Aﬁé/. ] I El' A International Information and

4 Engineering Technology Association

Novel 3D Mesh Captured by LIDAR Texture Enhancement Using Neural Radiance Fields |

and Vision Transformers

Farooq Safauldeen Omar

, Borkan Ahmed Al-Yaychili

Check for
updates

, Shayma Jaafar’®, Mohammed Safar”

Northern Technical University, Technical Engineering College Kirkuk, Department of computer Technology Engineering,

Kirkuk 36001, Iraq

Corresponding Author Email: mohammed.sefer@ntu.edu.ig

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580308

ABSTRACT

Received: 31 January 2025
Revised: 12 March 2025
Accepted: 20 March 2025
Available online: 31 March 2025

Keywords:
3D mesh, texture enhancement, Neural
Radiance Fields, vision transformers, LIDAR

The quality of 3D mesh textures is imperative in applications related to gaming, virtual
reality and digital content creation due to the importance of visual integrity. This paper
presents a new pipeline for enhancing 3D mesh textures by incorporating Neural Radiance
Fields (NeRF), Vision Transformers and self-supervised learning methodologies in order
to enhance texture detail, consistency and mapping precision. This work proposes a hew
pipeline that combines NeRF, Vision Transformers (ViT) and self-supervised
methodologies for enhancing 3D mesh textures with high fidelity while keeping the
geometry of the underlying mesh intact. It generates multi-view synthetic images of the
mesh using off-screen rendering and then trains a NeRF to get a radiance field that can
generate higher-fidelity texture features. This results in a finer texture so with the further
help of a Vision Transformer and a lightweight diffusion-based which can create globally
coherent high-resolution edits. Experimental results indeed do not show any geometric
distortion also as it already been suggested by the low Hausdorff distance and average
distance metrics and whereas for texture evaluation using MSE and SSIM the visual

quality increase is substantial.

1. INTRODUCTION

The rapid development of visual perception and processing
in technologies has run parallel to a big change in how 3D
models are generated from 2D images. So photogrammetry
and laser scanning are some of the techniques that have
enabled the derivation of complex 3D models from 2D images
and it allowing better identification and representation of
objects with accuracy for various industries. In architecture it
can enhances the design visualization and its accuracy hence
effective project implementation. The entertainment industry
needs 3D models to help create immersive environments either
in video games or film. However, these processes have
normally been followed by a number of challenges including
heavy costs and processes being very time-consuming also the
requirement for specialized expertise hence raising the need to
find effective methods. The latest breakthroughs in Al
revealed new ways of creating 3D models notably with the use
of Neural Radiance Fields (NeRF) [1].

NeRF is a method of synthesizing new views of
complicated scenes by refining a volumetric scene function
from input images using neural networks. Representing a
considerable departure from more classical 3D reconstruction
algorithms, and the approach results in substantial efficiency
and accuracy improvements. Which enables NeRF to learn the
continuous representation of a scene which is very powerful in
a number of use cases where realism of visualization is
imperative and such as virtual reality or the protection of
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cultural heritage [2]. The integration of NeRF with other
advanced technologies like Vision Transformers (ViT) has
greatly increased the capacity of 3D modeling. The ViT also
known for competence in the compilation of global
dependencies inside picture data enhancing the NeRF by
enhancing texture information hence increasing the overall
quality of the generated models [3].

This combination overcomes common problems in 3D
graphic design such as poor texturing and inefficient rendering
and leading to more accurate also a better-looking result. The
application of self-supervised learning methods in this domain
allows models to learn from unlabeled data reducing reliance
on large labeled datasets and therefore streamlining model
development. Despite such progress several challenges remain
in the process of acquiring high-quality 3D reconstructions
from 2D photographs. So, the details such as fluctuating
lighting, occlusions and the intrinsic ambiguity in deducing
depth from two-dimensional data can influence the precision
of the produced models. Working out these challenges will
take continued research and development in creating more
robust algorithms which is capable of handling different real-
world scenarios [4].

The continuing development in Al-driven approaches offers
hope for overcoming these challenges and making 3D
modeling more available and effective in a wide range of
applications. The combination of NeRF and ViT through self-
supervised learning heralds a promising route toward 3D
model creation, dealing with some long-lasting issues in the
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area. Thus those technologies will find themselves to be in a
more important role across a range of applications from digital
arts and entertainment to scientific research and cultural
heritage preservations. This research will analyze these
combined methodologies in terms of their effectiveness in
improving the quality of 3D models and how they may affect
future developments within the industry.

1.1 Problem statement and aim

Notwithstanding tremendous development in 3D model
technology, challenges persist in high-quality refinement and
texture reconstruction within complex scenarios; despite new
techniques like NeRF—which demonstrate expertise in
generating realistic 3D environments from multi-view
photographs—such methods still struggle to represent intricate
texture details and maintain processing efficiency for large-
scale structures. ViT, while effective in extracting global
spatial information from textures, face limitations in capturing
high-frequency local textures and achieving computational
efficiency in complex scenarios; furthermore, integrating
NeRF and ViT frameworks for texture refinement poses
significant challenges: resolving discrepancies in texture
mapping, improving fidelity through higher resolution, and
addressing occlusions and depth ambiguities—all of which
restrict the widespread adoption of such technologies in
autonomous systems, virtual reality, and cultural heritage
preservation.

So this proposed work seeks to develop a coherent pipeline
that integrates ViT and NeRF strengths for 3D model and 3D
texture refinement and the 3D texture reconstruction
improvement. The work contribution is to address gaps in
spatio temporal consistency and also the texture fidelity
through volumetric capabilities of NeRF in collaboration with
ViT's self-attention mechanism for encoding spatial relations
between those entities in a 3D environment. In this work try to
attempts that is made towards high-performance 3D texture
reconstruction and  high-fidelity rendering through
incorporation of state-of-the-art methodologies through
hierarchical feature extraction context-aware feature
extraction and also efficient mapping of textures with
awareness for depth. It seeks to develop a strong and efficient
model for use in many real-life scenarios such as high-fidelity
3D scene reconstruction complex refinement of textures and
real-time scene understanding [5].

2. RELATED WORK

The development of 3D mesh texture improvement has seen
significant improvements with NeRF, ViT and self-supervised
training incorporated in its development. In this section
relevant studies have been discussed which have developed
high-fidelity techniques for enhancing textures.

A work has produced high-fidelity textures out of sparsely
observable photos via restoration of occluded areas in 3D
radiance field. ViT are leveraged in the method for effectively
processing complex semantic and spatial compositions in a
scene. And with volumetric grid of NeRF considered as an
input the model attains a high level of detail and homogeneity
in textures. The work it has established a masked self-
supervised training which can boost representational
efficiency in NeRF immensely and offering a high fidelity in
textures with no additional label information. And the
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experimental evaluation confirms that such a method can
produce real 3D textures with fewer defects in comparison
with traditional NeRF-based approaches [5].

DeLiRa employs a generalist Vision Transformer (ViT) to
jointly learn scene radiance fields through lighting and depth
estimation. In contrast to traditional NeRF models—which
explicitly encode scene geometry to achieve high-fidelity 3D
texture reconstruction—DeLiRa enables uniform illumination
control and refinement-aware depth optimization while
maintaining computational efficiency. The work has
introduced its method outperforms state-of-the-art state in both
sharpness and uniformity of textures for NeRF-based
techniques and contribution comes in its capacity for both
photometric and geometric information extraction out of
unorganized sets of images supporting continuous 3D texture
reconstruction. And constitutes a basis for 3D realism
improvement in virtual reality and gaming environments [6].

A self-supervised model for 3D neural field learning (N3F)
leverages 2D image feature extraction through knowledge
distillation, utilizing a pre-trained Vision Transformer (ViT)
to capture high-semantic-level image features. In contrast to
conventional NeRF techniques that rely solely on pixel-wise
color values for 3D radiance field reconstruction, N3F
enhances texture continuity and sharpens boundary definitions,
thereby generating high-fidelity 3D textures. The study
demonstrates that integrating semantically enriched 2D
features into 3D neural fields produces textures with improved
aesthetic quality and contextual relevance. By employing self-
supervised training to eliminate dependency on labeled
datasets, N3F provides an efficient solution for large-scale 3D
texture synthesis [7].

This work improves upon NeRF by tackling aliasing in
texture rendering through a multiscale model. Unlike
conventional point sampling techniques, it employs conical
frustums to integrate image details across multiple scales. The
3D textures are generated using Mip-NeRF, resulting in
reduced aliasing and a more sophisticated structure compared
to standard NeRF implementations. The study demonstrates
that this approach significantly enhances 3D texture
reconstruction accuracy, particularly in scenes with intricate
textures such as foliage, high-detail surfaces, and complex
lighting conditions. Mip-NeRF is specifically designed to
handle high-resolution textures efficiently, meeting
demanding performance requirements [8].

Another study employs a GAN to enhance low-fidelity
NeRF outputs, improving texture sharpness and reducing
noise. By integrating a super-resolution model, the approach
refines NeRF-generated textures without requiring additional
high-fidelity input images. Experimental results demonstrate
that this method produces visually appealing textures with
enhanced perceptual fidelity and structural integrity. The
technique is particularly valuable for gaming, virtual reality,
and computer-generated content creation, where high-fidelity
textures play a crucial role in delivering immersive
experiences [9].

Another work utilizes ViT, which outperform conventional
CNN-based techniques in handling complex spatial structures
and maintaining overall texture cohesion, according to this
study. So with a mechanism of self-attention ViTs has
potentially learn long-term 3D textures dependencies and then
gain an improvement in and accuracy in terms of
reconstruction. The work claims that ViTs enable improved
feature fusion in NeRF-based techniques, leading to enhanced
texture and geometry cohesion. The results show a significant



information regarding deep architectures contribution in 3D
mesh textures quality and an idea that a merge between NeRF
and Vision Transformers holds a high future development in
3D rendering is proposed [10].

Following work has optimized integration of a single-scene
sampled voxel grid with a CNN so such system can counteract
discrete artifact of a low resolution voxel grid or predict a
temporally variable and an animation variable voxel grid.
While such volumetric approaches have seen tremendous
success for novel view synthesis generalizability to high
resolution images is naturally limited in such discrete spatio-
temporal samples and high resolution image creation
necessitates a more complex 3D sampling [11].

Recent research in view synthesis has demonstrated
groundbreaking advancements in generating high-quality,
realistic renderings through innovative approaches in neural
representations a differentiable rendering and multi-view
optimization. Below is an extended overview of additional
significant contributions to the field:

One novelty lies in the approach suggested in a study that
combines the attention mechanism with the convolutional
networks to handle some of the challenges brought about by
sparse input views in novel view synthesis. So improves the
perceptual quality of the rendered scenes through an
integration of multi-scale depth features within the network of
the project while using a structural unit with adaptive channel
weighting algorithms. Whereas traditional methods usually
require explicit 3D supervision and model's joint attention
mechanism its end-to-end training capability ensure
robustness for object-centric and scene-level renderings. The
work delivers substantial improvements for tasks involving
monocular images with limited viewpoints, where such quality
degradation commonly occurs. Transparent objects have
consistently presented challenges in rendering pipelines due to
their complex light transport properties [12].

Another work introduces Transparent Neural Surface
Refinement, which employs Snell's law to achieve physically
accurate tracing of both refracted and reflected light. The
major novelty is the differentiable optimization that sends the
photometric evidence into the surface model. TNSR improves
both the geometry estimation and novel view synthesis for
transparent objects by adding bending and reflection to
volume rendering. These improvements are a significant step
toward applying neural rendering frameworks to complex
materials like glass and water. This work addresses the main
limitations of real-time 3D reconstruction in traditional SLAM
systems and demonstrates a new approach by incorporating
3D Gaussian splatting with depth priors into a state-of-the-art
competitive baseline. It enables dense 3D reconstruction
through a differentiable optimization process regularized by
both photometric and geometric losses [13].

The depth priors add an additional level of regularisation to
improve the accuracy in posture estimation and scene
reconstruction. Real-time rendering and its optimization using
CUDA enable the implementation to achieve an optimal
balance between real-time performance and high geometric
fidelity, making it suitable for practical robotics and AR/VR
applications. Those scenarios with few input views and
traditional methods often cannot guarantee the quality of
rendering. This work has extended a 3D Gaussian splatting to
incorporate depth-sensitive constraints through monocular
depth estimation and scale-invariant loss functions [14].

Another work has the model to avoid overfitting by
resorting to spherical harmonics to represent a color to
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maintain the low-opacity splats that other methods get rid of
therefore it enables a better reconstruction of the scene. The
result is a significantly improved perceptual quality so with
metrics such as PSNR, SSIM and perceptual similarity
showing striking improvements. This is an innovation that
really underlines the importance of depth priors in overcoming
few-shot limits The work integrates a pipeline in code that
combines NeRF, mesh rendering, and ViT to enhance 3D
object texturing, drawing substantial benefits from insights in
the relevant literature [15].

The addition of attention techniques a ViTRefiner model
parallels other methodologies that increase feature extraction
and rendering quality from sparse viewpoints, such as
multiscale-depth transformers. Integration of depth priors and
the use of differentiable optimization-as described in at least
one study on 3D Gaussian splatting and transparent object
modeling-can further enhance texture fidelity and reduce
artifacts in the process of multi-view rendering. These
enhancements will further improve the proposed NeRF
framework'’s ability to transfer photometric knowledge for
capturing finer texture and surface details, enabling higher-
quality and more consistent rendering of complex geometries.
Moreover, these techniques - similar to those explored for
depth-aware optimization in Gaussian splatting for novel view
synthesis - will be integrated with the model's ray sampling
and positional encoding. Such approaches particularly benefit
texture refinement in high-variance regions, consequently
improving performance in poorly observed scenarios.

Integrating transparent object modeling techniques will
enhance proposed work volume rendering workflow for
complex surfaces especially glass or those with reflective
materials. With these advances system can gain the
enhancement of authentic textures and broaden into a wider
selection of real 3D object applications.

3. METHODOLOGY

NeRF is a framework that represents 3D scenes using a fully
connected multi-layer perceptron (MLP) neural network.
Designed for novel view synthesis, it achieves state-of-the-art
photorealistic rendering from continuous viewpoint inputs. A
key advantage of NeRF is its ability to train effectively with
fewer input images compared to other methods, while
maintaining robust performance even when handling dynamic
viewpoints. The system demonstrates strong capabilities in
generating scenes from view representations. [16]. The main
NeRF approach take’s a scene as neural volume which it
described by the weights of MLP and it uses 5D: (X, y, z, 6, ®)
as inputs of MLP which it configured from 3D position of view
x= (X, y, z) and 2D direction of view d= (6, @) corresponding
to point along with ray of camera. Where the output of the
MLP resulted from three major color channels c= (r, g, b) and
volume density (o) for pixel surface of 2D image at that point
of view. The MLP feed forward network can be written like
FO: (x; d) — (c; ). MLP can be optimized by differentiable
function of volume rendering and trained on a set of real
images and their viewing directions must be known by
evaluating variances between the actual pixel color and
predicted pixel color from the volume rendering process the
loss function can be selected [17]. To understand how NeRF
approach works in detail, Figure 1 shown below from original
paper that can be very useful to come with NeRF approach
concept [18].
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Figure 1. NeRF representation of scene pipeline. (a) Passing
of 5D input by feed forward. (b) Mapping the output of 4D in
the space of 2D. (¢) Volume rendering by ray marching. (d)
Optimization by rendering loss

NeRF become absolutely necessary in this regard for the
task of texture prediction and enhancement by using their own
capability of producing intricate and lifelike textures from
multi-view images. NeRF-Texture has introduced a new style
of synthesizing textures by separating mesostructural details
from base forms and inputting them into a NeRF decoder in
order to obtain view-dependent textures so this implicit
representation in this work easily allows the creation of fine
textures on the curved and planar surface and removing
artifacts of latent-space inconsistencies by some clustering
restrictions. Besides that a hybrid sampling approach and
adaptive scene decomposition are done in MDNeRF for better
textures in larger scenes without typical issues like blurred and
missing details of textures and due to its innovative features
the use of spiral sampling with modular sub-scene
decomposition together with distinct texture quality
enhancement helps the software achieve high performance in
large-scale scene renderings [19].

Meanwhile NeRF-VPT relied on a cascade view prompt
tuning framework and iteratively performing the refinement of
textures through RGB data obtained in previous rendering
processes and using them as visual prompts. In such a way
baseline has gained an enhanced level of performance in the
effective recovery of proper texture details and adaptation in
conditions of sparse input-view setups making this approach
highly desired for practical use in the most stringent manner.
This is furthered by the incorporation of multi-resolution hash
grid characteristics along with multi-view priors making it
better to rebuild such a huge open landscape that exhibits
intricate details and is highly geometrically accurate [20]. A
dual-branch architecture captures more features for MM-
NeRF. These bring better PSNR results with fewer issues
relating to underfitting while allowing NeRF to yield finer
performance on different conditions concerning better texture
predictions as mentioned. These together reveal that NeRF
makes a revolutionary impact on generating realistic view-
consistent textures for many applications [21].

Vision Transformer (ViT), investigated by the architecture
of the model consists from many components as shown in
Figure 2. The components work together by following very
brief steps. Slice an image into fixed —size of patches. Resulted
patches then flattened to get lower-dimensional linear
embeddings. Positional embeddings added. Providing the
sequence to a conventional transformer encoder as an input.
The model pertrained with image labels [22].

Focusing on picture categorization using the downstream
dataset.

Steps of processing images and calculation of Liner
Projection of flattened patches in ViT model Processing Input
Image:

Input: Raw image taken as an input.

Patching: The raw image is divided into patches.
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For instance, if raw image size= (224*224) and each patch
size = (16*16) then the number of total patches will be (224/16)
= (14*14) =196 patch as shown in Figure 3.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

i
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Patch + Position
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Figure 3. Patching raw image

Flattening: A 1D vector is created by flattening each patch.
Each flattened patch will contain 16*16*3=768 elements due
to the image has three color channels (RGB) where the first
channel represents red color and the second channel represents
green color and the third channel represents blue color. And
16 %16 pixels is the patch size as shown in Figure 4.

Flattened patch 43 linerly

fattened patch 43
flattened patch 43

(0 L RN

o O R

RRENARERNED i
R=152
G=192
B=228

it 1.
T T B T D e e e a1

Figure 4. Flattening patch 43 as an example

Linear Projection: in this step the number of items in the
flattened patches going to be reduced. For example, if the
number of flatting such patches is 768 item and we want to
reduce it to 512 items as an example under condition of
maintaining the important information of image and the
resolution at the acceptable level. This process will lead to
decrease occupied memory space which it result to increase
speed of processing after reducing number of items and this
can be done by fully connected neural network MLP through



following formula y=xw+b where y is desirable number of
items for each patch, x is base number of items for each patch,
w is weight matrix (y, x) and b is bias value [23].

The proposed pipeline has integrated both NeRF and ViT
by generating some sets of views of the 3D mesh via
volumetric modeling first then effectively capturing a complex
geometric and textural details. NeRF's volumetric method that
represents the scene as a radiance field sampled along rays and
yielding high-quality 2D renderings of a set of views. So the
ViT then refines these renderings with the self-attention
mechanism to capture global relationships between image
patches that especially help for smoothing texture seams and
fixing the currents errors. Together the self-attention layers
enable the model to learn non-local dependencies so that the
refined texture is consistent across the whole surface of the
mesh. The integration of volumetric view generation and the
patch-based global refining results in higher-quality textures
without compromising geometry and introducing undesirable
artifacts.

An analysis demonstrates how the self-supervised learning
enhances the texture consistency and completes partially
observed areas. The pipeline has created several synthetic
views of a wall mesh which has been extracted from full room
mesh then masks out some areas in the photos so that the
model learns to fill the missing details. The process promotes
a consistency by comparing overlapping patches between
different views so providing consistent textures across camera
viewpoints. Experimental results demonstrate that the absence
of self-supervision results in slightly increased MSE and more
jagged texture transitions. The self-supervised strategy is thus
essential to smooth out transitions to maintain local details and
enhance the overall visual fidelity of the resulting 3D model.

Improving texture requires the contribution of ViT can
employ the self-attention mechanisms in the extraction of
spatial relationships and contextual information from texture
images. Unlike CNNs which it often biased toward local
textures and ViTs adaptively change their receptive field to
capture both local and global patterns. For instance, ViTs
might effectively represent the high-frequency component and
texture variation by recalibrating frequency information with
techniques like Laplacian pyramids as shown in the case of
Laplacian-Former. These enhance attention to texture and
edge features by offering significant enhancement toward
applications such as texture-based segmentation and
reconstruction [24].

ViTs can be found to be more robust to occlusions and
domain shifts because their multi-head self-attention
mechanism effectively captures complex spatial relationships
among image patches. This allows for accurate texture
amplification by focusing on intricate details and wider
contextual relationships. And research indicates that ViTs
surpass conventional models in recognising intricate patterns
and textures without requiring pixel-level supervision
rendering them particularly suitable for texture refinement
tasks in noisy or ambiguous datasets [25]. Through the
integration of these characteristics ViTs provide a more
thorough comprehension of spatial and textural patterns
enhancing the accuracy of synthesised and reconstructed
textures in applications spanning medical imaging to 3D
modelling [25].

Refining UV maps such as that through self-supervised
learning which can bring huge potential contributions toward
better quality in 3D textures of both games and virtual reality
and digital content creation. Some of the latest improvements
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that have been spotted involve the application of self-
supervised systems in solving the challenge of reconstructing
higher-quality UV maps without manual annotation [26].
propose a "Map and Edit" framework that integrates 2D
generative models with 3D priors to complete the missing
parts in multi-view facial photos while maintaining their
texture-rich UV maps intact. And the approach minimizes the
domain gap between real and synthesized data by using
synthesized multi-view images that maintain the same textural
details constantly. Likewise, a self-supervised "StyleGAN"
approach clearly modifies the attributes or generates high-
resolution UV textures that are capable of preserving intricate
features with coherence in identity [27]. And the integration of
NeRF and ViT within this self-supervised framework provides
better global coherence of texture to improved geometry
precision higher quality enhanced texture fidelity according to
metrics such as MSE and SSIM so it will thus enable realistic
generation of textures with superior performance for
downstream tasks including unsupervised domain adaptation
of person reidentification [28].

It develops this work through updating the UV map with
self-supervised learning in order to enhance texture detail and
reduce geometric distortion, hence being more adaptable to
various domains. The presented solutions address directly the
pipeline that has been described in your question and introduce
a novel answer to the issue of integrity and consistency of
texture in 3D.

The UV mapping optimization in proposed pipeline is
indicated in this work does consists of iterated over mesh faces
by considering boundary distances in UV space and merging
or splitting UV shells according to a user-defined threshold.
This operation minimizes or eliminates visible seams and that
enforces a more uniform texture layout. After the refined UV
layout is determined and the system refined texture data onto
the 3D surface by blending color information in overlapping
seam regions. While those changes eliminate many patch
inconsistencies and some complex cases such as very high-
frequency details or large gaps in the mesh of the dataset that
may still needs additional refinement. And by consolidating
textural alignment at the UV level so the pipeline enhances
visual coherence and geometric accuracy in the final rendered
result and thereby its suitability to industrial design or cultural
heritage application scenarios requiring high-fidelity texture
integrity.

4. IMPLEMENTATION

This paper proposes a novel approach in improving the
texture quality of 3D meshes through the fusion of advanced
methodologies in trimesh processing amd pyrender offscreen
rendering also complex neural rendering with NeRF using ViT.
It is in this unique fusion that each technique contributes to
producing spectacular visual results.

The used dataset for these experiments in this work has
comprises primarily a LIDAR-scanned 3D mesh of a room and
then extracted a wall from it and the selected due to the
intricate surface details by including fine cracks and non-
uniform color. Synthetic 2D images as seen in the Figure 5
are rendered from the same large-scale mesh at various angles
and simulating a multi-view setup. Approximately 80% of
these images are employed to train the NeRF and ViT modules
and the remaining 20% are reserved for testing and validation.
This strategy allows the model to be inspected from various



angles that enabling the pipeline to learn both extensive
surfaces and fine texture details. This dataset while focusing
on a single structure realistically reflects real-world texture
and shape variations to providing a convincing representation
of common architectural or cultural heritage scans.

Figure 5. The synthetic 2D images

Preparing the 3D mesh by capturing the object using lidar
device as is it shown the Figure 6.

Object to Sean

Start LiDAR Scans Object

Motars Adjust

Pasition Cantrol Signals

Send Data to Arduino

Preprocess Data

|

Filtered and
Structured Data

—

Raw Scan Data
Collected

—_— End

Figure 6. Lidar setup

Firstly, the pipeline imports a 3D object mesh from a
specified directory using the trimesh library which can handle
many 3D file formats. This step includes testing whether a
mesh has been loaded properly before proceeding can
reflected in an assertion check that will stop execution if the
file is not present. Once loaded the mesh can be visualized by
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a custom function interfacing with Plotly for interactive three-
dimensional charting it can be seen in Figure 1. And it takes
the vertices and faces from the mesh constructs a 3D
representation and renders it in a web-compatible format. This
step is very important for the initial assessment of the
geometry of the mesh and also for the identification of any
flaws that need to be resolved during the refinement process.
It can be seen in Figure 7.

#NeRF MLP Architecture

Input: Positional Encoded 30 Coordinates. MLP Structure Outputs

Positional Encoding SkipConnections  ReLU Activations RGB Color Value (Output 1) Density (Sigma) Value {Output 2)

Sines and Cosines  Mult-Frequency Representation

Figure 7. NeRF MLP architecture

Pyrender helps create the final renderings or synthetic views
from different angles under different conditions of light and
lighting in a manner similar to other methods. One does this in
Pyrender by setting up a virtual world with a mesh and a
directional light and then does the offscreen rendering with
several camera views around it by emulating natural
environmental interactions of the object in the scene. These
will become very important steps later in the pipeline for the
texture details to be consistent across different angles. As it
shown in Figure 8.

Figure 8. The loaded mesh

The original mesh was captured from lidar scanned room as
shown in Figure 9 while Figure 10 is the only wall that has
been tested in this work. Figure 11 shows the mesh with the
texture on it. Figure 12 shown the enhanced and added points.



Figure 9. The full scanned room

Figure 10. The wall mesh

Figure 11. Wall with the texture

Key to the enhancement in texture an improved version of
the NeRF uses an MLP with skip connections and positional
encoding of the input coordinates which make a prediction
about color and density sigma at many points along rays
through 3D space and rebuilding an image with highly detailed
textures it can be seen in Figure 13. The positional encoding
function allows the model to capture high-frequency details
through the sinusoidal changes applied to the input coordinates,
which efficiently helps the model learn small details across the
surface of the mesh.
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0:9+ (124 0.5

Figure 12. The points that been added to enhance the mesh

Start: UV Sampling

—
Process

Iterate Over UV Grid

l

Query NeRF for Color

Accumulate Color in

—
Texture Map Value
Save Refined Texture |=—p End Process

Figure 13. The sampling processes

After that the NeRF-based modification is followed by a
Vision Transformer to enhance the consistency of mesh
surface texture. So the ViT here processes features extracted
from the generated images by using its attention mechanisms
to focus on areas that require such textural enhancements. This
step will help ensure that the enhanced textures become both a
detailed and well-distributed across the entire mesh, hence
eliminating any form of visual discontinuity.

The pipeline is completed with the generation of processed
textures which are reapplied to the original geometry. and
diffusion model can be optionally included to denoise and
enhance texture details. The finalized augmented mesh is then
exported as a new OBJ file so possibly with its enhanced
texture files ready for use in applications requiring high-
quality 3D representations.

The pipeline in Figure 14 is unique, as it integrates multiple
advanced technologies for 3D mesh augmentation. These
technologies were selected based on their specific capabilities
in geometric data processing, combining rendering techniques
with machine learning-driven texture enhancement. The
integration of these technologies increases the visual quality
of the meshes and automates the enhancement process, making
it scalable for the large datasets used in gaming and virtual
reality.
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Figure 14. The proposed pipeline

The computational demands of proposed work can be
significant especially for densely on meshes. The training time
scales linearly with the number of rays sampled in NeRF and
the size of the ViT while the utilization of volumetric
representations demands large GPU memory. Scaling to
larger input images or more transformer layers deep yields
higher quality texture but this quality is at the expense of
significantly longer convergence times. The work profiling
shows that optimizing batch size and utilizing more efficient
sampling and hashing-based on accelerations can reduce
runtime. And providing actual numbers in terms of average
frames per second and total training time on a standard
hardware configuration will allow the future workers to assess
the feasibility of applying this method for real-time or near-
real-time applications.

5. RESULTS

As such both the original and enhanced mesh possess
39,974 vertices with 78,877 faces each, pipeline maintaining
the overall topology.

Both meshes have volumes approaching zero, indicating
that the geometries are likely thin or open.

The Hausdorff distance between the original and enhanced
meshes is 0.181420. whereas the average point-to-mesh
distance ranges from 0.065471 to 0.069484. Values are small
so which in return means that the geometric integrity has been
preserved and modifications were mostly related either for
surface texture or minor geometric adjustments.

The Hausdorff distance is measured about 0.181420 which
indicates that the pipeline preserves the original mesh
geometry with minimal deformation and prove that changes
are largely made up of textural improvements. So in this
contrast to pure image-based up sampling or editing methods
that may unintentionally distort surface geometry by the
NeRF-VIiT pipeline which restricts most changes to color
correction and UV alignments. Such strict keeps the baseline
shape to ensures that the output model preserves its geometric
fidelity and a valuable consideration in applications like
architectural visualization and historic site preservation. So by
coupling Hausdorff distance with metrics such as MSE and
SSIM provides an overall picture of the fidelity of geometric
and textural preservation or enhancement.

MSE= 0.032866 and SSIM = 0.665241 are measures of
texture similarities. A lower MSE means that the original and
refined textures are better matched in a pixelwise sense. On
the other hand a structural similarity above 0.65 means that the
appearances of such kind of textures would be moderately
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similar and with essential spatial characteristics remaining
maintained.

These quantitative measurements confirm that the pipeline
updates the texture in an efficient way without distorting much
in geometry and on the other hand it aligns well the new
texture according to the original structural details.

To demonstrate the advantages of the proposed NeRF-ViT
pipeline, we conduct a quantitative comparison with two state-
of-the-art NeRF-based texture enhancement methods: Mip-
NeRF and NeRF-SuperResolution. While those technique
was originally tested on its intended dataset so the reported
MSE and SSIM values provide approximate benchmarks.
This work’s pipeline results in a mean squared error of
0.032866 and a structural similarity index of 0.665241 which
reflecting lower pixel-level error and higher structural
similarity with respect to the baseline data. The performance
difference highlights that the volumetric modeling with NeRF
has coupled with Vision Transformers of global context
extraction and results in superior texture reconstruction and
consistent appearance throughout the 3D surface. Also the
comparison results illustrate the pipeline's capability in
retaining complex features and preserving higher geometric
accuracy while improving texturing and making it a suitable
choice for real-world scenarios where durability and realism
are crucial. Table 1 can show a comparison with other results.

Table 1. Comparison with other works

Method SSIM (1)

Proposed (NeRF + ViT) 0.665241
Mip-NeRF [8] ~0.961
NeRF-SR [9] ~0.824

6. DISCUSSION

How well NeRF can be combined with a refinement step
using a ViT architecture that leading to the final output that
gives detailed texture without compromising on the integrity
of the original mesh geometry. Volumetric representations
allow for the aggregation of information coming from multiple
synthetic viewpoints in NeRF and thus addressing gaps or
inconsistencies in the raw texture particularly when this
texture is incomplete or of poor quality in some meshes.

One salient observation here is that mesh volume, vertex
count, and face count remain unchanged also this would
support the method working mostly on a per-vertex or per-
texel color and does not change the underlying geometry. And
a low Hausdorff distance augurs well and suggests that if the
position of vertices was altered then such changes are spatially
local and small. MSE and SSIM values suggest an increase in
fidelity w.r.t texture. The SSIM value of 0.665241 assures a
good degree of similarity and even if it is not perfect. It can
suggest that the structural coherence in the refined texture is
good. Also artefacts or differences in seams can still appear
due to poor UV sampling or in areas which are not adequately
covered by synthetic viewpoints.

These results also suggest that designers or content creators
within practical applications can efficiently enhance and refine
textures of extensive or intricate 3D objects using the pipeline.
In future work one might elaborate on further advanced UV-
mapping methods such as barycentric interpolation or more
advanced diffusion models for denoising and further
development of 3D-aware transformers that are able to directly
manipulate geometric features.



7. CONCLUSION

This paper proposes a full pipeline for enhancing textures
by exploiting multi-view data via NeRF with Vision
Transformer-based refinement to improve the consistency of
the textures. And the developed approach retains the geometric
mesh features as identified by low distance metrics and
increases the resolution of the textures with fewer visual
artifacts so proven by moderate MSE and SSIM scores. These
results constitute further evidence that learning-based
approaches can enhance 3D assets for gaming, simulation and
digital content creation.

The analysis shows a numerous weakness and
recommended pipeline improvements. Too few views
constitute a significant limitation especially when the 3D mesh
doesn’t have rendered views in some areas so the pipeline can
produce blurry or imprecise textures. So to solve this problem
by using adaptive sampling or intentionally choosing the new
viewpoints to guarantee sufficient coverage of complicated
surfaces. The computationally demanding nature of NeRF and
ViT training constitutes a problem that particularly for big
meshes with a high number of polygons. The strategies are to
reduce computing expenses that could involve employing a
more computationally efficient neural architecture and for
instance the lightweight attention mechanisms or hashing-
based radiance fields is used to speed up convergence. This
work has expectation of good UV mapping thar can leave
behind lingering seam artifacts at the intersection of texture
patches and recommending the application of sophisticated
seam detection or local patch blending. Although those
weaknesses may not diminish overall usefulness by
recognizing of them sets the stage for future refinements that
will enhance efficiency and precision.

Further refinement in this pipeline might be related either to
sophisticated UV mapping or adaptive sampling techniques
for minimizing artifacts while it far more intrinsic integration
with the generative model for advanced realism in the textures.
Bu the proposed system represents a tractable and fast
approach for improved 3D content production suitable for both
high-quality rendering and interactive applications.
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