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Atherosclerosis is a major risk factor for cardiovascular diseases, and its diagnosis is 
crucial at an early stage. carotid ultrasonography is the current primary diagnostic method 
for atherosclerosis. However, carotid ultrasonography has problems in the early detection 
and evaluation of the mechanical properties of the arterial wall. To address these issues, 
waveform analysis focusing on pulse wave propagation has garnered attention. Despite its 
potential, few studies have performed pulse wave separation in an environment where 
pulse waves interfere with each other, as in vivo, and evaluated the reflected waveforms 
using three-dimensional fluid–structure interaction (FSI) analysis. In this study, pulse wave 
propagation was reproduced to investigate the relationship between local changes in the 
mechanical properties of the arterial wall and the reflected waveforms. Using a three-
dimensional cylindrical model, coupled FSI analysis was performed with commercial 
codes by Altair. The results showed that an increase in Young’s modulus amplified the 
reflected wave amplitudes and elongated the wavelengths. The results also showed trends 
similar to the theoretical reflection coefficients, particularly for larger changes in Young’s 
modulus, which closely aligned with the theoretical values. These findings indicate that 
evaluating reflected waves can lead to estimating the local mechanical properties of the 
arterial walls. 
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1. INTRODUCTION

From the perspective of mechanical engineering,
atherosclerosis is characterized by the thickening of the tunica 
media caused by the infiltration of lipids between the intima 
and media based on the low shear stress hypothesis [1]. This 
process leads to geometric and mechanical changes in the 
arterial wall, which are observed as local thickening, stenosis, 
or stiffening. Atherosclerosis is a crucial risk factor for 
cardiovascular diseases, such as myocardial infarction and 
stroke. Atherosclerosis often presents with few noticeable 
symptoms; thus, diagnosis at an early stage is crucial. 

Atherosclerosis develops in specific local sites, particularly 
the carotid artery [2]. The current primary diagnostic method 
for atherosclerosis leverages carotid ultrasonography [3]. 
However, carotid ultrasonography poses limitations in early 
detection and mechanical evaluation. Early detection is 
hindered because individuals rarely seek medical attention if 
they are without symptoms, leading to delays in the diagnosis 
of atherosclerosis with few noticeable symptoms. Therefore, 
an affordable and user-friendly diagnostic approach that 
facilitates routine monitoring at home without requiring 
hospital visits is essential. From a mechanical perspective, 
ultrasonography and other imaging modalities [4, 5] focus 
mainly on geometric changes, which renders evaluation of 
mechanical properties such as arterial stiffness challenging. 

For example, an ultrasound-based diagnostic technique has 
been proposed to estimate tissue stiffness by applying a certain 
stress to the tissue and evaluating displacement and strain 
using two-dimensional ultrasound image correlation [6]. 
However, since the stress distribution is not known clearly, 
Young’s modulus cannot be quantitatively determined, and it 
is difficult to evaluate localized mechanical properties. 
Because atherosclerosis affects mechanical characteristics, 
assessments must incorporate geometric and mechanical 
perspectives. 

Waveform analysis of pulse waves, which are vibrations of 
the arterial wall induced by cardiac contraction, shows 
promise in addressing these issues. The propagation of the 
pulse waves toward the periphery is referred to as the pulse 
wave propagation phenomenon. Pulse wave measurements 
can be easily performed by attaching cuffs to the upper arm 
and ankle. Similar to blood pressure measurement, this is a 
simple and non-invasive method that can be easily conducted 
at home. Moreover, the pressure waveforms derived from 
these measurements contain mechanical responses, suggesting 
that waveform analysis has the potential to enable quantitative 
assessment of arterial stiffness. Furthermore, previous studies 
have indicated that the phase inversion of reflected pressure 
waveforms differs between aneurysms and stenotic regions 
[7], implying that waveform analysis can provide insights into 
not only mechanical properties but also geometric changes in 
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the artery. Therefore, waveform analysis is regarded as a 
diagnostic method of atherosclerosis from a mechanical 
perspective. 

Pulse waves naturally separate into transmitted (forward-
traveling) and reflected (backward-traveling) waves at 
mechanical or geometric discontinuities. Atherosclerosis, 
which develops in local areas, serves as a point of 
discontinuity. Consequently, the waveforms of the reflected 
waves are thought to indicate the mechanical (stiffness) and 
geometric (stenosis, thickening, or aneurysms) characteristics 
of the artery. Evaluating the reflected wave components may 
thus facilitate the identification of the location, severity, and 
mechanical properties of atherosclerotic lesions. 

Given the complex environment of the in vivo vasculature, 
which includes numerous discontinuities such as bifurcations 
and tapering, forward and backward wave components co-
exist. Therefore, to evaluate the reflected wave alone, the pulse 
wave should be separated into forward and backward 
components. Parker and Jones [8] proposed a method of 
separating pulse waveforms into forward and backward 
components using one-dimensional analysis. Fukui et al. [7] 
conducted three-dimensional pulse wave propagation analyses 
and confirmed that the reflected waves from stenoses and 
aneurysms have different phases. Despite extensive studies on 
pulse wave propagation [9-11], very few studies have 
employed three-dimensional fluid–structure interaction (FSI) 
analyses to separate pulse waves and evaluate reflected 
waveforms. Additionally, only a limited number of studies 
have investigated the effects of fluid viscosity and non-
oscillatory components, which cannot be considered in one-
dimensional analysis, on pulse waveforms. These aspects 
remain largely unexplored. Thus, in the present study, we 
performed pulse wave propagation analysis using three-
dimensional FSI and investigated the relationship between the 
local changes in the mechanical properties of the arterial wall 
and the reflected waveforms. Furthermore, this study aimed to 
establish evaluation indices that can estimate the degree of 
atherosclerosis. 

 
 

2. METHODS 
 

2.1 Computational model 
 
To simulate the localized changes in the mechanical 

properties of the arterial wall, a three-dimensional straight 
cylindrical model was adopted (Figure 1).  

The target artery was the aorta, with a wall thickness of 2 
mm and an internal radius of 20 mm. The cross-section of the 
computational model was defined in the z-x plane, with the y-
axis aligned with the longitudinal direction. In the region 0 mm 
≤ y ≤ 1,000 mm, Young’s modulus was set to E=0.5 MPa, 
whereas in the region 1,000 mm ≤ y ≤ 2,000 mm, three models 
with E = 1.0, 2.0, and 3.0 MPa were used. Varying Young’s 
modulus locally reproduces the changes in the mechanical 
properties characteristic of atherosclerosis. The total length of 
the model (L = 2,000 mm) prevented interference between the 
reflected waves generated at the outlet boundary and the 
discontinuity at 1,000 mm. In addition, the arterial wall in the 
computational model was assumed to be a linear elastic 
material with a Poisson’s ratio of ν = 0.45. Blood viscosity was 
set to μ = 4.0 × 10-3 Pa.s and the density to ρ = 1,000 kg/m3, 
and pseudocompressibility was introduced to stabilize the 
computations [12], with the sound speed set to c = 100 m/s. 

The fluid and solid regions had 1,002 for the fluid region and 
248 elements in the cross-section, respectively. The 
longitudinal resolution was set at 5-mm intervals, resulting in 
a total of 325,402 elements, including the inlet and outlet 
cross-sections. 
 

 
(a) Uniform artery model 

 
(b) Cross section 

 
Figure 1. Computational model 

 
2.2 Governing equations 

 
To solve the FSI using the arbitrary Lagrangian–Eulerian 

method, commercial software from Altair Engineering Inc. 
(fluid, AcuSolve; structure, OptiStruct) was employed. The 
equilibrium equation for the structure was solved using the 
generalized-α method Eqs. (1)-(3). 
 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 
𝑀𝑀�(1 − 𝛼𝛼𝑚𝑚)𝑎𝑎𝑡𝑡+∆𝑡𝑡 + 𝛼𝛼𝑚𝑚𝑎𝑎𝑡𝑡� + 𝐶𝐶𝑢𝑢𝑡𝑡+∆𝑡𝑡 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+𝛼𝛼∆𝑡𝑡 

(1) 

 
𝑢𝑢𝑠𝑠𝑡𝑡+∆𝑡𝑡 = 𝑢𝑢𝑠𝑠𝑡𝑡 + ∆𝑡𝑡((1 − 𝛾𝛾)𝑎𝑎𝑡𝑡 + 𝛾𝛾𝑎𝑎𝑡𝑡+∆𝑡𝑡) (2) 

 

𝑥𝑥𝑡𝑡+∆𝑡𝑡 = 𝑥𝑥𝑠𝑠𝑡𝑡 + ∆𝑡𝑡𝑢𝑢𝑠𝑠𝑡𝑡 +
1
2
∆𝑡𝑡2�(1 − 2𝛽𝛽)𝑎𝑎𝑡𝑡 + 2𝛽𝛽𝑎𝑎𝑡𝑡+∆𝑡𝑡� (3) 

 
For the fluid, the Navier–Stokes equation Eq. (4) and the 

continuity equation Eq. (5) with pseudo-compressibility were 
employed. 
 

𝜌𝜌
𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝜕𝜕

+ (𝜌𝜌𝑢𝑢�⃗ ∙ 𝛻𝛻)𝑢𝑢�⃗ = −𝛻𝛻𝛻𝛻 + 𝛻𝛻 ∙ 𝜏𝜏 (4) 

 

𝛽𝛽𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ 𝑢𝑢�⃗ = 0,𝛽𝛽𝑇𝑇 =
1
𝜌𝜌𝑐𝑐2

 (5) 

 
2.3 Boundary conditions 

 
The ends of the arterial wall were fixed, and no-slip 

conditions were applied to the wall Eqs. (6) and (7). 
 

𝑢𝑢𝑠𝑠 = 𝜔𝜔𝑠𝑠 = 0 (6) 
 

𝑥𝑥𝑓𝑓 = 𝑥𝑥𝑠𝑠 (7) 
 

At the inlet, a steady uniform flow with a velocity of 
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0.1 m/s perpendicular to the cross-section was imposed as the 
base flow, upon which a single half-sine wave with a period of 
0.1 s was superimposed (Figure 2). The amplitude of the half-
sine wave was 0.1 m/s, and the simulation time was set to 
0.6 s . The cross-sectional mean values of the velocity and 
pressure were sampled at 10-mm intervals along the 
longitudinal direction, with a sampling frequency of 10,000 
Hz to draw the waveforms. 
 

 
 

Figure 2. Inlet boundary condition 
 

2.4 Separation of the pulse waves 
 
Based on the characteristic equations of one-dimensional 

analysis assuming a homogeneous, inviscid, and 
incompressible fluid flow in an elastic tube, Parker and Jones 
[8] proposed a method to separate pulse waves into forward 
and backward components, this separation method was 
employed in this study. Four patterns exist for the relationship 
between pressure and velocity (Table 1). The velocity is 
determined by whether the pressure is higher or lower than the 
reference pressure (compression or expansion) and whether 
the pressure wave is forward or backward. For example, a 
forward compression wave increases the velocity. The phase 
of the pressure wave is determined by the acoustic impedance 
changes at discontinuities [13]. Pressure waves exhibit phase 
inversion in aneurysms, whereas their phase remains 
unchanged in stenotic regions [7, 14]. In these cases, the 
pressure and velocity waves become antiphase. Assuming a 
one-dimensional analysis, the pressure and velocity 
waveforms can be expressed as the sum and difference of the 
forward and backward components. This makes it possible to 
separate the waves into their forward and backward 
components. In this study, the characteristic impedance 𝑍𝑍 =
 𝜌𝜌𝜌𝜌  was employed, and the pressure and velocity were 
separated into forward and backward components using Eqs. 
(8)-(11):  
 

𝑃𝑃+ =
𝑃𝑃 + 𝑍𝑍𝑍𝑍

2
 (8) 

 

𝑈𝑈+ =
𝑈𝑈 + 𝑃𝑃

𝑍𝑍
2

 (9) 

 

𝑃𝑃− =
𝑃𝑃 − 𝑍𝑍𝑍𝑍

2
 (10) 

𝑈𝑈− =
𝑈𝑈 − 𝑃𝑃

𝑍𝑍
2

 (11) 

 
Table 1. Relation between the pressure wave and flow 

velocity 
 

 Forward Backward 
Compression Velocity increases Velocity decreases 

Expansion Velocity decreases Velocity increases 
Notes: This table indicates increases or decreases in the velocity. A forward-
traveling compression wave increases the velocity, whereas a backward-
traveling expansion wave similarly increases the velocity. 
 

In addition, the pulse wave velocity (PWV) [15] was 
determined using the PU loop method [16, 17]. However, in 
one-dimensional analysis, the arterial wall is assumed to be 
homogeneous, whereas in actual arteries, atherosclerosis 
occurs locally. Additionally, the pressure and velocity are 
assumed to be uniform across the cross-section, significantly 
simplifying the analysis. In contrast, three-dimensional 
analysis accounts for fluid viscosity, leading to non-uniform 
distributions of pressure and velocity across the cross-section. 
Moreover, the attenuation and dispersion of waves due to 
decreased velocity near the wall, caused by fluid viscosity, are 
typically neglected in one-dimensional analysis. As a result, 
discrepancies between the theoretical values obtained from the 
one-dimensional method and the waveform observed in three-
dimensional analysis are expected. 

 
2.5 PU loop method 

 
The PWV was calculated from the slope of the pressure–

velocity relationship during the early phase of contraction 
using Eq. (12). The foot-to-foot method and the cross-
correlation method are susceptible to variations in waveform 
due to wave superposition beyond the 800 mm position, where 
incident and reflected waves coexist. In contrast, the PU loop 
method estimates PWV based on the slope of pressure and 
velocity in the early phase of contraction, making it less 
affected by waveform alterations due to wave superposition. 
Additionally, previous experiments using canine arteries [18] 
have demonstrated the preference for the PU loop method in 
PWV estimation, supporting its adoption in this study. 

 

𝑐𝑐 = ±
𝑑𝑑𝑑𝑑±

𝜌𝜌𝑑𝑑𝑑𝑑±
 (12) 

 
2.6 Evaluation indices 

 
This study focused on the waveform characteristics to 

compare the reflected waves for varying Young’s modulus. 
The evaluation considered the attenuation and dispersion of 
the waveform, normalized by the inlet waveform. Attenuation 
was assessed using the amplitude ratio of each waveform. For 
this evaluation, the peak amplitude ratio of each waveform 
was employed. The theoretical reflection coefficient 𝑅𝑅𝑡𝑡 for the 
amplitude ratio of the incident and reflected pressure waves 
was estimated using Eq. (13) [19], where 𝑐𝑐0  and 𝑐𝑐1  are the 
PWVs in the regions 0 mm ≤ y ≤ 1,000 mm and 1,000 mm ≤ 
y ≤ 2,000 mm, respectively. These velocities were calculated 
using the Moens–Korteweg [20] in Eq. (14), which describes 
the PWV in ideal elastic tubes.  
 

𝑅𝑅𝑡𝑡 =
𝑐𝑐1 − 𝑐𝑐0
𝑐𝑐1 + 𝑐𝑐0

 (13) 
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𝑐𝑐0,1 = �
𝐸𝐸ℎ
2𝜌𝜌𝜌𝜌

 (14) 

 
Dispersion was evaluated using the wavelength ratio, which 

was defined as the time difference at the extrema adjacent to 
the peak of the waveform. 
 
 
3. RESULTS 

 
3.1 Validation 

 
The physical phenomena reproduced in the three-

dimensional straight cylindrical model used in this study were 
validated. The validation employed homogeneous cylindrical 
models measuring 1,000 mm long with wall thicknesses h = 2, 
3, and 4 mm, focusing on single-pulse wave propagation and 
the amplitude of reflected waves generated at the outlet 
boundary. Figure 3 shows the separated forward and backward 
components of the pulse wave at 950 mm near the outlet. The 
measured pulse wave is represented by a solid line, whereas 
the separated wave components are shown with dashed lines. 
In Figure 3(a) and 3(b), the pressure and velocity waveforms 
closely matched their forward components until the reflected 
wave (backward component) appeared. In addition, the phase 
inversion between the pressure and velocity reflected waves 
indicates the applicability of the one-dimensional separation 
method to three-dimensional analysis. 

 

 
(a) Separation of the flow pulse wave at 950 mm 

 
(b) Separation of the pressure pulse wave at 950 mm 

 
Figure 3. Separation of the pulse waves near the outlet 

boundary 
 

Figure 4(a) presents the time variations in forward pressure 
wave components at various longitudinal positions, whereas 
Figure 4(b) shows the backward components. Figures 5(a) and 
5(b) show the amplitude ratios of the forward and backward 
pressure waves at the outlet boundary for varying wall 
thicknesses, respectively.  

The results in Figure 4(a) confirm the propagation of the 
pressure pulse waves from the inlet to the periphery. Figure 
4(b) demonstrates the generation of the reflected waves at the 
outlet boundary, accompanied by phase inversion. As shown 
in Figure 5(a), considering the linear elasticity of the arterial 
wall, the fluid viscosity predominantly governs the waveform 
attenuation. However, no significant differences were 
observed with changes in the wall thickness, indicating that the 
fluid viscosity does not affect waveform evaluation. Similar 
trends were observed for the reflected waves at the outlet 
boundary (Figure 5(b)). These findings confirm that the pulse 
wave propagation phenomena were successfully reproduced, 
and this validated the physical accuracy of the analysis. 

 

 
(a) Forward pressure wave at each point in the 𝑦𝑦 direction 

 
(b) Backward pressure wave at each point in the 𝑦𝑦 direction 

 
Figure 4. Separation of the pressure waves 

 

 
(a) Amplitude ratio of the forward pressure wave at each 

point in the 𝑦𝑦 direction 

 
(b) Amplitude ratio of the backward pressure wave at each 

point in the 𝑦𝑦 direction 
 

Figure 5. Amplitude ratio of the pressure waves 
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3.2 Evaluation of reflected waves induced by mechanical 
property changes 

 
The effects of local changes in the mechanical properties on 

the amplitude and wavelength of the reflected waves were 
investigated. Figure 6 illustrates the propagation of reflected 
waves along the arterial wall due to changes in the mechanical 
properties. The figure also shows the results of changing the 
Young’s modulus from E = 0.5 MPa to 3.0 MPa and represents 
the waveforms at various positions along the y-axis. In 
addition, Figure 6(a) depicts the cross-sectional average 
pressure, whereas Figure 6(b) represents the color-coded 
distribution of the cross-sectional average velocity along the 
y-axis. At mechanical discontinuities characterized by 
increased Young’s modulus, positive reflection of the pressure 
waves and negative reflection of the velocity waves were 
observed. 

 

 
(a) Reflection of the pressure pulse waves 

 
(b) Reflection of the velocity pulse waves 

 
Figure 6. Reflection of pulse waves at mechanical 

discontinuities  
 

Figure 7 shows the separated pulse wave components at 950 
mm for a model with E = 0.5 MPa in 0 mm ≤ y ≤ 1,000 mm 
and E = 3.0 MPa in 1,000 mm ≤ y ≤ 2,000 mm. Figure 7(a) 
demonstrates the positive phase of the backward pressure 
wave components at discontinuities with increased Young’s 
modulus, consistent with the theoretical reflection coefficient 
𝑅𝑅𝑡𝑡. Figure 7(b) indicates the negative phase of the backward 
velocity wave components, aligning with the concept that 
backward compression waves reduce velocity (Table 1). The 
agreement between the forward components and the slopes of 
the pressure and velocity waveforms before reflection 
confirms the separability of the pulse waves into the forward 
and backward components. 

 
(a) Separation of the pressure pulse waves at the 950 mm 

position 

 
(b) Separation of velocity pulse waves at the 950 mm 

position 
 

Figure 7. Separation of pulse waves near mechanical 
discontinuities 

 
Figure 8 presents the relationship between changes in 

Young’s modulus and the amplitude of the reflected waves. 
An increase in Young’s modulus led to higher reflected wave 
amplitudes, as this can be attributed to increased larger 
acoustic impedance differences. Figure 9 compares numerical 
results with theoretical values, showing similar trends. The 
computed values represent the average amplitude ratio of the 
reflected waves in the region 0 mm ≤ y ≤ 1,000 mm, the error 
bars indicate the standard deviation, and the dashed line 
represents the theoretical reflection coefficient. The slightly 
higher numerical values can be attributed to the three-
dimensional analysis, which accounts for arterial wall 
elasticity and nonlinear effects, in contrast to the theoretical 
one-dimensional analysis. These findings propose that the 
measured pulse waves in practical settings may also exhibit 
slightly higher values than the theoretical predictions.  

 

 
 

Figure 8. Amplitude ratio of backward pressure waves 
associated with changes in Young’s modulus 

 
Table 2 confirms that changes in Young’s modulus from 0.5 
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to 3.0 MPa yield results closer to the theoretical values. 
However, small reflected waves are more susceptible to 
influences such as no oscillatory components and boundary 
conditions. Therefore, for small changes in Young’s modulus, 
the discrepancies with the theoretical values increased in the 
present results. 

 

 
 

Figure 9. Comparison of the amplitude ratio of the reflected 
waves with theoretical values 

 
Table 2. Error rate compared with the theoretical values 

 
 E=1.0 

MPa 
E=2.0 
MPa 

E=3.0 
MPa 

Reflection coefficient 
Rt 0.1716 0.3333 0.4202 

Amplitude ratio 0.2049 0.3997 0.4616 
Error rate 19.40% 19.92% 9.86% 

Notes: We calculated the error rate by comparing the computed average to the 
theoretical value and then dividing the difference by the theoretical value. 

 
Finally, Figure 10 illustrates the relationship between the 

changes in Young’s modulus and the wavelength of the 
reflected waves. Similar to the amplitude ratios, the 
wavelength ratios increased with higher Young’s modulus. 
This can be attributed to the increased PWVs resulting from 
the higher Young’s modulus, which elongates the 
wavelengths. However, for small changes in Young’s 
modulus, nonoscillatory components interfere with the 
reflected waves. This makes accurate wavelength estimation 
more challenging, emphasizing the need for alternative indices 
or refined definitions of the wavelength to evaluate waveform 
dispersion effectively. 

 

 
 

Figure 10. Wavelength ratio of backward pressure waves 
associated with changes in Young’s modulus 

 
These results demonstrate that the reflected waveforms 

contain information about changes in the mechanical 
properties of the arterial wall. Evaluating reflected waves is a 
promising approach for estimating the mechanical 

characteristics of the arterial wall. 
 
 

4. CONCLUSIONS 
 
In this study, we reproduced single-pulse wave propagation 

phenomena in a three-dimensional straight cylindrical model 
and investigated the relationship between the local changes in 
the mechanical properties of the arterial wall and the reflected 
waveforms at discontinuities. The results showed that larger 
increases in Young’s modulus corresponded to greater 
reflected wave amplitudes and longer wavelengths, likely due 
to larger impedance differences. The numerical results 
exhibited trends similar to the theoretical reflection 
coefficients, with smaller discrepancies for larger changes in 
Young’s modulus. 

Conversely, small changes in Young’s modulus resulted in 
a greater relative influence of nonoscillatory components and 
boundary conditions on the reflected waveforms. Such 
interference makes it more difficult to estimate the wavelength 
precisely. These findings suggest that reflected wave analysis 
is a viable method for estimating the mechanical properties of 
arterial walls. However, additional indices or refined methods 
for determining the wavelength are necessary for evaluating 
dispersion accurately. 
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NOMENCLATURE 
 
a acceleration, m. s−2 
c pulse wave velocity 
𝑐𝑐𝑠𝑠 speed of sound, m. s−1 
C viscous damping, kg. s−1 
E Young’s modulus, Pa 
f total load, N 
h wall thickness of the blood vessel wall, m 
K stiffness matrix, N. m−1 
L axial length of the model, m 
M mass, kg 
p pressure, Pa 
P pressure wave, Pa 
r inner radius of the blood vessel wall, m 
𝑅𝑅𝑡𝑡 dimensionless reflection coefficient 
t time, s 
∆𝑡𝑡 time step width, s 
u velocity, m. s−1 
𝑢𝑢�⃗  flow velocity, m. s−1 
U velocity wave, m. s−1 
x displacement, m 
Z characteristic impedance, kg. m−1. s−1 
 
Greek symbols 
 
𝜌𝜌 density, kg. m−3 
𝜈𝜈 Poisson’s ratio 
𝜇𝜇 blood viscosity, Pa. s 
𝛼𝛼𝑚𝑚 dimensionless mass approximation parameter 
𝛽𝛽 dimensionless newmark beta parameter 
𝛽𝛽𝑇𝑇 pseudo-compressibility coefficient, Pa−1 
𝛾𝛾 dimensionless newmark gamma parameter 
𝜏𝜏 viscous stress tensor, Pa 
 
Subscripts 
 
t previous time when displacement increment is 

solved 
t+h current time 
ext external force 
int internal force 
s structure 
f Fluid 
+ Forward 
- backward 
0 0 mm ≤  𝑦𝑦 ≤  1,000 mm 
1 1,000 mm ≤  𝑦𝑦 ≤  2,000 mm 

 
 

APPENDIX 
 
The effect of the amplitude of the half-sine wave on the 

results was examined in the three-dimensional straight 
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cylindrical model employed in this study. For this verification, 
a homogeneous straight cylindrical model with a length of 
1000 mm and a wall thickness of h=2 mm was adopted, as in 
Section 3.1. The analysis focused on the propagation of a 
single pulse wave and the amplitude of the reflected wave 
generated at the outlet boundary. The amplitude of the half-
sine wave was varied in four conditions, including those used 
in the main text (0.10 m/s), with values of 0.05, 0.15, and 0.20 
m/s. Figure A1 illustrates the amplitude of the reflected wave 
in the region 800 mm ≤ y ≤ 1,000 mm near the outlet for each 
inlet velocity condition. As shown in Figure A1, the amplitude 
ratio increased with increasing inlet velocity. However, no 
significant difference was observed for amplitudes of 0.10 m/s 
or higher. Given that the maximum blood flow velocity in the 
human aorta generally exceeds 0.10 m/s and is unlikely to be 
as low as 0.05 m/s, the variation in amplitude is considered to 

have minimal influence on the results presented in Section 3.2. 

Figure A1. The effect of the amplitude of the half-sine wave 
on the amplitude of the reflected wave 
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