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This study presents a machine learning framework for predicting gold prices by integrating 

diverse financial indicators, including the NASDAQ-100 index (^NDX), Bitcoin (BTC-

USD), and gold futures (GC=F). Using daily high prices from February 2020 to May 2024, 

the approach incorporates robust preprocessing techniques such as the Box-Cox 

transformation and Principal Component Analysis (PCA) to address skewness, kurtosis, 

and multicollinearity, to reduce dimensionality while retaining 96.37% of the variance. A 

Genetic Algorithm-optimized Multi-Layer Perceptron (MLP) regression model achieved 

high predictive accuracy with an R² score of 0.98, an RMSE of 23.48 USD, and an MAE 

of 17.38 USD. Permutation importance analysis highlighted PC1 and PC2 as the most 

significant predictors, collectively capturing over 96% of the dataset's variance. The results 

emphasize the effectiveness of integrating stock indices, cryptocurrencies, and traditional 

financial variables for gold price prediction. This research offers practical applications for 

investors and policymakers by offering insights into market trends, enhancing decision-

making, and bridging traditional and emerging markets in financial forecasting. 
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1. INTRODUCTION

The prediction of gold prices is a crucial aspect of financial 

forecasting, given gold's role as a reliable investment and a key 

economic indicator. Traditional forecasting models have 

largely depended on macroeconomic indicators and historical 

price data.  

However, with the emergence of digital currencies and 

advanced machine learning techniques, opportunities have 

arisen to enhance prediction accuracy by integrating diverse 

financial variables, including cryptocurrencies, stock indices, 

and commodity prices. This section reviews the literature on 

gold price prediction, emphasizing various methodologies, 

their comparative performance, and the growing incorporation 

of novel financial indicators. 

Machine learning techniques have been extensively applied 

across diverse fields for predictive modeling, including 

financial and material science applications. For instance, 

previous studies have demonstrated the integration of machine 

learning with physical simulation tools like COMSOL 

Multiphysics to design sensors for water salinity prediction 

and diesel adulteration detection, leveraging genetic 

algorithms and neural networks for optimal parameter tuning 

[1, 2]. These applications underscore the potential of 

combining domain-specific simulations with machine learning 

to achieve high predictive accuracy and robust performance in 

dynamic environments. Similarly, hybrid methodologies 

incorporating neural networks and optimization algorithms 

have shown promise in enhancing predictive capabilities, 

particularly when addressing high-dimensional data as in our 

work [3, 4]. The integration of these advanced techniques 

serves as a foundation for furthering the scope of predictive 

modeling in financial and engineering domains. 

Early studies in gold price prediction relied on conventional 

statistical and machine learning models. Weng et al. [5] 

introduced a genetic algorithm regularization online extreme 

learning machine (GA-ROSELM), which incorporated 

variables such as crude oil and silver prices. This model 

outperformed traditional approaches, including ARIMA, 

support vector machines (SVM), and extreme learning 

machines (ELM). Similarly, Chandar et al. [6] demonstrated 

the superiority of ELM over other models by integrating data 

from gold, silver, crude oil, and the S&P 500 index. 

Complementing these findings, studies comparing LSTM, 

random forest regression, and linear regression identified 

LSTM models as particularly effective for handling historical 

price data due to their ability to capture temporal dependencies 

[7]. 

Machine learning techniques have further diversified 

prediction methodologies. The association rules algorithm and 

the G,M(1,1) model effectively mined influential factors from 

recent data for precise predictions [8]. Livieris et al. [9] 

extended these efforts by developing a hybrid deep learning 

model combining convolutional neural networks (CNN) and 

LSTM layers. This hybrid model improved performance by 

effectively capturing both short and long term dependencies. 

Random forest regression has also emerged as a popular 

choice, with studies highlighting its superior accuracy over 

decision trees and linear regression [10]. 

Comparative analyses of machine learning models have 
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provided valuable insights. Yang et al. [11] evaluated ANN, 

LSTM, and SVR models, finding that SVR excelled in 

incorporating cryptocurrency data into gold price prediction. 

Other research revealed that ARIMA outperformed linear 

regression and random forest regression for predicting gold 

prices [12]. The integration of silver prices and S&P 500 

indices in random forest regression models has further 

enhanced prediction accuracy [13]. Advanced hybrid models, 

such as CNN-RNN combinations, have also been explored, 

with RNN demonstrating notable performance in gold price 

forecasting [14, 15]. Studies comparing machine learning 

models, including linear regression, random forest, and SVM, 

found SVM to perform best with an R² index near 0.99, 

emphasizing eigenvalues' impact on prediction accuracy [16]. 

A review highlighted XGBoost with SHAP values as highly 

accurate and interpretable, while ANN effectively forecasted 

gold price fluctuations [17-19]. Ensemble models, such as 

ARIMAX and Extra Tree Regressor, outperformed individual 

methods, demonstrating strong predictive accuracy [20, 21]. 

Sadorsky [22] employed tree-based classifiers, including 

bagging, stochastic gradient boosting, and random forests, to 

predict the price direction of gold and silver ETFs, with 

random forests demonstrating the highest accuracy. 

Additionally, various ensemble models, such as a hybrid 

bagging ensemble, were evaluated to forecast the future 

momentum of gold and silver stock prices, achieving notable 

prediction accuracy [23]. These results underscore the 

growing relevance of ensemble approaches in financial 

forecasting. In a separate study, Vrtagic et al. [24] explored the 

application of ensemble methods in financial forecasting, 

further highlighting their effectiveness in improving 

prediction accuracy and robustness. 

The growing influence of cryptocurrencies has prompted 

researchers to investigate their impact on gold price prediction. 

Studies have identified dynamic relationships between gold 

and cryptocurrencies, particularly during periods of financial 

uncertainty. Adebola et al. [25] employed fractional 

integration and co-integration techniques to reveal a limited 

but notable equilibrium relationship between gold and 

cryptocurrencies. Similarly, research during the COVID-19 

pandemic highlighted an increasing correlation between 

Bitcoin and gold, positioning Bitcoin as "digital gold" [26-28]. 

Ji et al. [29] further explored the interconnectedness between 

gold and cryptocurrencies, noting significant volatility 

spillovers during financial turbulence. 

Advanced methodologies have continued to uncover 

intricate relationships between financial variables. GARCH 

and copula models have shown time-varying correlations 

between Bitcoin, gold, and indices such as the S&P 500 [27]. 

Hybrid models combining cryptocurrency data with traditional 

indicators have consistently demonstrated improved accuracy, 

underscoring the evolving role of digital assets in financial 

forecasting [30-37]. Pearson correlation analyses have also 

emphasized the predictive value of relationships between 

cryptocurrency prices and gold [38, 39]. 

Despite the progress achieved in gold price prediction, most 

studies have focused on isolated financial indicators or 

specific cryptocurrencies. Our research addresses this gap by 

integrating a comprehensive range of variables, including 

NASDAQ-100 index (^NDX), Bitcoin (BTC-USD), and gold 

futures (GC=F). The NASDAQ-100 index (^NDX), Bitcoin 

(BTC-USD), and gold futures (GC=F) are uniquely positioned 

as predictive indicators due to their ability to capture diverse 

market dynamics. The NASDAQ-100 reflects economic 

confidence and risk sentiment, Bitcoin represents the 

speculative behavior of emerging digital markets, and gold 

futures provide direct insights into the supply and demand for 

gold. Integrating diverse financial indicators bridges 

traditional and emerging markets, offering a holistic and 

reliable approach to financial forecasting by enhancing 

predictive accuracy and reducing noise. Our methodology 

leverages the interconnected dynamics of assets such as the 

NASDAQ-100, Bitcoin, and gold futures—an integration not 

previously explored in the context of gold price prediction. 

This unique combination reinforces the importance of holistic 

modeling in modern financial forecasting and offers valuable 

insights for investors and policymakers. 

Furthermore, the application of advanced preprocessing 

techniques—such as the Box-Cox transformation and 

Principal Component Analysis (PCA)—addresses 

multicollinearity and ensures dimensionality reduction with 

minimal information loss. By employing a Genetic Algorithm-

optimized Multi-Layer Perceptron (MLP), we deliver a robust 

and scalable framework that achieves superior predictive 

performance, paving the way for innovative applications in 

financial prediction. 

The remainder of this paper is structured as follows: Section 

2 describes the dataset and preprocessing steps, including Box-

Cox transformation and PCA. Section 3 outlines the 

methodology, focusing on the GA-optimized MLP regression 

model. Section 4 presents the results, including performance 

metrics and insights from permutation importance analysis. 

Section 5 discusses the findings in relation to existing 

literature and identifies limitations and areas for improvement. 

Finally, Section 6 concludes the paper and proposes directions 

for future research. 

 

 

2. METHODOLOGY 

 

In this study, a dataset of daily high prices from 1 February 

2020 to 31 May 2024 for selected financial assets was utilized 

to explore their potential as predictors in modeling gold price 

fluctuations. The dataset includes daily high prices for the 

NASDAQ-100 index (^NDX), Bitcoin (BTC-USD), and gold 

futures (GC=F), which collectively represent diverse asset 

classes. In modeling, high values over four consecutive days 

are used as input features to capture short-term trends and 

dependencies that influence the target variable, GC_price. A 

four-day window helps the model identify short-term patterns 

that may predict near-future movements in GC_price. This 

window also smooths out daily fluctuations, providing a more 

stable input that reduces overfitting risks and noise. Including 

multiple indices (^NDX, BTC-USD, GC=F) over four days 

enables the model to assess both cross-correlations and lagged 

effects, improving predictive accuracy. This data 

configuration is shown in Table 1 and it offers a balance 

between temporal detail and data stability, ideal for short-term 

regression models. 

The NASDAQ-100 index, comprising leading technology 

companies, offers insights into stock market trends and 

investor sentiment, often displaying an inverse relationship 

with gold during market downturns. Bitcoin, as a digital asset 

and alternative store of value, exhibits varying correlation 

patterns with gold, reflecting shifts in risk tolerance among 

investors. Gold futures provide a direct measure of the target 

variable's high price movements. By preprocessing data points, 

we reduce variance from differing price magnitudes, allowing 
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the model to focus on trend relationships rather than absolute 

values. The comparative visualization underscores the 

potential of these assets to capture dynamic market 

interactions, thereby serving as robust inputs for machine 

learning models predicting gold prices. Figure 1 presents a 

targeted visualization of daily high prices for the NASDAQ-

100 index (^NDX), Bitcoin (BTC-USD), and gold futures 

(GC=F), focusing on the specific high points of each asset over 

time to reveal potential correlations and trends relevant to gold 

price movements. 

The selection of high prices in the visualization allows a 

clear comparison of peak values, emphasizing moments when 

assets reach their upper trading thresholds, which are often 

associated with heightened market activity. This targeted view 

helps illustrate how peaks in technology stocks (^NDX) and 

cryptocurrency (BTC-USD) may correspond with shifts in 

gold futures pricing, supporting the hypothesis that certain 

asset highs may act as predictive signals for gold. More 

clarification is provided in the upcoming section. 

The choice of a four-day window was validated through 

comparative analysis of multiple window lengths, including 

three, four, and five days. The four-day window was found to 

balance the trade-off between capturing sufficient temporal 

dependencies and minimizing noise or overfitting. A three-day 

window resulted in lower predictive accuracy, likely due to 

insufficient data to capture meaningful patterns, while a five-

day window introduced redundant information that increased 

multicollinearity and reduced model efficiency. The selected 

window length ensures that short-term trends are adequately 

represented without compromising the model's robustness and 

interpretability. 

The comparative analysis of NASDAQ-100, Bitcoin, and 

gold high prices reveals distinct market dynamics and 

potential predictive relationships during periods of economic 

volatility (Figure 1). Bitcoin demonstrates nonlinear price 

behavior that deviates significantly from traditional market 

indicators such as the NASDAQ-100, particularly evident 

during the mid-2022 market correction and the subsequent 

recovery phase in early 2023. Of particular interest is the 

observed tendency for Bitcoin price movements to 

occasionally align with or even precede shifts in gold prices 

during heightened market uncertainty, suggesting Bitcoin's 

emerging role as a potential leading indicator for broader 

market sentiment shifts. This phenomenon is most pronounced 

during the transition periods between market regimes, where 

Bitcoin exhibited characteristic volatility spikes ahead of more 

gradual responses in gold prices. These empirical observations 

challenge conventional asset classification frameworks and 

indicate that Bitcoin may occupy a unique position in the 

modern investment landscape—alternating between risk-asset 

behaviors during stable market conditions and safe-haven 

characteristics during periods of systemic stress, albeit with 

significantly amplified volatility compared to traditional stores 

of value. 

 

Table 1. Four days input-output dataset sample 

 
Interval_1_^NDX

_High 

Interval_1_BTC-

USD_High 

Interval_1_GC=F

_High 

Interval_2_^NDX

_High 

Interval_2_BTC-

USD_High 

Interval_2_GC=F

_High 

8843.65 7413.715 1552.7 8849.98 7781.867 1580 

8849.98 7781.867 1580 8872.47 8178.216 1576.3 

8872.47 8178.216 1576.3 8953.55 8396.738 1604.2 

 
Interval_3_^ND

X_High 

Interval_3_BTC-

USD_High 

Interval_3_GC=

F_High 

Interval_4_^ND

X_High 

Interval_4_BTC-

USD_High 

Interval_4_GC=

F_High 

GC_p

rice 

8872.47 8178.216 1576.3 8953.55 8396.738 1604.2 1555.7 

8953.55 8396.738 1604.2 9004.55 8082.296 1555.7 1558.8 

9004.55 8082.296 1555.7 9024.87 8166.554 1558.8 1558 

 

 
 

Figure 1. Comparative analysis of the three indicators ^NDX, BTC, GC=F 
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3. DATASET PREPROCESSING 

 

To ensure the robustness of the dataset, we conducted 

extensive sensitivity analysis on window lengths and 

transformation parameters. The selected four-day window not 

only captures short-term temporal dependencies but also 

reduces noise, as evidenced by the explained variance of 

96.37% using PCA. This approach offers a streamlined yet 

powerful representation of market dynamics, which is critical 

for maintaining predictive stability in volatile financial 

markets. Initially, the dataset was examined using a range of 

statistical and visualization techniques to assess its 

distributional properties, feature relationships, and potential 

issues affecting model performance. Histograms shown in 

Figure 2 reveal that some features have skewed distributions. 

Notably, the GC_price variable displays a right-skewed 

pattern, suggesting that transformations, such as logarithmic 

scaling, may enhance symmetry and improve suitability for 

modeling which is the output or target variable in this study. 

As it is shown in Figure 3, the correlation heatmap 

highlights strong relationships between certain features, 

particularly those sharing similar names across different 

intervals (e.g., Interval_X_GC=F_High), with correlation 

coefficients approaching ±1. This suggests redundancy, which 

may introduce multicollinearity, impacting predictive stability. 

 

 
 

Figure 2. Features distribution of input-output data 

 

 
 

Figure 3. Four days and GC price correlation matrix 
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Figure 4. Skewness and kurtosis features and target variables 

 

 
 

Figure 5. Skewness and kurtosis features after preprocessing 

 

Figure 4 shows that several features exhibit positive 

skewness, particularly GC_price, which has a skewness of 

0.96, indicating a concentration of lower values with a long 

tail toward higher values. Additionally, high kurtosis in 

GC_price (1.97) suggests heavy tails and the presence of 

potential outliers, which may affect model accuracy. In 

contrast, some features, such as Interval_X_BTC-USD_High, 

display low kurtosis, indicating a flatter distribution. 

Overall, the data contains some skewed and kurtosis 

features, with notable correlations that may lead to redundancy. 

Addressing these through transformations, feature selection, 

and outlier management is advised to enhance model fit and 

prediction accuracy. To address this, highly correlated features 

could be either removed or combined, potentially enhancing 

model robustness. 

The data preprocessing involved applying the Box-Cox 

transformation, which significantly reduced the skewness of 

the highly skewed feature GC_price, which had a skewness of 

0.958 before the transformation. After applying the Box-Cox 

transformation, the skewness for this feature dropped to 

0.0368, bringing it much closer to normal distribution. The 

Box-Cox transformation also improved the skewness of other 

features related to GC=F_High at different intervals, with the 

skewness values shifting from positive values to values closer 

to zero (for example, from 0.91 to -0.034 for 

Interval_1_GC=F_High). The transformation uses a lambda 

value that varies slightly across different features, indicating 

that each feature requires a different adjustment to correct for 

skewness. These lambda values (e.g., -1.68 for 

Interval_1_GC=F_High) reflect the optimal power 

transformation that best normalizes the data for each specific 

feature.  

The Figure 5 demonstrates the impact of preprocessing on 

the distribution of features through Box-Cox transformations. 

After applying Box-Cox transformations, skewness values are 

minimized, bringing the distributions closer to symmetry, 

while kurtosis values move closer to zero, indicating a shift 

towards a more normal, bell-shaped distribution. This 
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transformation standardizes the data, reducing outliers’ 

influence and enhancing data consistency, which is essential 

for model performance and reliability in subsequent analyses. 

The line represents the density curve or a smoothed 

representation of the distribution of skewness or kurtosis. It 

provides a continuous view of the probability density, helping 

to visualize the general shape and spread of the distribution. 

The blue bars represent the histogram of skewness or kurtosis 

values for the features. Each bar shows the count of features 

(on the y-axis) that fall into specific ranges of skewness or 

kurtosis values (on the x-axis). 

The outlier detection method identified a significant number 

of outliers in the GC_price data, with all 1103 rows flagged as 

outliers using the interquartile range (IQR) method. Although 

Box-Cox normalization effectively reduces skewness, 

additional steps may be required to address outliers separately 

to enhance model accuracy. 

 

 
 

Figure 6. First vs. second principal component data variance 

visualization 

 

Finally, after applying scaling (standardization), the 

skewness remains very low for the transformed data, 

particularly for GC_price, with a skewness value of 0.0457, 

which is almost negligible. The kurtosis value (0.367) also 

indicates that the data distribution is fairly close to normal, as 

typical kurtosis values for a normal distribution are close to 0. 

In summary, applying the Box-Cox transformation has 

successfully reduced skewness and improved the normality of 

several features, making the data more suitable for machine 

learning models, however, further work on handling outliers 

was done with the Principal Component Analysis (PCA). We 

found that instead of removing data, applying PCA with two 

components provides a concise representation of the data in 

the lower-dimensional space defined by the two principal 

components. The first principal component (PC1) accounts for 

approximately 78.88% of the variance in the data, while the 

second component (PC2) accounts for around 17.49%. 

Together, these two components explain about 96.37% of the 

total variance. This indicates that most of the information in 

the data can be captured by these two components, suggesting 

strong dimensionality reduction. The cumulative explained 

variance reaching 96.37% with just two components suggests 

that these two components are sufficient to represent the 

dataset with minimal information loss, making PCA an 

effective tool for reducing dimensionality in this case, as 

shown in the Figure 6. The data frame displays the transformed 

data in terms of the principal components (PC1 and PC2) 

along with the original target variable, GC_price. This 

transformation enables a clearer understanding of patterns and 

relationships in the data with fewer variables, which is 

especially valuable for visualization, feature selection, and 

model efficiency. 

The heatmap presented in Figure 7 illustrates the correlation 

between the principal compo-nents (PC1 and PC2) and the 

gold closing price (GC_price), with correlation values ranging 

from -1 to +1, where values closer to ±1 indicate stronger 

linear relationships. PC1 demonstrates a strong positive 

correlation with GC_price (r = 0.79), indicating that it captures 

a significant portion of the variance in the dataset that is 

directly related to gold price movements. This suggests that 

PC1 encompasses dominant underlying features that influence 

or reflect the behavior of gold prices. In contrast, PC2 exhibits 

a moderate positive correlation with GC_price (r = 0.57), 

implying that it provides additional but comparatively less 

influential information, potentially representing secondary 

dynamics in the data. As expected, the correlation between 

PC1 and PC2 is zero, reflecting their mathematical 

orthogonality inherent to principal component analysis, which 

ensures that each component encapsulates unique and 

uncorrelated aspects of the data. The observed relationships 

validate the effectiveness of PCA as a dimensionality 

reduction technique in this context, preserving critical 

information related to gold price prediction while reducing the 

feature space, thereby enhancing the interpretability and 

efficiency of subsequent modeling efforts. 

 

 
 

Figure 7. First-second principal component vs gold price 

 

While the Box-Cox transformation and PCA significantly 

improved data quality, their combined effect on model 

performance warrants further emphasis. The transformation of 

the skewed features enhanced the model's ability to learn 

meaningful patterns by reducing the impact of outliers and 

non-normal distributions. PCA’s dimensionality reduction 

allowed the model to focus on the most informative 

components, effectively addressing multicollinearity without 

discarding valuable data. These preprocessing steps not only 

led to the reduction of skewness and kurtosis but also 

facilitated a more stable learning process by simplifying the 

dataset while retaining critical variance. This combination of 

methods directly contributed to the model's high performance 

metrics, showcasing the critical role that thoughtful data 

preprocessing plays in enhancing prediction accuracy and 

robustness in complex datasets like the one used in this study.
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4. MACHINE LEARNING (ML) MODEL 

FRAMEWORK 

 

This study presents a genetic algorithm (GA)-based 

optimization approach for selecting hyperparameters in a 

Multi-Layer Perceptron (MLP) regression model. Specifically, 

we focus on optimizing two critical hyperparameters: the 

hidden layer size and the regularization parameter (alpha), 

which influence the model's ability to generalize and avoid 

overfitting. Compared to grid or random search, Genetic 

Algorithm (GA) offers more efficient exploration of complex 

search spaces. While grid search exhaustively evaluates 

predefined combinations and random search samples 

randomly, GA mimics natural evolution, converging faster on 

optimal solutions in large, continuous spaces. This was crucial 

for tuning both the hidden layer size and regularization 

parameter (alpha), resulting in improved convergence and 

model accuracy. 

The Genetic Algorithm is used to optimize the MLP 

hyperparameters in a regression on the transformed data of the 

principal components (PC1 and PC2) along with the original 

target variable, GC_price. The GA begins with a population of 

individuals, each representing a pair of hyperparameters: 

hidden layer size (an integer between 1 and 100) and 

regularization parameter (alpha, a floating point between 

1x10-6 and 1 x10-2. The fitness of each individual is evaluated 

by training the MLP on the training set (PC1 and PC2, 

GC_price) and testing on the validation set, with the Mean 

Squared Error (MSE) used as the fitness score. The Genetic 

Operators used in training are presented below.  

• Selection: Tournament selection (tournament size=3) 

is used to choose the best candidates for crossover.  

• Crossover: Two-point crossover creates offspring by 

combining the genetic material (hyperparameters) of two 

parents. 

• Mutation: Mutation occurs with a 20% probability, 

adjusting the hidden layer size or alpha within predefined 

bounds. 

The GA runs for 40 generations, optimizing the population 

to minimize the MSE. The best individual is selected, and an 

MLP model is trained using the optimal hyperparameters. The 

final model is evaluated on the test set to assess its predictive 

accuracy. 

 

 

5. RESULTS AND DISCUSSION 

 

The machine learning model developed to predict gold 

prices (GC_price) based on high values from three financial 

assets NDX, BTC-USD, and GC=F, demonstrates a high level 

of predictive accuracy. The performance metrics given in 

Table 2 indicate that the model is successful at capturing the 

underlying relationships between these assets and the gold 

price, yielding promising results. 

 

Table 2. Model performance metrics 

 
Score (R2) 0.97992438940244 

Mean squared error (MSE) 551.4282025660036 

Root Mean Squared Error (RMSE) 23.4825084385379 

Mean absolute Error (MAE) 17.383034187384954 

 

 
Figure 8. MLP prediction on test data (30%) 

 

The model explains approximately 98% of the variance in 

gold prices, suggesting that the chosen features are highly 

informative for predicting gold prices as can be seen in Figure 

8. This is a substantial R² value, indicating a strong fit between 

the model and the actual data. This high R² suggests that the 

model is highly effective in capturing the patterns in the 

historical data of gold prices with respect to the selected 

financial assets. Mean Squared Error (MSE = 551.43) and 

Root Mean Squared Error (RMSE = 23.48) indicates a 

moderate average squared difference between predicted and 

actual values with a relatively moderate MSE of 551.43. 

RMSE, which is in the same unit as the target variable (gold 
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prices in USD), suggests that the predictions are, on average, 

off by approximately 23.48 USD. These results point to a 

reasonable level of predictive accuracy, especially considering 

that gold prices can fluctuate in the range of tens of dollars per 

unit. The MAE value is lower than the RMSE, further 

supporting the notion that the model’s errors are relatively 

consistent and not excessively influenced by outliers. The 

MAE value indicates that, on average, the model’s predictions 

deviate by only about 17.38 USD from the true gold prices. 

However, the daily price high-low difference average change 

for the last three years is 26.08 $. This suggests that the model 

performs quite well for practical purposes, offering a small 

margin of error that could be acceptable for real-world 

financial applications. 

Permutation importance results reveal that the model 

assigns the highest importance to the feature PC1 (mean 

importance of 1.3456), followed by PC2 (mean importance of 

0.8107). This indicates that the model relies heavily on the 

PC1 as the most significant predictor of gold prices, with PC2 

also playing a noteworthy role. This makes sense as principal 

component (PC1) which describes approximately 78.88% and 

considering that both the stock market and cryptocurrency can 

exhibit correlated movements with gold, especially during 

periods of financial instability or market volatility. 

The predictions made by the model for the observations that 

are out of testing and trading closely match the actual gold 

prices, demonstrating the model's ability to generalize well to 

unseen data (Table 3). The observed discrepancies seen in 

Table 3 between predicted and actual values (e.g., predicted 

1587.6 USD vs. actual 1604.2 USD for the first observation) 

are within a reasonable range, further supporting the model's 

effectiveness in forecasting gold prices. These relatively small 

prediction errors are consistent with the reported RMSE and 

MAE values, reinforcing the model’s reliability. 

 

Table 3. Observed discrepancies on the unseen data 

 
Real Predicted 

1604.2 1587.6 

1746.8 1749.8 

1985 1947.67 

1957.9 1923.48 

 

The findings of this study align with and expand upon 

existing research in the domain of gold price prediction. Weng 

et al. [5] introduced a GA-ROSELM model that leveraged 

crude oil and silver prices for enhanced predictive accuracy. 

In contrast, our study utilized Genetic Algorithms to optimize 

an MLP model, incorporating a more diverse set of indicators, 

including NASDAQ-100 and Bitcoin, which significantly 

broaden the model's scope and applicability. Chandar et al. [6] 

demonstrated the efficacy of ELM models by combining gold, 

silver, crude oil, and S&P 500 data. Building on this, our work 

integrates a wider range of financial variables and utilizes PCA 

for dimensionality reduction, further improving computational 

efficiency and model performance. While Livieris et al. [9] 

utilized a hybrid CNN-LSTM model to capture temporal 

dependencies, our PCA-based MLP offers an alternative 

approach, prioritizing dimensionality reduction to balance 

accuracy with reduced computational overhead. Additionally, 

compared to the tree-based models highlighted by Tripurana 

et al. [13], which favored Random Forests for gold price 

prediction, our Genetic Algorithm-optimized MLP achieved 

superior performance metrics (R² = 0.98), demonstrating its 

competitiveness. Finally, Ben Jabeur et al. [18] used XGBoost 

with SHAP values for interpretability and accuracy in 

forecasting. Our approach simplifies interpretability through 

the optimization of MLP parameters without compromising 

accuracy, offering a streamlined yet effective solution for gold 

price prediction. 

The novelty of the proposed approach lies in its holistic 

integration of diverse financial indicators—namely the 

NASDAQ-100 index, Bitcoin, and gold futures—combined 

with advanced pre-processing techniques such as the Box-Cox 

transformation and Principal Component Analysis (PCA). 

While previous studies have explored gold price prediction 

using individual indicators or traditional models, this work 

distinguishes itself by bridging traditional and emerging 

financial markets within a unified machine learning 

framework. The use of the Box-Cox transformation effectively 

normalizes skewed data distributions, while PCA addresses 

multicollinearity and reduces dimensionality without 

significant information loss. Together, these techniques ensure 

the input data is both statistically robust and computationally 

efficient for modeling. The exceptional performance metrics 

validate this innovative approach. The R² score of 0.98 

indicates that the model captures approximately 98% of the 

variance in gold prices, demonstrating the high explanatory 

power of the selected features after dimensionality reduction. 

Contextualizing the error metrics against actual gold prices 

($1,604-$1,985) reveals that the RMSE of $23.48 and MAE of 

$17.38 represent prediction errors of merely 1.2-1.5% relative 

to the asset's value—particularly noteworthy considering these 

error margins are smaller than gold's average daily price 

fluctuation of $26.08. Analysis of model predictions on unseen 

data further substantiates this accuracy, with prediction errors 

ranging from $3.00 (0.17%) to $37.33 (1.88%), consistently 

remaining below 2% of actual values. This precision is 

especially significant given gold's reputation as a complex 

asset influenced by numerous macroeconomic factors, 

geopolitical tensions, and market sentiment. This layered 

preprocessing strategy, combined with the integration of 

cross-market financial signals, enables the model to uncover 

deeper relationships and achieve strong predictive 

performance that could potentially inform trading decisions 

within gold's natural volatility range. The findings emphasize 

the efficacy of this multifaceted approach and its contribution 

to advancing predictive modelling methodologies in financial 

forecasting. 

 

 

6. LIMITATIONS AND IMPROVEMENTS 

 

While the model performs well in terms of predictive 

accuracy, there are potential areas for improvement. First, the 

model relies solely on high values from the three selected 

assets NDX, BTC-USD, and GC=F, which may fail to capture 

all of the factors influencing gold prices. Incorporating 

additional features, such as volatility indices, macroeconomic 

indicators (e.g., inflation rates, interest rates), or lagged gold 

prices, could improve the model’s ability to capture more 

complex temporal and market relationships. Finally, while the 

current model performs well, there is potential for 

performance gains by exploring different models such as 

Random Forests, Gradient Boosting Machines, etc. While the 

current study focuses on high values of selected financial 

indicators, future work could expand the feature set to include 

macroeconomic factors like interest rates and inflation. 

Additionally, incorporating ensemble techniques like Gradient 
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Boosting or Random Forests may further enhance model 

performance. Exploring real-time data integration could 

enable dynamic updates, offering a valuable tool for high-

frequency trading and market monitoring. 

Genetic Algorithms (GAs) offer several advantages for 

hyper parameter optimization in MLP regression models. 

They efficiently explore large hyper parameter spaces, 

enabling the identification of optimal configurations, and can 

simultaneously optimize multiple hyper parameters such as 

MLP topology, weights, biases, and regularization. GAs 

balance exploration and exploitation, making them more 

efficient than exhaustive methods like grid search and 

allowing faster convergence, particularly with algorithms like 

the Biased Random-Key Genetic Algorithm (BRKGA). 

However, GAs also have limitations, such as computational 

complexity and potential inefficiency in exploring the 

neighborhood of specific individuals [40-42]. 

When choosing between Genetic Algorithm, grid search, 

and random search, GAs are ideal for complex models with 

large hyper parameter spaces but may be less suitable if 

computational resources are limited. Random search or grid 

search might be better alternatives in such cases. Overall, GAs 

are effective for hyper parameter optimization due to their 

efficient search capabilities and ability to discover global 

optima, though the computational cost and exploration 

constraints should be carefully considered. In conclusion, GAs 

provide a robust and efficient method for hyper parameter 

optimization in MLP regression models, offering significant 

advantages in terms of search efficiency, adaptability, and 

performance improvements over traditional methods like grid 

search and random search [43, 44]. 

The hyperparameter sensitivity analysis in Figure 9 

illustrates the impact of hidden layer size and the 

regularization parameter (alpha) on the model’s performance, 

with the performance measured by Mean Squared Error 

(MSE). Regarding hidden layer size, the graph reveals a non-

monotonic relationship between layer size and MSE. 

Specifically, the model shows significant fluctuations in 

performance, with spikes in MSE at hidden layer sizes of 55 

and 85 neurons, indicating a sharp degradation in performance. 

In contrast, the model performs optimally at a layer size of 90, 

where the MSE reaches its lowest point. This behavior reflects 

how the first principal component (PC1) of the data responds 

to changes in the model's architecture. The graph further 

highlights the effect of the regularization parameter (alpha), 

where minimal regularization (α ≈ 0.01) results in the lowest 

MSE, suggesting that lighter regularization effectively 

balances overfitting and underfitting. However, as alpha 

increases, particularly around α  ≈  0.04, the model's 

performance declines, evidenced by a sharp rise in MSE. 

These patterns indicate that PC1, which captures significant 

variance in the data, is sensitive to the level of regularization, 

and this effect may differ when considering other components 

or the raw data. The analysis is limited by the fact that only a 

coarse sampling of parameters (10 values each) was used, 

providing only a generalized view of the parameter space. A 

more refined hyperparameter optimization, exploring both 

PC1 and PC2 and raw data performance, could provide a 

deeper understanding of the model's behavior and lead to more 

precise adjustments for optimal performance. 

 

 
 

Figure 9. Hyperparameter sensitivity analysis 

 

 

7. CONCLUSIONS 

 

This study presents a comprehensive machine learning 

approach to predicting gold prices using a combination of 

financial indicators, including the NASDAQ-100 index 

(^NDX), Bitcoin (BTC-USD), and gold futures (GC=F). By 

leveraging a four-day window of high values and applying 

data preprocessing techniques such as Box-Cox 

transformation and PCA, the model achieved significant 

dimensionality reduction and enhanced data normalization. 

These steps addressed issues of skewness, kurtosis, and 

multicollinearity, making the dataset suitable for advanced 

machine learning techniques. 

The Genetic Algorithm-optimized Multi-Layer Perceptron 

(MLP) regression model demonstrated excellent predictive 

accuracy, explaining approximately 98% of the variance in 

gold prices with an R² score of 0.98. Key performance metrics, 

including a low RMSE (23.48 USD) and MAE (17.38 USD), 

highlight the model’s ability to generalize well and make 

accurate predictions even in a volatile market. Furthermore, 

the principal components PC1 and PC2 emerged as the most 

influential features, collectively capturing 96.37% of the 

variance in the dataset. 

The findings underscore the potential of integrating diverse 

financial variables and employing robust preprocessing 

techniques to improve gold price prediction. This approach 
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bridges the gap between traditional and emerging financial 

indicators, emphasizing the growing role of cryptocurrencies 

and stock indices in modern financial forecasting.  

While the model performs exceptionally well, further 

improvements can be achieved by: 

• Adding macroeconomic indicators (e.g., inflation 

rates, interest rates) and market volatility indices to capture 

broader market dynamics. 

• Experimenting with ensemble methods like Random 

Forests or Gradient Boosting to refine predictions and 

potentially enhance performance. 

• Developing advanced outlier handling methods to 

mitigate their residual impact on predictive accuracy. 

This research lays the foundation for more holistic modeling 

approaches in financial forecasting, offering valuable insights 

for investors and policymakers navigating interconnected 

markets.  
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NOMENCLATURE 

 

α Regularization parameter in MLP 

λ Box-Cox transformation parameter 

μ Skewness of a distribution 

κ Kurtosis of a distribution 

R² Coefficient of determination 

MSE Mean Squared Error 

RMSE Root Mean Squared Error 

MAE Mean Absolute Error 

PC1, PC2 First and second principal components 
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GC_price Target gold price value 

^NDX_High NASDAQ-100 daily high 

BTC-

USD_High 

Bitcoin daily high 

GC=F_High Gold futures daily high 

Interval_X Xth day in the 4-day window 

 

Greek symbols 

 

λ Box-Cox transformation factor 

α Regularization parameter 

μ Skewness 

κ Kurtosis 
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