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The quality of 3D mesh textures is imperative in applications related to gaming, virtual 

reality and digital content creation due to the importance of visual integrity. This paper 

presents a new pipeline for enhancing 3D mesh textures by incorporating Neural Radiance 

Fields (NeRF), Vision Transformers and self-supervised learning methodologies in order 

to enhance texture detail, consistency and mapping precision. This work proposes a new 

pipeline that combines NeRF, Vision Transformers (ViT) and self-supervised 

methodologies for enhancing 3D mesh textures with high fidelity while keeping the 

geometry of the underlying mesh intact. It generates multi-view synthetic images of the 

mesh using off-screen rendering and then trains a NeRF to get a radiance field that can 

generate higher-fidelity texture features. This results in a finer texture so with the further 

help of a Vision Transformer and a lightweight diffusion-based which can create globally 

coherent high-resolution edits. Experimental results indeed do not show any geometric 

distortion also as it already been suggested by the low Hausdorff distance and average 

distance metrics and whereas for texture evaluation using MSE and SSIM the visual 

quality increase is substantial. 
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1. INTRODUCTION

The rapid development of visual perception and processing 

in technologies has run parallel to a big change in how 3D 

models are generated from 2D images. So photogrammetry 

and laser scanning are some of the techniques that have 

enabled the derivation of complex 3D models from 2D images 

and it allowing better identification and representation of 

objects with accuracy for various industries. In architecture it 

can enhances the design visualization and its accuracy hence 

effective project implementation. The entertainment industry 

needs 3D models to help create immersive environments either 

in video games or film. However, these processes have 

normally been followed by a number of challenges including 

heavy costs and processes being very time-consuming also the 

requirement for specialized expertise hence raising the need to 

find effective methods. The latest breakthroughs in AI 

revealed new ways of creating 3D models notably with the use 

of Neural Radiance Fields (NeRF) [1]. 

NeRF is a method of synthesizing new views of 

complicated scenes by refining a volumetric scene function 

from input images using neural networks. Representing a 

considerable departure from more classical 3D reconstruction 

algorithms, and the approach results in substantial efficiency 

and accuracy improvements. Which enables NeRF to learn the 

continuous representation of a scene which is very powerful in 

a number of use cases where realism of visualization is 

imperative and such as virtual reality or the protection of 

cultural heritage [2]. The integration of NeRF with other 

advanced technologies like Vision Transformers (ViT) has 

greatly increased the capacity of 3D modeling. The ViT also 

known for competence in the compilation of global 

dependencies inside picture data enhancing the NeRF by 

enhancing texture information hence increasing the overall 

quality of the generated models [3]. 

This combination overcomes common problems in 3D 

graphic design such as poor texturing and inefficient rendering 

and leading to more accurate also a better-looking result. The 

application of self-supervised learning methods in this domain 

allows models to learn from unlabeled data reducing reliance 

on large labeled datasets and therefore streamlining model 

development. Despite such progress several challenges remain 

in the process of acquiring high-quality 3D reconstructions 

from 2D photographs. So, the details such as fluctuating 

lighting, occlusions and the intrinsic ambiguity in deducing 

depth from two-dimensional data can influence the precision 

of the produced models. Working out these challenges will 

take continued research and development in creating more 

robust algorithms which is capable of handling different real-

world scenarios [4]. 

The continuing development in AI-driven approaches offers 

hope for overcoming these challenges and making 3D 

modeling more available and effective in a wide range of 

applications. The combination of NeRF and ViT through self-

supervised learning heralds a promising route toward 3D 

model creation, dealing with some long-lasting issues in the 
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area. Thus those technologies will find themselves to be in a 

more important role across a range of applications from digital 

arts and entertainment to scientific research and cultural 

heritage preservations. This research will analyze these 

combined methodologies in terms of their effectiveness in 

improving the quality of 3D models and how they may affect 

future developments within the industry. 

 

1.1 Problem statement and aim 

 

Notwithstanding tremendous development in 3D model 

technology, challenges persist in high-quality refinement and 

texture reconstruction within complex scenarios; despite new 

techniques like NeRF—which demonstrate expertise in 

generating realistic 3D environments from multi-view 

photographs—such methods still struggle to represent intricate 

texture details and maintain processing efficiency for large-

scale structures. ViT, while effective in extracting global 

spatial information from textures, face limitations in capturing 

high-frequency local textures and achieving computational 

efficiency in complex scenarios; furthermore, integrating 

NeRF and ViT frameworks for texture refinement poses 

significant challenges: resolving discrepancies in texture 

mapping, improving fidelity through higher resolution, and 

addressing occlusions and depth ambiguities—all of which 

restrict the widespread adoption of such technologies in 

autonomous systems, virtual reality, and cultural heritage 

preservation. 

So this proposed work seeks to develop a coherent pipeline 

that integrates ViT and NeRF strengths for 3D model and 3D 

texture refinement and the 3D texture reconstruction 

improvement. The work contribution is to address gaps in 

spatio temporal consistency and also the texture fidelity 

through volumetric capabilities of NeRF in collaboration with 

ViT's self-attention mechanism for encoding spatial relations 

between those entities in a 3D environment. In this work try to 

attempts that is made towards high-performance 3D texture 

reconstruction and high-fidelity rendering through 

incorporation of state-of-the-art methodologies through 

hierarchical feature extraction context-aware feature 

extraction and also efficient mapping of textures with 

awareness for depth. It seeks to develop a strong and efficient 

model for use in many real-life scenarios such as high-fidelity 

3D scene reconstruction complex refinement of textures and 

real-time scene understanding [5]. 

 

 

2. RELATED WORK 

 

The development of 3D mesh texture improvement has seen 

significant improvements with NeRF, ViT and self-supervised 

training incorporated in its development. In this section 

relevant studies have been discussed which have developed 

high-fidelity techniques for enhancing textures. 

A work has produced high-fidelity textures out of sparsely 

observable photos via restoration of occluded areas in 3D 

radiance field. ViT are leveraged in the method for effectively 

processing complex semantic and spatial compositions in a 

scene. And with volumetric grid of NeRF considered as an 

input the model attains a high level of detail and homogeneity 

in textures. The work it has established a masked self-

supervised training which can boost representational 

efficiency in NeRF immensely and offering a high fidelity in 

textures with no additional label information. And the 

experimental evaluation confirms that such a method can 

produce real 3D textures with fewer defects in comparison 

with traditional NeRF-based approaches [5]. 

DeLiRa employs a generalist Vision Transformer (ViT) to 

jointly learn scene radiance fields through lighting and depth 

estimation. In contrast to traditional NeRF models—which 

explicitly encode scene geometry to achieve high-fidelity 3D 

texture reconstruction—DeLiRa enables uniform illumination 

control and refinement-aware depth optimization while 

maintaining computational efficiency. The work has 

introduced its method outperforms state-of-the-art state in both 

sharpness and uniformity of textures for NeRF-based 

techniques and contribution comes in its capacity for both 

photometric and geometric information extraction out of 

unorganized sets of images supporting continuous 3D texture 

reconstruction. And constitutes a basis for 3D realism 

improvement in virtual reality and gaming environments [6]. 

A self-supervised model for 3D neural field learning (N3F) 

leverages 2D image feature extraction through knowledge 

distillation, utilizing a pre-trained Vision Transformer (ViT) 

to capture high-semantic-level image features. In contrast to 

conventional NeRF techniques that rely solely on pixel-wise 

color values for 3D radiance field reconstruction, N3F 

enhances texture continuity and sharpens boundary definitions, 

thereby generating high-fidelity 3D textures. The study 

demonstrates that integrating semantically enriched 2D 

features into 3D neural fields produces textures with improved 

aesthetic quality and contextual relevance. By employing self-

supervised training to eliminate dependency on labeled 

datasets, N3F provides an efficient solution for large-scale 3D 

texture synthesis [7]. 

This work improves upon NeRF by tackling aliasing in 

texture rendering through a multiscale model. Unlike 

conventional point sampling techniques, it employs conical 

frustums to integrate image details across multiple scales. The 

3D textures are generated using Mip-NeRF, resulting in 

reduced aliasing and a more sophisticated structure compared 

to standard NeRF implementations. The study demonstrates 

that this approach significantly enhances 3D texture 

reconstruction accuracy, particularly in scenes with intricate 

textures such as foliage, high-detail surfaces, and complex 

lighting conditions. Mip-NeRF is specifically designed to 

handle high-resolution textures efficiently, meeting 

demanding performance requirements [8]. 

Another study employs a GAN to enhance low-fidelity 

NeRF outputs, improving texture sharpness and reducing 

noise. By integrating a super-resolution model, the approach 

refines NeRF-generated textures without requiring additional 

high-fidelity input images. Experimental results demonstrate 

that this method produces visually appealing textures with 

enhanced perceptual fidelity and structural integrity. The 

technique is particularly valuable for gaming, virtual reality, 

and computer-generated content creation, where high-fidelity 

textures play a crucial role in delivering immersive 

experiences [9]. 

Another work utilizes ViT, which outperform conventional 

CNN-based techniques in handling complex spatial structures 

and maintaining overall texture cohesion, according to this 

study. So with a mechanism of self-attention ViTs has 

potentially learn long-term 3D textures dependencies and then 

gain an improvement in and accuracy in terms of 

reconstruction. The work claims that ViTs enable improved 

feature fusion in NeRF-based techniques, leading to enhanced 

texture and geometry cohesion. The results show a significant 
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information regarding deep architectures contribution in 3D 

mesh textures quality and an idea that a merge between NeRF 

and Vision Transformers holds a high future development in 

3D rendering is proposed [10]. 

Following work has optimized integration of a single-scene 

sampled voxel grid with a CNN so such system can counteract 

discrete artifact of a low resolution voxel grid or predict a 

temporally variable and an animation variable voxel grid. 

While such volumetric approaches have seen tremendous 

success for novel view synthesis generalizability to high 

resolution images is naturally limited in such discrete spatio-

temporal samples and high resolution image creation 

necessitates a more complex 3D sampling [11]. 

Recent research in view synthesis has demonstrated 

groundbreaking advancements in generating high-quality, 

realistic renderings through innovative approaches in neural 

representations a differentiable rendering and multi-view 

optimization. Below is an extended overview of additional 

significant contributions to the field: 

One novelty lies in the approach suggested in a study that 

combines the attention mechanism with the convolutional 

networks to handle some of the challenges brought about by 

sparse input views in novel view synthesis. So improves the 

perceptual quality of the rendered scenes through an 

integration of multi-scale depth features within the network of 

the project while using a structural unit with adaptive channel 

weighting algorithms. Whereas traditional methods usually 

require explicit 3D supervision and model's joint attention 

mechanism its end-to-end training capability ensure 

robustness for object-centric and scene-level renderings. The 

work delivers substantial improvements for tasks involving 

monocular images with limited viewpoints, where such quality 

degradation commonly occurs. Transparent objects have 

consistently presented challenges in rendering pipelines due to 

their complex light transport properties [12]. 

Another work introduces Transparent Neural Surface 

Refinement, which employs Snell's law to achieve physically 

accurate tracing of both refracted and reflected light. The 

major novelty is the differentiable optimization that sends the 

photometric evidence into the surface model. TNSR improves 

both the geometry estimation and novel view synthesis for 

transparent objects by adding bending and reflection to 

volume rendering. These improvements are a significant step 

toward applying neural rendering frameworks to complex 

materials like glass and water. This work addresses the main 

limitations of real-time 3D reconstruction in traditional SLAM 

systems and demonstrates a new approach by incorporating 

3D Gaussian splatting with depth priors into a state-of-the-art 

competitive baseline. It enables dense 3D reconstruction 

through a differentiable optimization process regularized by 

both photometric and geometric losses [13]. 

The depth priors add an additional level of regularisation to 

improve the accuracy in posture estimation and scene 

reconstruction. Real-time rendering and its optimization using 

CUDA enable the implementation to achieve an optimal 

balance between real-time performance and high geometric 

fidelity, making it suitable for practical robotics and AR/VR 

applications. Those scenarios with few input views and 

traditional methods often cannot guarantee the quality of 

rendering. This work has extended a 3D Gaussian splatting to 

incorporate depth-sensitive constraints through monocular 

depth estimation and scale-invariant loss functions [14]. 

Another work has the model to avoid overfitting by 

resorting to spherical harmonics to represent a color to 

maintain the low-opacity splats that other methods get rid of 

therefore it enables a better reconstruction of the scene. The 

result is a significantly improved perceptual quality so with 

metrics such as PSNR, SSIM and perceptual similarity 

showing striking improvements. This is an innovation that 

really underlines the importance of depth priors in overcoming 

few-shot limits The work integrates a pipeline in code that 

combines NeRF, mesh rendering, and ViT to enhance 3D 

object texturing, drawing substantial benefits from insights in 

the relevant literature [15]. 

The addition of attention techniques a ViTRefiner model 

parallels other methodologies that increase feature extraction 

and rendering quality from sparse viewpoints, such as 

multiscale-depth transformers. Integration of depth priors and 

the use of differentiable optimization-as described in at least 

one study on 3D Gaussian splatting and transparent object 

modeling-can further enhance texture fidelity and reduce 

artifacts in the process of multi-view rendering. These 

enhancements will further improve the proposed NeRF 

framework's ability to transfer photometric knowledge for 

capturing finer texture and surface details, enabling higher-

quality and more consistent rendering of complex geometries. 

Moreover, these techniques - similar to those explored for 

depth-aware optimization in Gaussian splatting for novel view 

synthesis - will be integrated with the model's ray sampling 

and positional encoding. Such approaches particularly benefit 

texture refinement in high-variance regions, consequently 

improving performance in poorly observed scenarios. 

Integrating transparent object modeling techniques will 

enhance proposed work volume rendering workflow for 

complex surfaces especially glass or those with reflective 

materials. With these advances system can gain the 

enhancement of authentic textures and broaden into a wider 

selection of real 3D object applications. 

 

 

3. METHODOLOGY 

 

NeRF is a framework that represents 3D scenes using a fully 

connected multi-layer perceptron (MLP) neural network. 

Designed for novel view synthesis, it achieves state-of-the-art 

photorealistic rendering from continuous viewpoint inputs. A 

key advantage of NeRF is its ability to train effectively with 

fewer input images compared to other methods, while 

maintaining robust performance even when handling dynamic 

viewpoints. The system demonstrates strong capabilities in 

generating scenes from view representations. [16]. The main 

NeRF approach take’s a scene as neural volume which it 

described by the weights of MLP and it uses 5D: (x, y, z, θ, Φ) 

as inputs of MLP which it configured from 3D position of view 

x= (x, y, z) and 2D direction of view d= (θ, Φ) corresponding 

to point along with ray of camera. Where the output of the 

MLP resulted from three major color channels c= (r, g, b) and 

volume density (σ) for pixel surface of 2D image at that point 

of view. The MLP feed forward network can be written like 

Fϴ: (x; d) → (c; σ). MLP can be optimized by differentiable 

function of volume rendering and trained on a set of real 

images and their viewing directions must be known by 

evaluating variances between the actual pixel color and 

predicted pixel color from the volume rendering process the 

loss function can be selected [17]. To understand how NeRF 

approach works in detail, Figure 1 shown below from original 

paper that can be very useful to come with NeRF approach 

concept [18]. 
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Figure 1. NeRF representation of scene pipeline. (a) Passing 

of 5D input by feed forward. (b) Mapping the output of 4D in 

the space of 2D. (c) Volume rendering by ray marching. (d) 

Optimization by rendering loss 

NeRF become absolutely necessary in this regard for the 

task of texture prediction and enhancement by using their own 

capability of producing intricate and lifelike textures from 

multi-view images. NeRF-Texture has introduced a new style 

of synthesizing textures by separating mesostructural details 

from base forms and inputting them into a NeRF decoder in 

order to obtain view-dependent textures so this implicit 

representation in this work easily allows the creation of fine 

textures on the curved and planar surface and removing 

artifacts of latent-space inconsistencies by some clustering 

restrictions. Besides that a hybrid sampling approach and 

adaptive scene decomposition are done in MDNeRF for better 

textures in larger scenes without typical issues like blurred and 

missing details of textures and due to its innovative features 

the use of spiral sampling with modular sub-scene 

decomposition together with distinct texture quality 

enhancement helps the software achieve high performance in 

large-scale scene renderings [19]. 

Meanwhile NeRF-VPT relied on a cascade view prompt 

tuning framework and iteratively performing the refinement of 

textures through RGB data obtained in previous rendering 

processes and using them as visual prompts. In such a way 

baseline has gained an enhanced level of performance in the 

effective recovery of proper texture details and adaptation in 

conditions of sparse input-view setups making this approach 

highly desired for practical use in the most stringent manner. 

This is furthered by the incorporation of multi-resolution hash 

grid characteristics along with multi-view priors making it 

better to rebuild such a huge open landscape that exhibits 

intricate details and is highly geometrically accurate [20]. A 

dual-branch architecture captures more features for MM-

NeRF. These bring better PSNR results with fewer issues 

relating to underfitting while allowing NeRF to yield finer 

performance on different conditions concerning better texture 

predictions as mentioned. These together reveal that NeRF 

makes a revolutionary impact on generating realistic view-

consistent textures for many applications [21]. 

Vision Transformer (ViT), investigated by the architecture 

of the model consists from many components as shown in 

Figure 2. The components work together by following very 

brief steps. Slice an image into fixed –size of patches. Resulted 

patches then flattened to get lower-dimensional linear 

embeddings.  Positional embeddings added. Providing the 

sequence to a conventional transformer encoder as an input. 

The model pertrained with image labels [22]. 

Focusing on picture categorization using the downstream 

dataset. 

Steps of processing images and calculation of Liner 

Projection of flattened patches in ViT model Processing Input 

Image: 

Input: Raw image taken as an input. 

Patching: The raw image is divided into patches. 

For instance, if raw image size= (224*224) and each patch 

size = (16*16) then the number of total patches will be (224/16) 

= (14*14) =196 patch as shown in Figure 3. 

Figure 2. Architecture of ViT model 

Figure 3. Patching raw image 

Flattening: A 1D vector is created by flattening each patch. 

Each flattened patch will contain 16*16*3=768 elements due 

to the image has three color channels (RGB)  where the first 

channel represents red color and the second channel represents 

green color and the third channel represents blue color.  And 

16 × 16 pixels is the patch size as shown in Figure 4. 

Figure 4. Flattening patch 43 as an example 

Linear Projection: in this step the number of items in the 

flattened patches going to be reduced. For example, if the 

number of flatting such patches is 768 item and we want to 

reduce it to 512 items as an example under condition of 

maintaining the important information of image and the 

resolution at the acceptable level. This process will lead to 

decrease occupied memory space which it result to increase 

speed of processing after reducing number of items and this 

can be done by fully connected neural network MLP through 
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following formula y=xw+b where y is desirable number of 

items for each patch, x is base number of items for each patch, 

w is weight matrix (y, x) and b is bias value [23]. 

The proposed pipeline has integrated both NeRF and ViT 

by generating some sets of views of the 3D mesh via 

volumetric modeling first then effectively capturing a complex 

geometric and textural details. NeRF's volumetric method that 

represents the scene as a radiance field sampled along rays and 

yielding high-quality 2D renderings of a set of views. So the 

ViT then refines these renderings with the self-attention 

mechanism to capture global relationships between image 

patches that especially help for smoothing texture seams and 

fixing the currents errors. Together the self-attention layers 

enable the model to learn non-local dependencies so that the 

refined texture is consistent across the whole surface of the 

mesh. The integration of volumetric view generation and the 

patch-based global refining results in higher-quality textures 

without compromising geometry and introducing undesirable 

artifacts. 

An analysis demonstrates how the self-supervised learning 

enhances the texture consistency and completes partially 

observed areas.  The pipeline has created several synthetic 

views of a wall mesh which has been extracted from full room 

mesh then masks out some areas in the photos so that the 

model learns to fill the missing details. The process promotes 

a consistency by comparing overlapping patches between 

different views so providing consistent textures across camera 

viewpoints.  Experimental results demonstrate that the absence 

of self-supervision results in slightly increased MSE and more 

jagged texture transitions.  The self-supervised strategy is thus 

essential to smooth out transitions to maintain local details and 

enhance the overall visual fidelity of the resulting 3D model. 

Improving texture requires the contribution of ViT can 

employ the self-attention mechanisms in the extraction of 

spatial relationships and contextual information from texture 

images. Unlike CNNs which it often biased toward local 

textures and ViTs adaptively change their receptive field to 

capture both local and global patterns. For instance, ViTs 

might effectively represent the high-frequency component and 

texture variation by recalibrating frequency information with 

techniques like Laplacian pyramids as shown in the case of 

Laplacian-Former. These enhance attention to texture and 

edge features by offering significant enhancement toward 

applications such as texture-based segmentation and 

reconstruction [24]. 

ViTs can be found to be more robust to occlusions and 

domain shifts because their multi-head self-attention 

mechanism effectively captures complex spatial relationships 

among image patches. This allows for accurate texture 

amplification by focusing on intricate details and wider 

contextual relationships. And research indicates that ViTs 

surpass conventional models in recognising intricate patterns 

and textures without requiring pixel-level supervision 

rendering them particularly suitable for texture refinement 

tasks in noisy or ambiguous datasets [25]. Through the 

integration of these characteristics ViTs provide a more 

thorough comprehension of spatial and textural patterns 

enhancing the accuracy of synthesised and reconstructed 

textures in applications spanning medical imaging to 3D 

modelling [25]. 

Refining UV maps such as that through self-supervised 

learning which can bring huge potential contributions toward 

better quality in 3D textures of both games and virtual reality 

and digital content creation. Some of the latest improvements 

that have been spotted involve the application of self-

supervised systems in solving the challenge of reconstructing 

higher-quality UV maps without manual annotation [26]. 

propose a "Map and Edit" framework that integrates 2D 

generative models with 3D priors to complete the missing 

parts in multi-view facial photos while maintaining their 

texture-rich UV maps intact. And the approach minimizes the 

domain gap between real and synthesized data by using 

synthesized multi-view images that maintain the same textural 

details constantly. Likewise, a self-supervised "StyleGAN" 

approach clearly modifies the attributes or generates high-

resolution UV textures that are capable of preserving intricate 

features with coherence in identity [27]. And the integration of 

NeRF and ViT within this self-supervised framework provides 

better global coherence of texture to improved geometry 

precision higher quality enhanced texture fidelity according to 

metrics such as MSE and SSIM so it will thus enable realistic 

generation of textures with superior performance for 

downstream tasks including unsupervised domain adaptation 

of person reidentification [28]. 

It develops this work through updating the UV map with 

self-supervised learning in order to enhance texture detail and 

reduce geometric distortion, hence being more adaptable to 

various domains. The presented solutions address directly the 

pipeline that has been described in your question and introduce 

a novel answer to the issue of integrity and consistency of 

texture in 3D. 

The UV mapping optimization in proposed pipeline is 

indicated in this work does consists of iterated over mesh faces 

by considering boundary distances in UV space and merging 

or splitting UV shells according to a user-defined threshold. 

This operation minimizes or eliminates visible seams and that 

enforces a more uniform texture layout.  After the refined UV 

layout is determined and the system refined texture data onto 

the 3D surface by blending color information in overlapping 

seam regions. While those changes eliminate many patch 

inconsistencies and some complex cases such as very high-

frequency details or large gaps in the mesh of the dataset that 

may still needs additional refinement. And by consolidating 

textural alignment at the UV level so the pipeline enhances 

visual coherence and geometric accuracy in the final rendered 

result and thereby its suitability to industrial design or cultural 

heritage application scenarios requiring high-fidelity texture 

integrity. 

 

 

4. IMPLEMENTATION 

 

This paper proposes a novel approach in improving the 

texture quality of 3D meshes through the fusion of advanced 

methodologies in trimesh processing amd pyrender offscreen 

rendering also complex neural rendering with NeRF using ViT. 

It is in this unique fusion that each technique contributes to 

producing spectacular visual results. 

The used dataset for these experiments in this work has 

comprises primarily a LiDAR-scanned 3D mesh of a room and 

then extracted a wall from it and the selected due to the 

intricate surface details by including fine cracks and non-

uniform color.  Synthetic 2D images as seen in the Figure 5 

are rendered from the same large-scale mesh at various angles 

and simulating a multi-view setup.  Approximately 80% of 

these images are employed to train the NeRF and ViT modules 

and the remaining 20% are reserved for testing and validation.  

This strategy allows the model to be inspected from various 
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angles that enabling the pipeline to learn both extensive 

surfaces and fine texture details.  This dataset while focusing 

on a single structure realistically reflects real-world texture 

and shape variations to providing a convincing representation 

of common architectural or cultural heritage scans. 

 

  

 
 

 
 

  
 

Figure 5. The synthetic 2D images 

 

Preparing the 3D mesh by capturing the object using lidar 

device as is it shown the Figure 6. 

 

 
 

Figure 6. Lidar setup 

 

Firstly, the pipeline imports a 3D object mesh from a 

specified directory using the trimesh library which can handle 

many 3D file formats. This step includes testing whether a 

mesh has been loaded properly before proceeding can 

reflected in an assertion check that will stop execution if the 

file is not present. Once loaded the mesh can be visualized by 

a custom function interfacing with Plotly for interactive three-

dimensional charting it can be seen in Figure 1. And it takes 

the vertices and faces from the mesh constructs a 3D 

representation and renders it in a web-compatible format. This 

step is very important for the initial assessment of the 

geometry of the mesh and also for the identification of any 

flaws that need to be resolved during the refinement process. 

It can be seen in Figure 7.  

 

 
 

Figure 7. NeRF MLP architecture 

 

Pyrender helps create the final renderings or synthetic views 

from different angles under different conditions of light and 

lighting in a manner similar to other methods. One does this in 

Pyrender by setting up a virtual world with a mesh and a 

directional light and then does the offscreen rendering with 

several camera views around it by emulating natural 

environmental interactions of the object in the scene. These 

will become very important steps later in the pipeline for the 

texture details to be consistent across different angles. As it 

shown in Figure 8. 

 

 
 

Figure 8. The loaded mesh 

 

The original mesh was captured from lidar scanned room as 

shown in Figure 9 while Figure 10 is the only wall that has 

been tested in this work. Figure 11 shows the mesh with the 

texture on it. Figure 12 shown the enhanced and added points.  
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Figure 9. The full scanned room 

 

 
 

Figure 10. The wall mesh 

 

 
 

Figure 11. Wall with the texture 

 

Key to the enhancement in texture an improved version of 

the NeRF uses an MLP with skip connections and positional 

encoding of the input coordinates which make a prediction 

about color and density sigma at many points along rays 

through 3D space and rebuilding an image with highly detailed 

textures it can be seen in Figure 13. The positional encoding 

function allows the model to capture high-frequency details 

through the sinusoidal changes applied to the input coordinates, 

which efficiently helps the model learn small details across the 

surface of the mesh. 

 
 

Figure 12. The points that been added to enhance the mesh 

 

 
 

Figure 13. The sampling processes 

 

After that the NeRF-based modification is followed by a 

Vision Transformer to enhance the consistency of mesh 

surface texture. So the ViT here processes features extracted 

from the generated images by using its attention mechanisms 

to focus on areas that require such textural enhancements. This 

step will help ensure that the enhanced textures become both a 

detailed and well-distributed across the entire mesh, hence 

eliminating any form of visual discontinuity. 

The pipeline is completed with the generation of processed 

textures which are reapplied to the original geometry. and 

diffusion model can be optionally included to denoise and 

enhance texture details. The finalized augmented mesh is then 

exported as a new OBJ file so possibly with its enhanced 

texture files ready for use in applications requiring high-

quality 3D representations. 

The pipeline in Figure 14 is unique, as it integrates multiple 

advanced technologies for 3D mesh augmentation. These 

technologies were selected based on their specific capabilities 

in geometric data processing, combining rendering techniques 

with machine learning-driven texture enhancement. The 

integration of these technologies increases the visual quality 

of the meshes and automates the enhancement process, making 

it scalable for the large datasets used in gaming and virtual 

reality.
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Figure 14. The proposed pipeline 

 

The computational demands of proposed work can be 

significant especially for densely on meshes. The training time 

scales linearly with the number of rays sampled in NeRF and 

the size of the ViT while the utilization of volumetric 

representations demands large GPU memory.  Scaling to 

larger input images or more transformer layers deep yields 

higher quality texture but this quality is at the expense of 

significantly longer convergence times.  The work profiling 

shows that optimizing batch size and utilizing more efficient 

sampling and hashing-based on accelerations can reduce 

runtime. And providing actual numbers in terms of average 

frames per second and total training time on a standard 

hardware configuration will allow the future workers to assess 

the feasibility of applying this method for real-time or near-

real-time applications. 

 

 

5. RESULTS 

 

As such both the original and enhanced mesh possess 

39,974 vertices with 78,877 faces each, pipeline maintaining 

the overall topology. 

Both meshes have volumes approaching zero, indicating 

that the geometries are likely thin or open. 

The Hausdorff distance between the original and enhanced 

meshes is 0.181420. whereas the average point-to-mesh 

distance ranges from 0.065471 to 0.069484. Values are small 

so which in return means that the geometric integrity has been 

preserved and modifications were mostly related either for 

surface texture or minor geometric adjustments. 

The Hausdorff distance is measured about 0.181420 which 

indicates that the pipeline preserves the original mesh 

geometry with minimal deformation and prove that changes 

are largely made up of textural improvements. So in this 

contrast to pure image-based up sampling or editing methods 

that may unintentionally distort surface geometry by the 

NeRF–ViT pipeline which restricts most changes to color 

correction and UV alignments.  Such strict keeps the baseline 

shape to ensures that the output model preserves its geometric 

fidelity and a valuable consideration in applications like 

architectural visualization and historic site preservation. So by 

coupling Hausdorff distance with metrics such as MSE and 

SSIM provides an overall picture of the fidelity of geometric 

and textural preservation or enhancement. 

MSE= 0.032866 and SSIM = 0.665241 are measures of 

texture similarities. A lower MSE means that the original and 

refined textures are better matched in a pixelwise sense. On 

the other hand a structural similarity above 0.65 means that the 

appearances of such kind of textures would be moderately 

similar and with essential spatial characteristics remaining 

maintained. 

These quantitative measurements confirm that the pipeline 

updates the texture in an efficient way without distorting much 

in geometry and on the other hand it aligns well the new 

texture according to the original structural details. 

To demonstrate the advantages of the proposed NeRF-ViT 

pipeline, we conduct a quantitative comparison with two state-

of-the-art NeRF-based texture enhancement methods: Mip-

NeRF and NeRF-SuperResolution.  While those technique 

was originally tested on its intended dataset so the reported 

MSE and SSIM values provide approximate benchmarks.  

This work’s pipeline results in a mean squared error of 

0.032866 and a structural similarity index of 0.665241 which 

reflecting lower pixel-level error and higher structural 

similarity with respect to the baseline data.  The performance 

difference highlights that the volumetric modeling with NeRF 

has coupled with Vision Transformers of global context 

extraction and results in superior texture reconstruction and 

consistent appearance throughout the 3D surface. Also the 

comparison results illustrate the pipeline's capability in 

retaining complex features and preserving higher geometric 

accuracy while improving texturing and making it a suitable 

choice for real-world scenarios where durability and realism 

are crucial. Table 1 can show a comparison with other results. 

 

Table 1. Comparison with other works 

 
Method SSIM (↑) 

Proposed (NeRF + ViT) 0.665241 

Mip-NeRF [8] ~0.961 

NeRF-SR [9] ~0.824 

 

 

6. DISCUSSION 

 

How well NeRF can be combined with a refinement step 

using a ViT architecture that leading to the final output that 

gives detailed texture without compromising on the integrity 

of the original mesh geometry. Volumetric representations 

allow for the aggregation of information coming from multiple 

synthetic viewpoints in NeRF and thus addressing gaps or 

inconsistencies in the raw texture particularly when this 

texture is incomplete or of poor quality in some meshes. 

One salient observation here is that mesh volume, vertex 

count, and face count remain unchanged also this would 

support the method working mostly on a per-vertex or per-

texel color and does not change the underlying geometry. And 

a low Hausdorff distance augurs well and suggests that if the 

position of vertices was altered then such changes are spatially 

local and small. MSE and SSIM values suggest an increase in 

fidelity w.r.t texture. The SSIM value of 0.665241 assures a 

good degree of similarity and even if it is not perfect. It can 

suggest that the structural coherence in the refined texture is 

good. Also artefacts or differences in seams can still appear 

due to poor UV sampling or in areas which are not adequately 

covered by synthetic viewpoints. 

These results also suggest that designers or content creators 

within practical applications can efficiently enhance and refine 

textures of extensive or intricate 3D objects using the pipeline. 

In future work one might elaborate on further advanced UV-

mapping methods such as barycentric interpolation or more 

advanced diffusion models for denoising and further 

development of 3D-aware transformers that are able to directly 

manipulate geometric features. 
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7. CONCLUSION 

 

This paper proposes a full pipeline for enhancing textures 

by exploiting multi-view data via NeRF with Vision 

Transformer-based refinement to improve the consistency of 

the textures. And the developed approach retains the geometric 

mesh features as identified by low distance metrics and 

increases the resolution of the textures with fewer visual 

artifacts so proven by moderate MSE and SSIM scores. These 

results constitute further evidence that learning-based 

approaches can enhance 3D assets for gaming, simulation and 

digital content creation. 

The analysis shows a numerous weakness and 

recommended pipeline improvements. Too few views 

constitute a significant limitation especially when the 3D mesh 

doesn’t have rendered views in some areas so the pipeline can 

produce blurry or imprecise textures. So to solve this problem 

by using adaptive sampling or intentionally choosing the new 

viewpoints to guarantee sufficient coverage of complicated 

surfaces. The computationally demanding nature of NeRF and 

ViT training constitutes a problem that particularly for big 

meshes with a high number of polygons. The strategies are to 

reduce computing expenses that could involve employing a 

more computationally efficient neural architecture and for 

instance the lightweight attention mechanisms or hashing-

based radiance fields is used to speed up convergence. This 

work has expectation of good UV mapping thar can leave 

behind lingering seam artifacts at the intersection of texture 

patches and recommending the application of sophisticated 

seam detection or local patch blending.  Although those 

weaknesses may not diminish overall usefulness by 

recognizing of them sets the stage for future refinements that 

will enhance efficiency and precision. 

Further refinement in this pipeline might be related either to 

sophisticated UV mapping or adaptive sampling techniques 

for minimizing artifacts while it far more intrinsic integration 

with the generative model for advanced realism in the textures. 

Bu the proposed system represents a tractable and fast 

approach for improved 3D content production suitable for both 

high-quality rendering and interactive applications. 
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