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 Optimized energy generation and smart distribution in a sustainable manner requires 

accurate prediction of its consumption. However, the prediction of energy demands of 

households remains a tedious task due to variations in patterns of energy usage. 

Mathematical models and artificial intelligence (AI), such as smart energy-efficient 

designs, strategic planning for smart grids, and Internet of Things (IoT)-enabled smart 

homes, have recently been considered as solutions to these issues. A major issue 

encountered in energy consumption prediction systems is their restricted prediction 

horizons, as well as their dependence on one-step predictions. This study, therefore, 

suggests an innovative model for the prediction of energy demand that uses a long short-

term memory (LSTM) and fractional differential equations (FDLE)-based model. The 

proposed LSTM-FDLE model was trained to predict the collective active power generated 

by household devices. LSTM’s memory and sequential learning capabilities were also 

explored in the proposed model for comprehending the complex temporal dependencies 

and trends in energy consumption data. The performance of the proposed model was 

evaluated on real-world household energy usage data and found to achieve good prediction 

accuracy; the performance of the model was also better than that of some conventional 

one-step prediction models. Therefore, better energy generation planning, and optimal 

distribution systems can be achieved by the longer forecasting period provided by the 

proposed “LSTM” model. 
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1. INTRODUCTION 

 

Rapid urbanization, surging human population, and societal 

demand in the building sector are some of the factors driving 

the significant increase in household energy demand recently 

[1]. The global energy usage and the associated greenhouse 

gas emissions has been influenced by the increasing demand 

buildings [2]. It is important that buildings should be 

sustainable and energy-efficient and there is a need that utility 

companies, customers, and facility managers to understand the 

trends in building energy usage to improve energy efficiency. 

Scholars have developed interest in learning more about 

energy-saving and building energy efficiency [3, 4]. The study 

and examination of data through the use of AI-based 

techniques like machine learning (ML) have been eased with 

the advancement of Industry 4.0. Therefore, the prediction of 

the energy usage pattern in buildings has become necessary for 

better energy performance at the operation and maintenance 

phases of buildings.  

The analysis of building energy patterns can be achieved 

using either the data-driven approach or the physics-based 

simulation approach [1]. The physics-based method requires 

the use of the whole building energy simulation tools like 

DOE-2 and Energy Plus. The users of these tools must provide 

the heat properties of the building components, such as walls, 

roofs, and windows, HVAC (heating, ventilation, and air 

conditioning) systems, thermal settings, internal loads of 

occupancy, building geometry, etc. but due to the lack of 

necessary data and time commitment, these techniques are not 

mostly useful for energy analysis throughout the operation and 

maintenance phases [5]. 

During energy analyses for various buildings, there are 

numerous problems associated with the physics-based 

approaches. Hence, data driven approaches were developed to 

mostly use past data to access building energy performance. 

The development of AI and IoT enables the use of this method 

to understand building energy usage patterns.  The use of this 

data-driven method requires access to open data. The use of 

ML for the estimation of the future pattern of energy usage of 

buildings has been proposed by many researchers. For instance, 

the use of ANN [6], decision trees (DT) [7], ANFIS [8], and 

SVM [9] for the prediction of building energy usage has been 

proposed. Artificial Neural Networks (ANN) are 

computational models inspired by the human brain, designed 

to recognize patterns and make predictions by learning from 

data through layers of interconnected nodes (neurons) [6]. 

Decision Trees (DT) are a type of supervised learning 

algorithm used for classification and regression tasks; they 

work by splitting the data into subsets based on feature values, 

forming a tree-like structure where each branch represents a 
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decision rule [7]. Adaptive Neuro-Fuzzy Inference System 

(ANFIS) combines neural networks with fuzzy logic to model 

complex systems by learning from data and handling 

uncertainty through fuzzy rules, making it effective for control 

and prediction tasks [8]. Support Vector Machines (SVM) are 

powerful supervised learning algorithms used primarily for 

classification and regression; they work by finding the optimal 

hyperplane that separates data points of different classes in a 

high-dimensional space, often providing robust results even in 

cases where the data is not linearly separable [9]. 

The ever-increasing energy demand can be addressed by the 

use of energy efficient solutions, which can lower greenhouse 

gas emissions and improve energy security [2]. Batlle et al. 

(2020) considered the opportunities for energy reduction in 

buildings by creating energy baselines and energy 

performance indicators [10]. They observed that the 

educational facilities might save up to 9.6% of their annual 

energy costs by considering the developed energy 

performance indicators. The study also came up with a method 

for aiding decision-makers in putting urban greening policies 

into practice by statistically predicting the impact of green 

initiatives on building energy [11]. 

Based on the brief survey, The existing prediction models 

are either based on one or a small number of datasets for the 

training and testing processes which may impact the 

generalization of the model results. this is the first research gap 

of the current study. Besides, until now, only a few works have 

assessed the performance of models that uses different datasets 

to predict hourly building energy use which is can consider the 

second research gap. Therefore, this work intends to evaluate 

the applicability and efficacy of the DL model and a modified 

mathematical equation called fractional calculus in the 

prediction of future building energy usage using numerous 

experimental datasets. A new model called (LSTM-FDLE) 

was designed in this work for the forecasting of energy 

demand through the utilization of two emerging techniques - 

long short-term memory (LSTM) and fractional differential 

equations. The proposed LSTM-FDLE model was trained for 

accurate prediction of the collective active power generated by 

household appliances. It leverages the memory and sequential 

learning capabilities of LSTM to capture complex temporal 

intricacies and trends in energy usage data.  

 

 

2. THE MODIFIED FRACTIONAL DIFFERENTIAL 

EQUATIONS -AN OVERVIEW  

 

In the past few years, fractional differential equations (FDE) 

have grown in popularity as a powerful and well-organized 

way to study a wide range of scientific and engineering events. 

Different fields of study conduct research on FDE as it is 

usable in many areas, such as heat transfer, circuit systems, 

elasticity, control systems, continuum mechanics, signal 

analysis, quantum mechanics, biomathematics, social systems, 

bioengineering, biomedicine, and many more [12, 13]. 

As of now, there is no method that everyone agrees on that 

defines fractional calculus. Different meanings of fractional 

calculus have been made possible by mathematicians' in-depth 

studies of the issue from various perspectives. The Riemann–

Liouville (R–L) definition, the Grünwald–Letnikov (G–L) 

definition, and the Capotu definition are the three most 

common ways to explain fractional calculus [14]. The G-L 

definition is appropriate for use in medical image processing 

owing to its lesser complexity compared to other definitions 

and only requires one coefficient. The L’Hospital’s rule has 

been used as the basis for deriving the 1st, 2nd, and 3rd-order 

derivatives of the function f(t) as follows: 

 

𝑓′(𝑟) =  𝑙𝑖𝑚
𝑔→0

𝑓(𝑟+ℎ)−𝑓(𝑟)

𝑔
  (1) 

 

𝑓′′(𝑟) = [𝑓′(𝑡)]′  𝑙𝑖𝑚
𝑔→0

𝑓(𝑟+2ℎ)−2𝑓(𝑟+ℎ)+𝑓(𝑟)

𝑔2
  (2) 

 

𝑓′′′(𝑟) = [𝑓′′(𝑟)]′  𝑙𝑖𝑚
𝑔→0

𝑓(𝑟+3ℎ)−3𝑓(𝑟+2ℎ)+𝑓(𝑟)

𝑔3
  (3) 

 

𝑓(𝑛)(𝑟) =  𝑙𝑖𝑚
𝑔→0

𝑔−𝑛 ∑ (−1)𝑗(𝑗
𝑛𝑛

𝑗=0 ) 𝑓(𝑟 − 𝑗𝑔)  (4) 

 

The gamma function generates the fractional order, ranging 

from integer to fraction. The v-order fractional differential of 

function f(t) is defined as the derivative of order (n +1) on the 

interval [a, b], where function f(r) has (n +1)-order derivatives. 

 

𝑎𝐷𝑏
𝑣𝑓(𝑟) =  lim

𝑔→0
𝑟−𝑣 ∑ (−1)𝑗( )𝑓(𝑟 − ℎ𝑔)𝑗

𝑣[(𝑏−𝑎)/𝑟]
𝑗=0   (5) 

 

where, the integer part of 
𝑏−𝑎

𝑟
  is [

𝑏−𝑎

𝑟
]  and ( )𝑗

𝑣   
𝑣𝑖

𝑓!(𝑣−𝑗)
!  is 

binomial coefficient. 

 

 

3. PROPOSED METHODOLOGY 

 

The research framework developed for this study is 

presented in this section; The method begins with a literature 

review and concludes with an assessment of the research's 

results. The literature review was aimed at looking for 

methods already in use for the prediction of household electric 

power usage. In the suggested methodology, there are 3 stages, 

and the output of each stage is used as the input for the next. 

Phase 1 is about the dataset reading while phase two is about 

pre-processing phase for preparing to train the LSTM- FDLE 

model. Finally, phase three is about model training and 

evaluation of the research achievements. Figure 1 depicts in 

detail the general methodology of the proposed LSTM- FDLE 

model.   

 

 
 

Figure 1. Structural design of the suggested framework 

 

3.1 The utilized dataset 

 

The data utilized in this study called (Household Electric 

Power Consumption dataset) comprises 2,075,259 data points 

collected from a residence situated in Sceaux, France, 

spanning a period of 47 months, commencing in December 
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2006 and concluding in November 2010 [15]. These 

measurements were recorded at one-minute intervals. It's 

worth noting that this dataset might include some gaps, 

accounting for approximately 1.25% of the total entries. While 

the dataset contains all calendar timestamps, there are certain 

timestamps that do not have corresponding measurement 

values. These missing data points are identified by the lack of 

a value between two semicolons attribute separators. 

The dataset will be used to develop a predictive model for 

the prediction of the global active power and household energy 

usage based on the explained parameters. 

The EDA of the dataset is provided here [16, 17]; this 

includes 4 figures that further explained the dataset. There are 

numerous subplots in Figure 2, each depicting the mean 

resampled data for a specific variable on a monthly basis. Time 

(in months) is represented in the horizontal axis, while the 

average value of the variable is in the vertical axis. This figure 

improves understanding of the monthly trends in the data. 

Like in Figure 2, the image in Figure 3 consists of multiple 

subplots but the data representation is on a daily basis. The 

mean of the resampled data for a specific variable is 

represented by each subplot; the duration is represented in the 

horizontal axis (in days) while the average value of the 

variable is in the vertical axis. This figure provides better 

understanding of the daily data variations and patterns. 

Figure 4 is a representation of the data on an hourly basis 

where each subplot is a representation of the meaning of the 

resampled data for a given variable. The time in hours is 

plotted in the horizontal axis while the average value of the 

variable is in the vertical axis. This figure provides better 

understanding of the hourly changes and patterns in the data. 

  

 
 

Figure 2. The subplots for the monthly data trends and patterns 

 

 
 

Figure 3. Multiple subplots for the daily data variations and patterns 
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Figure 4. Multiple subplots for the hourly changes and trends in the data 

 

A correlation matrix heatmap is presented using a color map 

in Figure 5; it depicts the relationship between different 

parameters in the data. The strength and direction of the 

correlation is indicated by the values in the heatmap, where a 

positive value = positive correlation, negative value = negative 

correlation. Darker colors show strong correlations. This 

figure provides better view of the relationships between 

different data variables, as well as a knowledge of the trends, 

patterns, and correlations in the data. 

 

 
 

Figure 5. Correlations and dependencies between different 

data variables 

 

3.2 Data pre-processing 

 

The significance and novelty of using fractional differential 

equations (FDEs) in this context lie in their ability to model 

systems with memory and hereditary properties more 

accurately than classical differential equations. This approach 

allows for a more nuanced description of dynamic processes, 

particularly in cases where standard integer-order models fall 

short in capturing the complex behaviors of the system. Unlike 

traditional methods, FDEs provide greater flexibility in 

adjusting the model to account for non-local interactions and 

anomalous diffusion, which are common in many real-world 

applications, such as image processing or signal analysis. 

There are three important steps in the data preprocessing stage 

before the training phase of the developed LSTM- FDLE 

model; the first step is to removal of missing data from the 

dataset to ensure the completeness of the data for the training 

process and to avoid potential biases or inaccuracies caused by 

missing data. The next step is the data standardization step 

using the MinMaxScaler [18]. This process is mostly used to 

transform data into a common scale to improve effectiveness 

when using ML models [19]. The MinMaxScaler was used to 

scale the data to a specific range, mostly [0, 1] to ensure that 

the magnitude of all the features is similar. The final step is the 

preparation of the data as a time series by transforming it into 

a suitable format for the training process. His process requires 

the creation of lagged input and output variables that allows 

the network to learn patterns and dependencies over time. The 

completion of these preprocessing steps prepares the data for 

the training of the model on the prepared time series data. 

Among the ML algorithms, RNNs have been the most used 

for sequential data modeling; they are used in many areas like 

speech recognition, time series data analysis, and natural 

language processing. The emphasis in this article is on the 

RNNs, especially LSTM networks and their usage for energy 

consumption prediction. Efficient energy management, 

demand projection, and resource allocation requires accurate 

energy consumption prediction. LSTM leverages the temporal 

connections and trends in energy usage data to predict the 

future energy usage pattern. A summary of RNNs and “LSTM” 

networks is presented here, focusing more on their foundations 

and their relevance in energy consumption prediction. The 

RNN is derived from differential equations and introduced 

from the general form of the state signal evolution equation. 

The special case of the state signal equation was also presented; 

the components involved in energy consumption prediction 

were also detailed. 

An RNN was developed in this work using differential 

equations; the starting point is the definition of s⃗(r) as a d-
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dimensional state signal vector, as well as the analysis of the 

general nonlinear first-order non-homogeneous ODE; this will 

reveal the evolution of the state signal over time (r). 

 

cs⃗(r)

cr
= f⃗(r) + ϕ⃗⃗⃗ (6) 

 

where, f⃗(r) is a vector-valued function of time, where t is a 

positive real number. The vector ϕ is a constant with d 

dimensions. A common representation for f⃗(t) is as follows: 

 

f⃗(r) = h⃗⃗(s⃗(r), x⃗⃗(r)) (7) 

 

x⃗⃗(r) signifies the d-dimensional input signal vector, and the 

function  h⃗⃗(s⃗(r), x⃗⃗(r)) takes vectors as arguments and yields a 

vector-valued result. The system that emerges from this 

formulation is encountered in a variety of scenarios within the 

fields of physics, chemistry, biology, and engineering. 

 

cs⃗(r)

ct
= h⃗⃗(s⃗(r), x⃗⃗(r)) + ϕ⃗⃗⃗ (8) 

 

Finally, x⃗⃗(r) is derived by gathering all the values of x(i⃗, r) 
for all possible index components permutations into a column 

vector as seen in Eq. (8). An example of a particular scenario 

for f⃗(r) in Eq. (9) is: 

 

f⃗(r) = a⃗⃗(r) + d⃗⃗(r) + c⃗(r) (9) 

 

The Additive Model will be analyzed to saturation as 

explained in Eq. (9). There are three elements of the model 

which are a⃗⃗(r),  𝑑⃗⃗⃗ ⃗(r) , and c⃗(r) , and each element has its 

distinct definition. 

 

a⃗⃗(r) = ∑  

Ks−1

k=0

  a⃗⃗k(s⃗(r − τs(k))) (10) 

 

b⃗⃗(r)  = ∑  

Kr−1

k=0

  d⃗⃗k(r⃗(t − τr(k))) (11) 

 

r⃗(r − τr(k))  = G(s⃗(r − τr(k))) (12) 

 

c⃗(r)  = ∑  

Kx−1

k=0

  c⃗k(x⃗⃗(r − τx(k))) (13) 

 

Using the given definitions, the system that resulted from 

replacing Eq. (10)-(13) into Eq. (6) and then incorporating the 

outcome into Eq. (1), can be expressed as follows: 

 
cs⃗(r)

dt
= ∑  

Ks−1

k=0

  a⃗⃗k (s⃗(r − τs(k))) + ∑  

Kr−1

k=0

  d⃗⃗k (r⃗(r − τr(k))) + ∑  

Kx−1

k=0

  c⃗k (x⃗⃗(r − τx(k))) + ϕ⃗⃗⃗ (14) 

 

r⃗(r − τr(k)) = G(s⃗(r − τr(k))) (15) 

 

The first component: denoted as ∑k=0
Ks−1  a⃗⃗k(s⃗(r − τs(k))), 

is a combination of up to Ks  functions. These functions are 

obtained by time-shifting the original functions, a⃗⃗k(s⃗(r)), by 

specific delay time constants (τs(k)). It's worth noting that the 

term "analog" emphasizes that each a⃗⃗k(s⃗(r)) depends on the 

state signal itself, rather than the readout signal, that is the 

transformed version of the state signal. 

The second component: ∑k=0
Kr−1  d⃗⃗k(r⃗(r − τr(k))) , 

combines up to Kr functions. These functions are generated by 

applying time shifts τr(k)  to the functions d⃗⃗k(r⃗(r)) . These 

functions originate from the readout signal, which is defined 

in Eq. (10) and represents a warped (potentially binary-valued) 

version of the state signal. 

The third component: ∑k=0
Kx−1  c⃗k(x⃗⃗(r − τx(k))), represents 

the external input; it is formed by aggregating up to Kx 

functions, obtained by time-shifting τx(k)  the functions 

c⃗k(x⃗⃗(r). These functions are associated with the input signal. 

Consider a case where a⃗⃗k(g⃗⃗(r − τs(k))), d⃗⃗k(r⃗(r − τr(k))), 

and c⃗k(x⃗⃗(r − τz(k)))  are linear functions of s⃗, r⃗ , and x⃗⃗ , 

respectively; here, Eq. (9) is a nonlinear DDE with linear 

coefficients, and these coefficients are represented as matrices: 

 
cs⃗⃗(r)

cr
= ∑  

Ks−1
k=0 Ak(s⃗(r − τs(k))) + ∑  

Kr−1
k=0 Bk(r⃗(r −

τr(k))) + ∑  
Kx−1
k=0 Ck(x⃗⃗(r − τx(k))) + ϕ⃗⃗⃗  

(16) 

 

Moreover, in the case where the matrices Ak, Bk, and Ck are 

circulant or block circulant, the expression of the matrix-

vector multiplication components given in Eq. (11) may be 

done as convolutions within the confines of the elements of 

s⃗, r⃗, x⃗⃗ , and ϕ⃗⃗⃗ . These convolutions are performed over each 

element indexed by i⃗: 
 

cs(i⃗,r)

dr
= ∑  

Kn−1
k=0 ak(i⃗) ∗ s(i⃗, r − τs(k)) +

∑  
Kr−1
k=0 dk(i⃗) ∗ r(i⃗, r − τr(k)) + ∑  

Kz−1
k=0 ck(i⃗) ∗

x(i⃗, r − τz(k)) + ϕ(i⃗)  

(17) 

 

It is important to note that previous research has established 

a link between a nonlinear dynamical system, as defined in Eq. 

(14), and the extension of a specific type of neural network. 

This connection was demonstrated when the functions 

a⃗⃗k(s⃗(r)), d⃗⃗k(r⃗(r)), and c⃗k(x⃗⃗(r)) were linear operators in Eq. 

(16), resulting in the Continuous Hopfield Network as a 

specialized case. A closely related version, described in Eq. 

(17), which further limits these operators to be convolutional, 

was found to incorporate the Cellular Neural Network. 

Applying the simplifications: 

 
Ks = 1
τs(0) = 0
A0 = A
Kr = 1
τr(0) = τ0
B0 = B
Kx = 1
τx(0) = 0
C0 = C }

 
 
 
 

 
 
 
 

  (18) 

 

(Although some of these constraints will be relaxed later), 

incorporating them into Eq. (16) transforms it into: 

 
cs⃗⃗(r)

cr
= As⃗(r) + Br⃗(r − τ0) + Cx⃗⃗(r) + ϕ⃗⃗⃗  (19) 

 

Eqs. (16), (17), and (19) are examples of nonlinear first-

order non-homogeneous DDEs. To solve these equations, as 

well as any other versions of Eq. (1), a common numerical 
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method is to discretize them in time. This entails computing 

the values of both the timestamp input and state signals, 

continuing this process for the needed total duration. This 

results in numerical integration. 

 
r  = nΔT (15)

cg⃗⃗(r)

dr
 ≈
g⃗⃗(nΔT + ΔT) − g⃗⃗(nΔT)

ΔT

 (20) 

 

As⃗(r) + Br⃗(r − τ0) + Cz⃗(r) + ϕ⃗⃗⃗ = Ag⃗⃗(nΔT) +

Br⃗(nΔT − τ0) + Cz⃗(nΔT) + ϕ⃗⃗⃗  

As⃗(r + ΔT) + Br⃗(r + ΔT − τ0) + Cz⃗(r + ΔT) + ϕ⃗⃗⃗
= As⃗(nΔT + ΔT) + Br⃗(nΔT + ΔT − τ0)

+ Cz⃗(nΔT + ΔT) + ϕ⃗⃗⃗ 

(21) 

 
g⃗⃗(nΔT+ΔT)−g⃗⃗(nΔT)

ΔT
≈ As⃗(nΔT + ΔT) + Br⃗(nΔT +

ΔT − τ0) + Cz⃗(nΔT + ΔT) + ϕ⃗⃗⃗  
(22) 

 

The calculation can be simplified by setting τ0 = ΔT and 

using an equal sign to replace the approximation sign in Eq. 

(22) as follows: 

 
g⃗⃗(nΔT+ΔT)−g⃗⃗(nΔT)

△T
= As⃗(nΔT + ΔT) + Br⃗(nΔT) +

Cx⃗⃗(nΔT + ΔT) + ϕ⃗⃗⃗  
(23) 

 
g⃗⃗((n+1)ΔT)−g⃗⃗(nΔT)

ΔT∗
= As⃗((n + 1)ΔT) + Br⃗(nΔT) +

CI⃗((n + 1)ΔT) + ϕ⃗⃗⃗  
(24) 

s⃗((n + 1)ΔT) − s⃗(nΔT) = ΔT(As⃗((n + 1)ΔT) +

Br⃗(nΔT) + CI⃗((n + 1)ΔT) + ϕ̂)  
(25) 

 

The result is that all the signals will be converted into 

sequences and their domain will be represented by the discrete 

index, 'n.' Thus, there will be a conversion of the Eq. (14) into 

a non-linear non-homogeneous first-order difference equation 

as follows: 

 

s⃗[n + 1] − s⃗[n] = ΔT(As⃗[n + 1] + Br⃗[n] +

Cx⃗⃗[n + 1] + ϕ⃗⃗⃗)  
(26) 

 

g⃗⃗[n + 1] = g⃗⃗[n] + ΔT(As⃗[n + 1] + Br⃗[n] +

Cx⃗⃗[n + 1] + ϕ⃗⃗⃗)  

(I − (ΔT)A)s⃗[n + 1]

= g⃗⃗[n] + ((ΔT)B)r⃗[n]

+ ((ΔT)C)z⃗[n + 1] + (ΔT)ϕ⃗⃗⃗ 

(27) 

 

Defining: 

 

Ws = (I − (△ T)A)−1   (28) 

 

and when we multiply both sides of Eq. (24) by Ws, we obtain: 

s⃗[n + 1] = Wss⃗[n] + ((ΔT)WsB)r⃗[n] + ((ΔT)WsC)x⃗⃗[n +

1]) + ((ΔT)Wsϕ⃗⃗⃗), and once we shift the index, n, forward by 

one step, it becomes: 

 

s⃗[n] = Wss⃗[n − 1] + ((ΔT)WsB)r⃗[n − 1] +

((ΔT)WsC)x⃗⃗[n] + ((ΔT)Wsϕ⃗⃗⃗)  

r⃗[n] = G(s⃗[n]) 

(29) 

 

By introducing two extra weight matrices and a bias vector, 

Wr = (ΔT)WsB (30) 

 

Wx = (ΔT)WsC (31) 

 

θ⃗⃗s = (ΔT)Wsϕ⃗⃗⃗ (32) 

 

the system mentioned above can be converted into the standard 

canonical RNN configuration: 

 

s⃗[n] = Wss⃗[n − 1] + Wrr⃗[n − 1] + Wxx⃗⃗[n] + θ⃗⃗s (33) 

 

r⃗[n] = G(s⃗[n]) (34) 

 

Having demonstrated the basic form of the RNN in Eq. (30), 

let's transition to the “LSTM” model. LSTM [20] is a robust 

recurrent neural network purposefully crafted to address the 

challenges associated with exploding or vanishing gradients. 

These difficulties tend to arise during the learning of long-term 

relationships, particularly when there are substantial time lags 

[20]. To address these challenges, the “LSTM” model 

incorporates a constant error carousel (CEC) that effectively 

preserves the error signal of each cell unit. Interestingly, these 

cells themselves are recurrent networks and have a unique 

architecture that extends the CEC with additional components, 

such as the output gate and input gate, to form the memory cell. 

There are several components of the typical "LSTM" unit, 

including an input gate, an output gate, a forget gate, and a cell. 

The forget gate was introduced by Gers as it was not originally 

a part of the "LSTM" network; the introduction was to make 

the network able to reset its state. In the LSTM, the cell can 

hold data for any number of time periods, and the 3 gates work 

collectively to control the information flow within the cell. In 

the subsequent section, when we refer to LSTM, we are 

specifically addressing the basic version, which is the most 

widely employed architecture for “LSTM” networks [21]. 

However, it is important to recognize that being the most 

popular does not necessarily mean it is the best choice for 

every situation. 

To put it briefly, the “LSTM” design consists of a set of 

memory blocks that are recurrently connected. The memory 

blocks maintain their state and oversee the control of 

information flow over time through the non-linear gating units. 

A typical “LSTM” block, as shown in Figure 6, includes gates, 

an input signal represented as x(r), an output represented as y(f), 

peephole connections, and activation functions. The output of 

the block forms recurrent connections with both the block 

input and all the gates. 

 

 
 

Figure 6. A typical vanilla “LSTM” block architecture 

 

The working principle of the LSTM can better be 

understood by analyzing a network that comprises M inputs 
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and N processing blocks. In this recurrent neural system, the 

forward pass can be explained thus: 

Block Input: The major process of this step is updating the 

component of the block input which involves combining the 

current input, denoted as x(r), and the output of the “LSTM” 

unit, y(r-1), from the preceding iteration; this process can be 

expressed thus: 

 

z(r) = g(Wzx
(r) + Rzy

(r−1) + dz)  (35) 

 

Input gate: The process here is the updating of the input 

gate that requires the incorporation of the output of the 

preceding “LSTM” unit y(r-1), the current input x(r), and the cell 

value c(r-1) from the preceding iteration as represented in the 

following equation: 

 

i(r) = σ(Wix
(f) + Riy

(r−1) + pi⊙ c(r−1) + di)  (36) 

 

where, ⊙ is a point -wise multiplication of 2 vectors, Wi,Ri 

and pi are the weights related to x(r), y(r-1) and c(r-1), respectively, 

and di is the bias vector related with this specific component. 

The “LSTM” layer is responsible for determining the data 

to be kept in the network's cell states from the previous step, 

represented as c(r). This process requires the selection of the 

candidate values z(f) to be added to the cell states, as well as 

the determination of the activation values z(f) of the input gates.  

Forget Gate: The major task in this phase is the 

determination of the data to be discarded from its prior cell 

states c(r-1). This is achieved by computing the forget gate’s 

activation values f(r) at time step t in consideration of the 

current input x(r), the outputs y(r-1), the memory cell’s state c(t-

1) from the previous time step (t-1), the bias terms bf associated 

with the forget gates, and the peephole connections. 

 

𝑓(𝑟) = 𝜎(𝑊𝑓𝑥
(𝑟) + 𝑅𝑓𝑦

(𝑟−1) + 𝑝𝑓 ⊙ 𝑐(𝑟−1) + 𝑏𝑓)  (37) 

 

 

where, Wf, Rf and pf are the weights of x(r), y(r-1) & c(f-1), 

respectively; bf is the bias weight vector. 

Cell: During the cell stage, the calculation of the cell value 

entails incorporating the block input z(r), input gate i(r), and 

forget gate f(r) values with the preceding cell value. This 

process can be expressed as follows: 

 

c(r) = z(r)⊙ i(r) + c(r−1)⊙ f (r)  (38) 

 

Output Gate: Output Gate: The process here is to 

determine the output gate by merging the current input x(r), the 

cell value c(r-1) from the preceding iteration, and the output of 

the “LSTM” unit y(r-1) as seen in the following relation: 

 

o(r) = σ(Wox
(r) + Roy

(r−1) + po⊙ c(r) + do)  (39) 

 

In the given equation, po, Wo and Ro are the weights of c(r-1) 

x(r) and y(r-1), respectively, while bo denotes the bias weight 

vector. 

Block Output: In the end, the block output is computed by 

combining the current cell value c(t) with the current output 

gate value, as illustrated below: 

 

y(r)  =  g(c(r)) _ o(r)  (40) 

 

where, σ, g, and h are non-linear activation functions that are 

applied to each element.  

 

 

4. RESULTS AND DISCUSSION  

 

Several metrics were employed for the evaluation of the 

proposed network in predicting power consumption accurately. 

These metrics encompass RMSE, MSE, and R2 score. 

(1) RMSE: RMSE reflects the mean deviation between the 

predicted and actual energy consumption values. In this 

context, an RMSE value of 0.611 suggests an average 

deviation of 0.611 units between the actual and predicted 

energy consumption values. A lower RMSE value suggests a 

higher accuracy of the predictions [22]. 

(2) MSE: The MSE, with a value of 0.374, indicates that, on 

average, the squared difference between the predicted power 

consumption values and the actual values is approximately 

0.374 units. A lower MSE value also implies greater accuracy 

in the predictions [23]. 

(3) R2 Score: The R2 score for the test data is 0.504. This 

score indicates the percentage of the variation in power 

consumption that can be accounted for by the predicted values. 

A higher R2 score indicates a better alignment of the 

predictions with the actual values. An R2 score of 0.504 

suggests a moderate level of explanatory power, meaning that 

around 50.4% of the variance in power consumption is 

explained by the predictions [24]. 

The training graph illustrates the loss values for the 

validation and training datasets throughout the training 

procedure. Loss measures the disparity between the actual and 

predicted energy consumption values. Within the Figure 7, the 

training loss curve represents the error on the training set, 

while the validation loss curve signifies the error on the 

validation set. The objective is to minimize both the validation 

and training loss, as it reflects the learning and generalization 

abilities of the model. 

Ideally, the desired outcome is to observe a decreasing trend 

in both the training and validation loss curves. Such a trend 

suggests that the model is enhancing its performance over time 

and becoming proficient at capturing the underlying patterns 

in the power consumption data. 

 

 
 

Figure 7. Training model 

 

Figure 8 represents the actual power consumption values 

and a scatter plot that represents the actual and predicted 

energy consumption values. The line plot shows the actual 
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energy consumption values as a series of data points connected 

by lines. Each data point is marked with an asterisk symbol. 

The predicted energy consumption values are shown in the 

scatter plot, where each data points is captured as circles. The 

y-axis has the power consumption values while the x-axis has 

the time steps for the first 500 h. This figure enhances better 

comparison of the predicted and actual power consumption 

values for better understanding of the model’s prediction 

performance. 

 

 
 

Figure 8. Actual vs predicted power consumption values for 

the first 500 h 

 

 
 

Figure 9. The predicted vs actual power consumption values 

for the first 7 days 

 

The blue line is the actual energy consumption data for each 

time step for the period of 7-days; each data point relates to the 

actual energy usage value at the related time step. The red line 

are the predicted energy consumption data for each time step 

over the same 7-day period; each circle relates to the predicted 

energy usage data at the related time step. The model’s 

prediction performance is visualized better by comparing the 

actual and predicted data in Figure 9; a closer match between 

the red and blue lines indicates a stronger model performance. 

Table 1 presents the RMSE for each day and the RMSE sum 

for the full 7 days. 

 

Table 1. The RMSE for each day and the RMSE sum 

 
Day RMSE 

1 0.498 

2 0.634 

3 0.601 

4 0.325 

5 0.880 

6 0.389 

7 0.600 

Sum 3.927 

 

The RMSE is a way of determining the average difference 

between the predicted and actual values; lower RMSE value 

implies higher model accuracy and vice versa.  

LSTM- FDLR-based power consumption prediction was 

conducted in this work; the performance of the developed 

method was benchmarked against other methods in terms of 

the RMSE, MSE, and R2 values. In this study, the RMSE value 

was 0.611, indicating an average difference of 0.611 units 

between the actual and predicted power consumption values. 

The MSE was 0.374, suggesting an average squared difference 

of approximately 0.374 units. The R2 score was 0.504, 

representing a moderate level of explanatory power. The study 

presented by Cascone et al. [15] used “LSTM” to predict 

global active energy consumption and achieved an RMSE of 

0.617%, indicating a slightly higher deviation than this study 

[15]. Another study presented by Qin [25] used both a linear 

regression model and a neural network model to predict power 

consumption (see Table 2 for the comparison of the 

performance of the developed model in this study with other 

methods). 

 

Table 2. Comparison of the performance of the proposed 

model in this study with other methods 

 
Study RMSE MSE R2 Score 

Cascone et al. [15] 0.617% - - 

Qin [25] - - 0.409 

Current Study 0.611 0.374 0.504 

 

 

5. CONCLUSIONS 

 

Energy efficiency in residential homes has become a major 

concern to facility managers as they strive towards energy 

consumption minimization during the operation and 

maintenance of such facilities. The early prediction of energy 

use patterns of residential buildings may aid building 

managers in making decisions regarding energy consumption 

reduction. This paper introduces an innovative model for 

forecasting energy demand through the utilization of a long 

short-term memory (LSTM) as well as fractional differential 

equations (FDLE) based model. The proposed LSTM-FDLE 

model is trained to predict the collective active power 

generated by household appliances. By leveraging the memory 

and sequential learning capabilities of LSTM, the proposed 

model can capture complex temporal dependencies and 

patterns in energy consumption data. The efficiency of the 

suggested LSTM- FDLE based model is evaluated using real-

world household energy consumption data. Future works in 

this regard are intended towards adopting the developed 

methods for real-time energy consumption prediction, as well 

as introducing a feedback mechanism for the minimization of 

the RMSE score of the proposed method for real-world 

applications. 

The proposed method contributions of the current study are 

as follows: 

(1) The issue of making accurate energy demand predictions 

for residential houses which is considered important for the 

optimization of energy generation and distribution in a 

sustainable manner was solved. A novel model that relies on 

both LSTM and modified Fractional calculus was developed 

and used to solve the problems of the existing prediction 

models that mostly rely on one-step prediction. 

(2) The effective prediction of household energy 

consumption using the suggested LSTM-based model was 

demonstrated; the model reached a good level of accuracy and 

performed better than most of the existing one-step forecasting 

approaches. 

(3) The possibility of a longer forecasting period leveraging 

the “LSTM” model was proven as it enables better planning 
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and optimization of energy production and distribution 

systems. The accurate prediction of energy demand over an 

extended period could aid decision-makers in making better 

resource allocation decisions, load balancing, and 

infrastructure planning. 
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