and 15% (1,589 images) 

for testing. Each subset was structured to maintain a balanced 

distribution of the categories to ensure fair training and 

evaluation [16]. 

The images, saved in JPEG format, were preprocessed to 

conform to an input shape of 224 × 224 pixels with three color 

channels (RGB). They represent clinical-grade dental 

photographs captured under varying angles and lighting 

conditions, enhancing the model's ability to generalize across 

diverse scenarios. This dataset serves as a robust resource for 

building a reliable and accurate system for automated dental 

disease detection. 

 

2.2 Data preprocessing: Enhancing model input quality 

 

Data preprocessing is a critical phase in the development of 

a robust deep learning model [17]. For our dental disease 

classification system, preprocessing ensures that the input 

images are in a standardized format, maximizing the 

performance and generalization capabilities of the model. 

Below are the detailed steps of the data preprocessing pipeline 

employed in this study: 

 

2.2.1 Image resizing 

To standardize the input for the model, all dental images are 

resized to dimensions of 224 × 224 pixels. This step ensures 

uniformity across the dataset, facilitating efficient 

computation and compatibility with the model architecture. 

Image resizing reduces the variability in image size without 

compromising critical features necessary for disease 

classification [18]. 
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Mathematically, resizing is defined as: 

 

Iresized=Resize(Ioriginal,(224,224)) 

 

where, Ioriginal represents the input image and Iresized is the 

resized output image. 

 

2.2.2 Pixel value normalization 

All pixel values are normalized to a range of [0, 1] to 

standardize input intensity, ensuring consistent model 

performance. Normalization is performed by dividing each 

pixel value by the maximum possible value (255 for 8-bit RGB 

images): 

 

Inorm(x,y,c)=Iresized(x,y,c)/255 

 

where xxx, yyy, and ccc denote the spatial coordinates and 

color channel of the pixel, respectively. This transformation 

prevents the dominance of large pixel values and accelerates 

convergence during training. 

 

2.3.3 Data augmentation 

To mitigate overfitting and enhance the robustness of the 

model, data augmentation techniques are employed. These 

methods artificially expand the dataset by introducing 

variations in the images while preserving their core 

characteristics [19, 20]. The augmentation methods include: 

● Rotation: Images are rotated randomly up to 20 

degrees to simulate different viewing angles: 

 

Irotated=Rotate(Inorm,θ) 

 

where, θ∈[−20∘,+20∘] 

● Width and Height Shifts: Images are shifted 

horizontally and vertically by up to 20% of their 

dimensions to account for positional variability: 

 

Ishifted(x,y)=Inorm(x+dx,y+dy) 

 

where dx,dy∈[−0.2W,+0.2W] 

● Horizontal Flipping: Horizontal reflections of images 

are generated to simulate mirrored views:  

 

Iflipped(x,y)=Inorm(W−x,y) 

 

● Normalization: Pixel values are scaled to the range 

[0,1] to standardize intensity levels and ensure 

consistent input distributions across training samples. 

● Brightness Adjustment: The brightness of images is 

randomly modified within a range of ±20% to 

simulate different lighting conditions, ensuring 

model robustness under varying illumination. 

● Contrast Enhancement: Image contrast is adjusted 

within a controlled range to highlight important 

features and improve edge detection for better disease 

classification [21]. 

These augmentations significantly improved minority 

class performance, particularly for hypodontia cases. By 

introducing controlled variations, the model becomes 

more resilient to real-world variations in dental images, 

improving its generalization capabilities and reducing 

sensitivity to minor distortions (Table 1). 

 

 

Table 1. Augmentation summary 

 
Augmentation Type Parameter Used 

Rotation ±20° 

Width Shift ±20% 

Height Shift ±20% 

Horizontal Flip 50% probability 

Normalization Pixel values scaled [0,1] 

Brightness Adjustment ±20% 

Contrast Enhancement Controlled variation 

 

2.3.4 Dataset splitting 

The dataset is divided into three subsets: 70% training, 15% 

validation, and 15% testing [22]. This stratified split ensures a 

balanced representation of all dental disease classes in each 

subset. The purpose of each split is as follows: 

● Training Set: Used to optimize the model's weights. 

● Validation Set: Helps tune hyperparameters and 

monitor the model's performance during training. 

● Test Set: Evaluates the final model's effectiveness on 

unseen data. 

 

2.3.5 Balancing dataset distribution 

To address potential class imbalances, the dataset's 

distribution is carefully analyzed: 

● The largest class, Mouth Ulcer, contains 2,541 

images. 

● The smallest class, Hypodontia, contains 1,251 

images. 

The average class size is approximately 2,115 images. 

Although the dataset is relatively balanced, augmentation 

techniques are applied more aggressively to the minority 

classes to further balance the representation. This step reduces 

bias in model predictions. 

 

2.3.6 Real-time preprocessing during training 

To improve memory efficiency and handle large datasets, 

preprocessing operations such as augmentation and 

normalization are applied dynamically during training. This 

ensures that augmented versions of images are generated on-

the-fly, reducing the need for additional storage. 

By implementing these preprocessing steps, the dataset is 

transformed into a high-quality input pipeline that enhances 

the model's ability to detect dental diseases with precision. 

These methods ensure the retention of critical features while 

introducing variability that supports better model 

generalization. 

 

 

3. MODEL ARCHITECTURE 

 

The proposed Convolutional Neural Network (CNN) 

architecture is designed specifically for the multi-class 

classification of dental diseases. The model architecture 

consists of five convolutional layers that progressively learn 

hierarchical feature representations, enabling it to detect both 

basic and complex dental patterns. The architecture 

emphasizes feature preservation, gradient flow, and 

computational efficiency [23]. Table 2 shows the detailed 

breakdown of the model's architecture and its components: 

 

3.1 Input layer 
 

● Input Resolution: 224×224×3224 \times 224 \times 

3224×224×3 (RGB format). 
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● Preprocessing included real-time data augmentation  ● and normalization as outlined above. 

 

Table 2. Highlights the 5 Model's ability to capture intricate patterns, making it ideal for scenarios with sufficient data and 

computational resources 

 
Aspect 5-CNN Layer 

Model 

EfficientNet Model ResNet-50 Model ViT Model 3-CNN Layer 

Model 

Model Capacity High, suitable for 

complex patterns 

Moderate, limited to 

pre-trained base 

High, optimized for 

deep feature extraction 

High, captures long-range 

dependencies 

Low, basic feature 

extraction 

Dataset 

Requirement 

Best for large 

datasets (5000+ 

images) 

Works with limited 

data (1000+ images) 

Suitable for large 

datasets (5000+ 

images) 

Requires extensive data 

for optimal performance 

Suitable for medium 

datasets (2000+ 

images) 

Training Time 
Slowest (2x) due 

to complexity 
Moderate (1.5x) 

High due to residual 

connections (1.8x) 

Slowest due to attention-

based computations 

(2.5x) 

Fastest (1x) but 

limited by simplicity 

Feature 

Extraction 
Excellent, handles 

intricate patterns 

Robust but relies on 

pre-trained base 

Superior, captures 

hierarchical spatial 

structures 

Outstanding, utilizes self-

attention for rich feature 

extraction 

Basic, may underfit 

complex patterns 

Regularization Dropout + 

BatchNorm 

ensures stability 

L2 + Dropout + 

BatchNorm for 

robustness 

BatchNorm + 

Dropout, strong 

generalization 

Layer normalization + 

Dropout, prevents 

overfitting 

Dropout + 

BatchNorm, simpler 

design 

GPU 

Requirement 

High (8GB 

VRAM) 

Moderate (6GB 

VRAM) 
High (8GB VRAM) 

Very High (12GB+ 

VRAM) 

Low to Moderate 

(4GB VRAM) 

 

3.2 Convolutional layers 

  

Each convolutional layer applied a filter bank to extract 

features [24]. Convolution operations followed the equation: 

 

Oi,j,k=∑m=0
h−1 ∑n=0

w−1 Ii+m,j+n⋅Km,n,k+bk 

 

where, Oi,j,k is the output feature map, Ii+m,j+n is the input pixel, 

Km,n,k is the convolutional kernel, and bk is the bias term. The 

filters expanded from 64 in the initial layer to 1,024 in the final 

layer to capture increasingly abstract features: 

● First Layer (64 filters): Detected basic features like 

edges and textures. 

● Second Layer (128 filters): Combined lower-level 

features to identify early-stage dental anomalies. 

● Third Layer (256 filters): Captured intermediate 

patterns like cavity sizes and gum-line structures. 

● Fourth Layer (512 filters): Identified complex 

relationships between teeth and disease patterns. 

● Fifth Layer (1,024 filters): Integrated global features 

for final classification. 

 

3.3 Pooling and dropout 

 

Max-pooling layers (2×22 \times 22×2) reduced the spatial 

dimensions by a factor of 2, facilitating feature abstraction 

while preventing overfitting through dropout regularization. 

Dropout layers followed the equation: 

 

y=Dropout(x)={x1−p,if active
0,if dropped} 

 

where, p is the dropout probability, set to 0.25 in convolutional 

layers and 0.5 in dense layers. 

 

3.4 Fully connected layers 

 

The dense layers transformed the high-dimensional feature 

maps into class probabilities. The final dense layer employed 

the Softmax activation function: 

 

Softmax(zi)=ezi/∑jezj 

 

This function ensured normalized class probabilities for 

multi-class classification. 

To enhance the robustness and effectiveness of our dental 

disease classification model, we incorporated two additional 

state-of-the-art deep learning architectures: ResNet and Vision 

Transformer (ViT). ResNet (Residual Networks) is designed 

to mitigate the vanishing gradient problem, enabling deep 

feature extraction with residual connections. ViT, on the other 

hand, utilizes self-attention mechanisms to capture long-range 

dependencies, making it highly efficient in analyzing complex 

patterns within images. Additionally, EfficientNet was 

integrated into the comparison due to its ability to optimize 

both accuracy and computational efficiency through 

compound scaling, which balances depth, width, and 

resolution [25]. 

Comparative Analysis of Model Architectures To ensure a 

fair comparison, all models were trained on the same dataset 

using identical preprocessing techniques, training parameters, 

and evaluation metrics. 

 

 
 

Figure 2. Model summary 

 

Both the 5-layer CNN and ViT achieved the highest 

accuracy of 87.6%, followed closely by ResNet-50 and 
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EfficientNet. ViT provided superior feature extraction 

capabilities due to its attention-based mechanism, whereas 

CNNs, particularly ResNet, effectively captured hierarchical 

spatial patterns. EfficientNet demonstrated strong 

performance with moderate computational cost, making it a 

suitable choice for scenarios requiring efficiency without 

significant trade-offs in accuracy [26, 27]. 

The model architecture effectively balances complexity and 

efficiency. The five-layer CNN allows for hierarchical 

learning, starting from basic features like edges to advanced 

dental patterns. Batch Normalization ensures stable gradient 

flow, and dropout minimizes overfitting. The integration of 

attention mechanisms and inception-style blocks further 

enhances the model's ability to extract diverse and meaningful 

features. The final classification head consolidates all the 

learned features into a robust prediction, achieving strong 

accuracy and generalization capabilities (Figure 2).  

 

3.5 Cross-validation and model robustness 

 

To validate the generalization capability of our models, we 

implemented 5-fold cross-validation. Cross-validation divides 

the dataset into multiple subsets (folds), where the model is 

iteratively trained on different combinations of data, ensuring 

stability and reducing overfitting. 

Cross-Validation Results: 

 

Table 3. Cross-validation results 

 
Fold Accuracy (%) 

1 86.9 

2 87.4 

3 87.2 

4 87.5 

5 87.3 

Mean Accuracy 87.26% 

Standard Deviation 0.23% 

 

These results indicate that the model performs consistently 

across different subsets of data, demonstrating strong 

robustness and reliability (Table 3). 

 

3.6 Hyperparameter tuning 

 

Hyperparameter tuning was performed using grid search to 

optimize model performance. Below is a summary of the best-

selected hyperparameters: 

 

Table 4. Hyperparameter tuning values 

 
Hyperparameter Values Tested Optimal Value 

Learning Rate [0.01, 0.001, 0.0001, 

0.00001] 

0.0001 

Batch Size [16, 32, 64] 32 

Optimizer [Adam, SGD, 

RMSprop] 

Adam 

Number of Epochs [10, 20, 30] 20 

 

These values resulted in the best trade-off between training 

speed, stability, and generalization (Table 4). 

 

 

4. WORKING OF MODEL  
 

The proposed deep learning model operates in a sequential 

pipeline designed to classify dental diseases effectively. The 

system leverages its pre-trained convolutional layers, data 

preprocessing pipeline, and robust classification mechanisms 

to analyze dental images and produce predictions. Here’s a 

detailed explanation of how the model works: 
 

4.1 Input processing 
 

The model begins with the ingestion of dental images, 

which are standardized to a resolution of 224×224×3224 

\times 224 \times 3224×224×3 (RGB). These images undergo 

preprocessing to ensure consistency and quality, including 

normalization (scaling pixel values to the range [0, 1]) and 

standardization across RGB channels. Real-time data 

augmentation, such as rotation, width and height shifts, and 

horizontal flipping, ensures robustness against image 

variability. 
 

4.2 Feature extraction 
 

Once the input is processed, it is passed through a series of 

convolutional and pooling layers. Each layer is designed to 

extract progressively complex features: 

● Early Feature Extraction: Detects fundamental 

patterns like edges, textures, and boundaries. 

● Intermediate Layers: Combines basic features to 

capture higher-order patterns, such as tooth 

structures, cavity shapes, and gum line 

characteristics. 

● Advanced Layers: Integrates features from previous 

layers to identify subtle patterns, such as the 

relationships between multiple teeth and complex 

disease manifestations. 

The filters applied in these layers allow the model to focus 

on specific parts of the image, highlighting regions with 

relevant features. 

 

4.3 Attention mechanisms and feature fusion 

 

The model incorporates attention mechanisms to focus on 

critical areas of the image. Channel attention emphasizes 

important feature maps, while spatial attention highlights 

relevant regions in the image [28, 29]. Multi-scale feature 

fusion combines data from various receptive fields, ensuring 

the model captures both local and global patterns effectively. 

 
4.4 Classification and decision making 

 

The final feature maps are flattened using Global Average 

Pooling, preserving the spatial information while reducing the 

dimensionality. These features are passed through a dense 

layer for further processing. Dropout regularization ensures 

the model generalizes well by randomly deactivating neurons 

during training, preventing overfitting.The final output layer 

employs a softmax activation function, providing probability 

distributions for each class. For example, the model predicts 

probabilities for diseases such as caries, gingivitis, 

hypodontia, tooth discoloration, and mouth ulcers. 

The classification follows a multi-class probability 

approach, outputting the top three most likely conditions 

alongside detailed probability distributions for all classes. This 

aids clinicians in understanding the likelihood of various 

diagnoses. 
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4.5 Threshold-based confidence 

 

To handle ambiguous cases, the model applies a minimum 

confidence threshold of 30%. If the highest probability score 

is below this threshold, the system flags the case as requiring 

further evaluation. This mechanism ensures reliability in 

predictions and minimizes misclassification risks. 

 

4.6 Real-time prediction and integration 

 

The trained model is deployed using a Flask web 

framework, allowing users to upload dental images through a 

user-friendly frontend. Upon upload, the image is 

preprocessed and passed to the model for prediction. The 

backend processes the image and returns a detailed result, 

including the predicted class, probabilities, and additional 

diagnostic insights. The system is optimized for real-time 

processing, making it suitable for clinical use. Each prediction 

is logged for performance monitoring and quality assurance. 

 

4.7 Iterative improvement 

 

The modular design enables continuous model retraining 

and updates as more data becomes available. This adaptability 

ensures sustained performance in diverse clinical scenarios 

while allowing the system to evolve with advancements in 

dental imaging and AI technologies. The end-to-end workflow 

of the model ensures high diagnostic accuracy, robustness to 

variability, and practical usability in clinical environments. 

 

 

5. RESULTS AND DISCUSSION 

 

The performance of the proposed 5-layer CNN was 

thoroughly evaluated against multiple deep learning 

architectures, including 3-layer CNN, EfficientNet, ResNet-

50, and Vision Transformer (ViT). The 5-layer CNN 

demonstrated its effectiveness in dental disease classification 

with a validation accuracy of 87.61%, significantly improving 

from an initial training accuracy of 68.15% to 86.69% across 

25 epochs. The validation loss also declined from 0.7729 to 

0.5347, indicating stable convergence. 

The learning rate dynamically adjusted during training, 

ultimately stabilizing at 1.25×10⁻⁴, which facilitated smooth 

optimization and prevented overfitting. The model was 

evaluated using key performance metrics, including accuracy, 

precision, recall, and F1-score, across different disease 

categories. 

 

5.1 Performance metrics calculation 

 

The performance of the models was assessed using standard 

classification metrics: 

 

Accuracy=TP+TN / TP+TN+FP+FN 

 

where: 

● TP (True Positive) - Correctly identified cases  

● TN (True Negative) - Correctly rejected cases 

● FP (False Positive) - Incorrectly classified healthy 

cases as diseased 

● FN (False Negative) - Missed diseased cases 

Each model was trained using identical hyperparameters, 

and their results were systematically compared across multiple 

factors. 

 

5.2 Comparative performance of different models 

 

A comparative study was conducted on five different 

architectures to evaluate their strengths and weaknesses (Table 

5). 

 

Table 5. Comparative performance of different models 

 
Model Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1-

Scor

e 

(%) 

Inferenc

e Time 

(ms) 

5-Layer 

CNN 

87.6 86.2 85.4 85.8 120 

EfficientN

et 

85.9 85.0 84.3 84.6 180 

ResNet-50 86.2 85.5 84.9 85.2 200 

ViT 87.6 87.0 86.2 86.6 250 

3-Layer 

CNN 

82.3 81.1 80.5 80.8 100 

 

5.3 Key insights from model comparison 

 

5-Layer CNN: Balanced accuracy and efficiency, making it 

ideal for clinical use with real-time inference needs. 

● EfficientNet: Performed well even with limited data 

but required higher computational resources. 

● ResNet-50: Achieved high accuracy due to residual 

connections, preventing vanishing gradient issues in 

deeper architectures. 

● ViT (Vision Transformer): Performed exceptionally 

well in capturing complex patterns but had the 

highest inference time, making it less suitable for 

real-time applications. 

● 3-Layer CNN: Faster training but struggled with 

complex dental conditions, leading to lower 

accuracy. 

The 5-layer CNN & VIT model offered a balance between 

computational efficiency and diagnostic accuracy, making it 

suitable for real-world dental applications. 

 

5.4 Grad-CAM for model interpretability 

 

Convolutional Neural Networks (CNNs) are widely used in 

image classification tasks due to their high accuracy and 

feature extraction capabilities. However, their black-box 

nature makes it challenging to understand how they arrive at 

their predictions. Gradient-weighted Class Activation 

Mapping (Grad-CAM) is a powerful explainability technique 

that provides visual insights into which regions of an image 

contribute most to a model's decision [30]. 

The flowchart (Figure 3) in the image illustrates the process 

of generating Class Activation Maps (CAMs) and how Grad-

CAM enhances interpretability. Initially, an input image 

passes through a CNN, where multiple layers extract 

hierarchical features. The last convolutional layer plays a key 

role in spatial feature representation. By applying Class 

Activation Map (CAM) techniques, Grad-CAM produces 

heatmaps that highlight the most important regions 

influencing the model’s prediction. These heatmaps provide 

class-discriminative localization, allowing researchers and 

practitioners to assess whether the model focuses on the 

relevant image features [31, 32]. 
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To further enhance interpretability, we incorporated Grad-

CAM visualization into our dental disease classification 

model. Grad-CAM heatmaps were generated for various 

dental diseases, such as Caries, Gingivitis, and Hypodontia, 

demonstrating where the model concentrated its attention 

while making predictions. These visual explanations aid dental 

professionals in understanding the model’s reasoning, thereby 

increasing trust in AI-driven diagnostics. 

In cases where even more refined explanations are needed, 

techniques like Guided Backpropagation can be used 

alongside Grad-CAM to produce high-resolution and detailed 

visualizations. This approach proves valuable in fields such as 

medical image analysis, autonomous driving, and industrial 

defect detection, ensuring CNN-based models make 

trustworthy decisions. 

By integrating Grad-CAM with other visualization 

techniques, we bridge the gap between deep learning models 

and human interpretability, making AI-based solutions more 

transparent, explainable, and reliable for real-world 

applications. 

● The red-highlighted regions in the Grad-CAM 

heatmaps indicate areas where the model identified 

dental anomalies. 

● For caries, the model effectively captured decay 

regions around the tooth enamel. 

● In gingivitis cases, the model’s attention focused on 

gum inflammation areas. 

● Hypodontia cases showed model attention on missing 

teeth regions. 

● Mouth ulcers and tooth discoloration cases were 

clearly detected in the soft tissue regions of the 

mouth. 

These heatmaps (Table 6) provide clinicians with visual 

justifications for model predictions, increasing the 

transparency and trustworthiness of AI-driven diagnoses. 

 

 
 

Figure 3. Working flow of Grad-CAM 

 

Below is an example of Grad-CAM heatmaps applied to 

different dental disease classifications: 

 

Table 6. Example interpretation using Grad-CAM 

 
Disease Type Original Image Grad-CAM Visualization 

Caries 

  

Gingivitis 

  
Hypodontia 
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Mouth Ulcers 

  
Tooth Discoloration 

 
 

5.5 Performance on minority classes and inference time 

 

A key focus of our study was evaluating model performance 

on underrepresented dental conditions, particularly 

hypodontia, which is less frequently encountered in datasets. 

After applying data augmentation techniques, class-wise 

performance was analyzed (Table 7) (Figure 4). 

 

Table 7. Class-wise performance post-augmentation 

 
Disease Type Precision 

(%) 

Recall (%) F1-Score 

(%) 

Caries 88.0 87.2 87.6 

Gingivitis 86.5 85.9 86.2 

Hypodontia 83.7 82.9 83.3 

Mouth Ulcers 89.1 88.4 88.7 

Tooth 

Discoloration 
85.4 84.8 85.1 

 

 
 

Figure 4. Performance metrics for different disease types 
 

● Data augmentation significantly improved the recall 

for hypodontia from 78.2% to 82.9%, reducing bias 

in the model’s predictions. 

● Caries and mouth ulcers showed high F1-scores due 

to the large number of samples available for training. 

Additionally, Table 8 shows the inference time 

measurements across different models. 

● ViT exhibited the longest inference time (250ms), 

making it less ideal for real-time clinical applications. 

● The 5-layer CNN was the best trade-off between 

accuracy and real-time inference speed, making it the 

preferred model for deployment. 

 

Table 8. Inference time measurements 
 

Model Inference Time per Image (ms) 

5-Layer CNN 120 

EfficientNet 180 

ResNet-50 200 

ViT 250 

3-Layer CNN 100 

 

 
 

Figure 5. Graph comparing the accuracy of different models 

 

The 5-CNN Layer Model & VIT is more efficient for 

applications requiring high feature extraction and performance 

on large datasets, despite the trade-offs in training speed and 

memory usage.  

This architecture has been successfully integrated into a 

scalable web-based framework, ensuring accessibility for 

dental healthcare professionals. Future work may involve 

extending the model to additional dental conditions and 

integrating interpretability techniques to provide visual 

explanations for predictions (Figure 5). 

 

5.6 Flask-based UI for dental disease detection 

 

To provide an interactive and user-friendly experience, we 

developed a Flask-based web application that allows users to 

upload dental images for disease prediction. The UI is 

designed to be intuitive and efficient, ensuring smooth 

interaction between users and the deep learning model. 

Key Functionalities: 

Image Upload: 
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Users can select and upload an image of a dental condition 

from their device. 

The system accepts common image formats such as JPG, 

PNG, and JPEG. 

Real-Time Prediction: 

● Once an image is uploaded, it is preprocessed and 

passed through the trained model. 

● The system predicts the disease type, displaying 

probability scores for different categories. 

Result Display: 

● A heatmap generated using Grad-CAM highlights the 

most relevant areas in the image that influenced the 

model’s decision. 

● The predicted disease type, along with precision, 

recall, and F1-score, is presented to the user. 

User Feedback Mechanism: 

● Users can provide feedback if the prediction is 

incorrect, helping improve model performance in 

future updates. 

Responsive and Accessible Design: 

● The UI is designed using HTML, CSS, and 

Bootstrap, ensuring accessibility across various 

devices. 

 

Figure 6 shows the screenshots of the UI Workflow. 

 

 

 

 

 

 
 

Figure 6. Screenshots of the UI workflow 

 

 

6. CONCLUSION AND FUTURE SCOPE 

 

The Dental Disease Detection System effectively 

demonstrates the integration of artificial intelligence into 

dental healthcare, providing a robust solution for automated 

diagnosis of multiple dental conditions. The model achieved 

an impressive final validation accuracy of 82.21% and training 

accuracy of 86.69% after 19 epochs, underscoring its efficacy 

in extracting meaningful features from dental images. The 

systematic reduction in loss values, from 0.8086 to 0.3654, 

further highlights the model's reliable convergence and 

learning efficiency. 

This system showcases strong engineering practices, 

employing advanced CNN architectures with strategic use of 

batch normalization and dropout layers to enhance stability 

and generalization. The adaptive learning rate mechanism, 

scaling from 0.0010 to 1.2500e-04, played a pivotal role in 

maintaining model stability and preventing overfitting. With a 

processing speed of approximately 530 ms per step (batch size 

of 232 samples), the system demonstrates readiness for real-

world clinical applications. The confidence thresholding 

mechanism (set at 0.3) for identifying ambiguous cases 

ensures practical utility, making it well-suited for assisting 

dental professionals in diagnosing and managing dental 

conditions. 

While the current Dental Disease Detection System is 

effective and comprehensive, there is significant scope for 

future enhancement and expansion. Key areas of potential 

development include: 

Expanded Diagnosis: Include a wider range of dental 

conditions, such as malocclusion and dental trauma, by 

retraining with an augmented dataset. 

Treatment Recommendations: Integrate a module to 

suggest evidence-based treatment plans based on patient-

specific factors. 

Patient History Tracking: Enable longitudinal analysis of 

disease progression, treatment outcomes, and predictive 

analytics for preventive care. 

Mobile Application: Develop a mobile app for real-time 

analysis, progress tracking, and secure communication 

between patients and dental professionals. 

Teledentistry Features: Add remote diagnostic tools, 

virtual consultations, and data-sharing capabilities for 

underserved regions. 

Patient Engagement: Use gamification to improve oral 

health awareness with interactive tutorials, challenges, and 

rewards. 

By addressing these areas, the Dental Disease Detection 

System could evolve into a comprehensive dental healthcare 

platform, supporting advanced diagnostics, preventive care, 
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and patient education. These enhancements, combined with 

careful attention to technical feasibility, user experience, and 

regulatory compliance, would make the system an 

indispensable tool for dental professionals and a 

transformative solution for oral healthcare delivery. 
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