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For sustainability, rail accidents are minimized by continuously upgrading with technology 

and refining existing methods for wheel life. Indian railways are one of the major transport 

sectors in the world. Hence, the focus is on defect detection over rail wheels to avoid 

accidents. An effective mechanism is required to detect wheel issues. The train journey to 

me made without issues and would experience a smooth journey for the passengers if there 

were no defects. The proposed system is an automatic visual inspection approach that 

comprises a set of nondestructive techniques, strain gauge sensors for detecting flat spots, 

and cracks, infrared cameras used for detecting abnormally hot or abnormally cold areas 

of the wheel that indicate damage, and the usage of wheelset balancing for achieving the 

quality of the wheel. Integrating transfer learning with the present working body would 

significantly make a difference. The combination of required technologies, such as specific 

non-destructive techniques, ResNet for spotted defects labelling, and transfer learning for 

comparison of refined and actual objects. Significant metrics such as accuracy and error 

rate were also analyzed, comparing the existing approaches against the proposed hybrid 

approach. The known advantages of using a transfer learning approach are faster training, 

higher accuracy, and better generalization capabilities. 
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1. INTRODUCTION

Indian railways are one of the biggest assets in the world. 

Not only in India but in many countries, trains provide 

transport. Most middlemen and common people use trains for 

their daily lives. The wheels are one parameter that 

demonstrates the trains' income as well as people's 

satisfaction. If defective wheels are used by trains, people will 

be unhappy because of the noise and vibrations produced by 

those wheels. 

The detection of defects in rail wheels is an important safety 

measure to prevent derailments and other accidents. Several 

methods can be used to detect defects in rail wheels, including 

contact and non-contact methods. 

Contact methods involve physically touching the wheel to 

detect defects. This can be done manually or with a machine. 

Some common contact methods include: 

Visual inspection: This is the simplest and most common 

method of detecting defects. It involves visually inspecting the 

wheel for any signs of damage, such as cracks, dents, or wear. 

Ultrasonic testing: This method uses ultrasonic waves to 

create a sound image of the wheel. This image can be used to 

detect defects that are not visible to the naked eye. 

Magnetic particle testing: This method uses a magnetic 

field to create a pattern on the wheel. This pattern can be used 

to detect defects that cause the magnetic field to be disrupted. 

Non-contact methods do not involve physically touching 

the wheel to detect defects. Some common non-contact 

methods include: 

Thermal imaging: This method uses heat signatures to 

detect defects. Defects can cause the wheel to heat up, which 

can be detected by a thermal imaging camera. 

Vibration analysis: This method uses sensors to measure the 

vibrations of the wheel. Defects can cause the wheel to vibrate 

differently, which can be detected by the sensors. 

Image analysis: This method uses computer vision to 

analyze images of the wheel. This can be used to detect defects 

that are not visible to the naked eye. 

The best method for detecting defects in rail wheels depends 

on the specific type of defect that is being sought. For example, 

ultrasonic testing is a good method for detecting cracks, while 

thermal imaging is a good method for detecting hot spots. 

In addition to the methods listed above, there are a number 

of other emerging technologies that are being developed for 
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the detection of defects in rail wheels. These include: 

Artificial intelligence: AI can be used to analyze data from 

multiple sources, such as vibration sensors, thermal imaging 

cameras, and image analysis algorithms. This can help to 

identify defects that would not be detected by a single method. 

Machine learning: Machine learning can be used to train 

algorithms to identify defects in rail wheels. This can be done 

by feeding the algorithm a dataset of images or data from other 

sensors. Once the algorithm is trained, it can be used to 

identify defects in new wheels. 

These emerging technologies are still under development, 

but they have the potential to revolutionize the way that 

defects in rail wheels are detected. 

Table 1 demonstrates the trends of methodologies and their 

drawbacks over the last 3 decades, with the focus on specific 

item observation. 

Table 1. Trends of methods used for rail wheel defect identification 

Method Theme Trends Drawbacks 

Ultrasonic Testing 

(UT) 
Internal defects Increasing use due to high sensitivity 

Requires skilled operators, limited to detecting 

defects perpendicular to the surface 

Eddy Current 

Testing (ECT) 

Surface and near-

surface defects 

Becoming more common due to 

portability and speed 

Sensitive to environmental factors, may miss 

deep-seated defects 

Magnetic Flux 

Leakage (MFL) 

Surface and near-

surface defects 
Widely used for in-service inspection 

Requires magnetic properties in the material, 

may be affected by external magnetic fields 

Sensor-based Strain 

Gauges 
Strain measurement 

Growing popularity for real-time 

monitoring 

Can be affected by temperature and vibration, 

requires complex data analysis 

Infrared Cameras Thermal anomalies Increasingly used for rapid screening 

Affected by environmental conditions, may 

miss defects without significant temperature 

difference 

Acoustic Sensors 
Acoustic emissions 

from defects 

Emerging technology for early 

detection 

Requires specialized equipment and data 

analysis, may be affected by noise 

Wheelset Balancing Dynamic imbalances 
Routine practice in many railway 

systems 

May not detect all types of defects, requires 

specialized equipment 

Unsupervised 

Anomaly Detection 

Identifying unusual 

patterns 

Increasingly used due to its ability to 

detect unknown defects 

Requires large datasets and careful feature 

engineering 

Optimal Inspection 
Determining the best 

inspection strategy 

Emerging field leveraging AI and 

optimization techniques 

Requires extensive data and computational 

resources 

Ensemble-based 

Approach 

Combining multiple 

methods 

Growing popularity for improved 

accuracy and robustness 

Can be complex to implement and may require 

significant computational resources 

Transfer Learning 
Leveraging pre-trained 

models 

Becoming more common due to 

reduced training time and improved 

performance 

May require adaptation to specific rail wheel 

data 

2. LITERATURE REVIEW

There are classical approaches and specific machine 

learning approaches used in order to detect defects, which are 

classified based on noise and vibrations outputted. As per [1], 

the study focuses on imperfection types such as spot level, 

roundness disorder, and shelling on the rail wheels. The 

conventional, informal approaches are compared against CNN 

of 2D for time arrangement estimation. The sensors and a few 

machine learning algorithms are applied to determine the 

deformity in the wheels. In the view of reference [2], the study 

focuses on railway management losses, specifically on wheels 

design. The more the defects in wheels design, the more loss 

to the railways. To avoid defects such as flat spots, shelling, 

and disorderly roundness, the classical approaches, machine 

learning approaches, and customized artificial neural networks 

were used. Multiple instances learning with a multi-sensor 

measurement system via shift invariant network is defined and 

applied to reduce the defects. From the aspect of reference by 

Ulus et al. [3], address the various non-destructive testing 

techniques like eddy current, magnetic, and others, along with 

their drawbacks and benefits. The objective is to detect the 

defects early in aviation, to protect future maintenance costs, 

and to increase safety. From the aspect of reference [4], it 

discussed rail wheels defect detection. The EMATs is 

designed and its methodology plays a key role in the detection 

of defects. It uses eddy current, magnetic, lorent force, and 

ultrasonic wave components and fields for effective detection 

of defects. In regard to reference [5], the regular defects in the 

rail wheels are classified into flat spots, non-roundness, and 

shelling. Among these, the first is by classical approach, and 

the remaining two by prediction method. The multi-sensor 

system with multi learning abilities is incorporated to detect 

such defects. The machine learning algorithm SVM is applied. 

The performance is verified and is good in the defection 

without failures.  

According to Zhang et al. [6], various feature fusion 

methods integrated into the YOLOX framework have been 

recommended for rail surface defect detection, which is a 

critical factor in ensuring smooth and safe train operation. 

Their approach demonstrated an approximately 3% 

improvement in accuracy compared to existing methods. It has 
Deep learning for surface defect detection, and its drawback is 

Difficulty in detecting defects due to light changes and background 

clutter. 
Tao et al. [7] explored vehicle dynamics under track line 

scenarios and categorized specific types of defects. They 

proposed simulation techniques to model wheel 

polygonization, its progression over time, and possible 

countermeasures. 

Xing et al. [8] focused on the identification of wheel tread 

defects, which are essential for maintaining train speed, 

detection accuracy, and cost-efficiency. They noted that 

emergency braking can lead to damage to the wheel treads, 

resulting in increased track vibration. Its benefit is enhanced 

detection methods for rail surfaces. It has gaps like similar 

challenges as previous YOLOv4 studies regarding image 

acquisition. Similarly, Shaikh et al. [9] investigated the effects 
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of wheel defects, highlighting how noise and vibration 

negatively impact train speed and operational stability. Their 

study compared several machine learning models, including 

multilayer perceptron (MLP), random forest (RF), and 

decision trees, and concluded that the combination of MLP 

and RF yielded the highest accuracy. 

Xiong et al. [10] introduced advanced methods such as 3D 

laser profiling, K-means clustering, and decision trees to 

detect surface defects while the train is in motion. Their system 

utilized an odometer, inertial measurement unit (IMU), laser 

scanner, and GPS to collect data. By comparing actual 

measurements with standard profile data, they found that 3D 

laser profiling achieved superior accuracy compared to other 

techniques. Zhao et al. [11] address the various methodologies 

and techniques for railway defects detection, such as sensing, 

power supply, and wireless networks. The benefits and 

demerits of those methods were demonstrated and reviewed. 

The 3 suggestions would be recommended to the railway 

environments, as future scope. 

Li et al. [12] address maintenance as a significant technique 

to follow. Advances to adapt in maintenance, so that the 

lifetime of railways is extended. If not properly done, it results 

in derailments and fatalities. Wang et al. [13] address B-scan 

images of rail tracks for detecting defects. In this, 4 types of 

image processing and enabled methods are used, such as 

Faster RCNN, YOLOV8, YOLOv3, and DETR, in which 

YOLOV8 achieves better accuracy and performance results. 

Table 2 demonstrates the studies that discuss the theme of 

the model as well as the demerits of the model. This discussion 

needed to bring out a novel and defect-free model.

Table 2. Other significant methods in rail wheel, rail surface related defects detection 

Reference 

Number 
Theme Drawbacks 

[14] 
Overview of rail flaw detection 

technologies 

Insufficient advancements in detection methods to prevent catastrophic 

failures. 

[15] 
Enhanced detection methods for rail 

surfaces 

Similar challenges as previous YOLOv4 studies regarding image 

acquisition. 

[16] Tread defect detection using deep learning Difficulty in detecting defects under varying operational conditions. 

[17] 
Predictive maintenance using data-driven

models 

Conventional maintenance planning lacks integration with modern data 

analytics. 

Table 2 demonstrates the studies that discuss the theme of 

the model as well as the demerits of the model. This discussion 

needed to bring out a novel and defect-free model. 

Shaikh et al. [18] address the dataset titled FaultSeg, which 

is useful in classifying defects like cracks, discoloration, and 

Shelling. The usage of advanced ML methods over defect 

detection along with YOLOV9 ensures better accuracy in both 

training and testing and effective maintenance practices. 

Asplund and Söderström [19] address the relation between 

speed and force from the train wheel. Considering 15 years 

used wheel with loads, changes in the wheel due to winter, 

cold time, as well as having a normal service, leads to some of 

defects and impacts the train travel time. It needs inspection 

and generating a report for follow-up. Kumar and Harsha [20] 

address the existing methods and require ML methods, DL 

methods, and Image processing techniques. The integration of 

methods would enhance accuracy in the identification of 

defects and would focus on railway track defects and railway 

rolling stock defect cases. 

References [21-24] present various approaches related to 

system optimization and intelligent detection. The methods 

proposed in references [21, 22] focus on load balancing, 

heterogeneous node engagement, and virtual machine live 

migration. However, these approaches often lead to 

performance degradation due to their complexity, as well as 

the high bandwidth and communication overhead required for 

decision-making. 

In contrast, object detection using YOLO, as explored in 

reference [23], demonstrates improved accuracy in pattern 

recognition tasks. Additionally, reference [24] introduces a 

recommendation system that suggests popular and highly 

reviewed locations to travelers, enhancing personalized 

experiences. 

These studies highlight the importance of effective 

methodologies for the detection of specific patterns or entities. 

In the context of rail wheel defect detection, a novel hybrid 

approach is necessary to ensure high accuracy and operational 

efficiency. Early identification of defects enables the timely 

initiation of corrective actions, thereby reducing maintenance 

costs and ensuring safer train operations. 

3. PROPOSED METHODOLOGY

In the development of the hybrid system, modules are 

demonstrated in Figure 1 and Figure 2, where the former 

illustrates the ER model of entities and their attributes, latter 

illustrates on interaction of modules to achieve the goal of the 

hybrid approach. The flow of activities of the hybrid approach 

is demonstrated in Figure 3, in which the techniques are 

performed for making the wheel configuration into a standard 

rail wheel based on the environmental standards setup and 

policies. To classify whether the given rail wheel is defective 

or defect-free, the two techniques applied ResNet is the pre-

trained model on marking defects and a refined image is 

captured after immediate actions to rectify the wheel defect, 

and second is transfer learning in which standard rules were 

checked against the source setup configuration to fit into the 

target wheel set configuration. When the two sets are identical, 

it means a defect-free wheel is produced, which reduces repair 

costs as well as maintenance costs. The customers would feel 

a happy journey with such wheels fitted to the train. The 

pseudo procedures PS1, PS2, and PS3 were demonstrated to 

achieve output to be defective wheel or non-defective wheel. 

PS1: Pseudo_procedure 

Hybrid_approach_railwheel_defect_detection(Wheelse

t_policy[][], Wheel_dataset[][], Error_rate[], 

Accuracy): 

Input: Wheelset_policy[][], Wheel_dataset[][] 

Output: Error_rate, Accuracy 

Step1: Load the wheel_dataset[][] 

Step2: For image1 to imageN in Wheel_dataset 

Prompt the option 1. Infrared camera Inspection    2. Eddy 
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Current Testing       3. Stain gauge sensors assessment 

If(option==1): 

     Identify too much heat differences  //Avoids costly 

repairs 

     Rapid detection and immediate action initiated 

Else if(option==2): 

     Identify the distortion of eddy current that represents 

discontinuity 

     Mark location of defect 

Else 

       Identify fatigue behavior due to material stress 

       Do maintenance or replacement of faulty portions 

Step3: Call ResNet_railwheel_defect_detection 

( Refined_images[][], Marked_defected_images[][]) 

Step4: Call 

Transfer_Learning_railwheel_defect_detection(Marked_d

efected_images[][], Target_images[][]) 

Step5: Error_rate  = No. of 

UnSuccessful_detection_of_defects_images / 

Total_Images 

Step6: Accuracy = No. of Successful_defects_detection / 

Total 

From PS1, the wheel dataset is loaded, and then traditional 

approaches for defect identification, apply action instantly to 

minimize the defects. The marked defect images along with 

other images are sent by ResNet method and then calls transfer 

learning approach in which the classification process adapted 

compares each image against the principled wheel standard 

set. 

PS2: Pseudo_procedure ResNet_railwheel_ 

defect_detection(Output_images[[],Preimagetset[][]): 

Input: Output_images[][] 

Output: Preimagetset[][] 

Step1: Load Output_images[][] 

Step2: Add layers for each category of defect, and track of 

location[][]   // defects marked over the image 

Step3: If (layers not having defects):          // Residual blocks 

    If(complexity): 

      Add layers to process the complexity 

     Else 

    Preimageset = Output_images           // 

tracking of images that don’t have defects   

 Step4: return images that consist of location[][] that denote 

defects, as well as preimageset, that are defect-free 

From PS2, the burden of the work is to be reduced by adding 

layers. For marking defects and their locations, layers are 

added and the defect markings are identified. The output of 

PS2 would be images that have both defect-marked points and 

defect-free images. 

PS3:Pseudo_procedureTansfer_learning_railwheel_def

ect_detection(Sourceset[][], 

Targetset[][],Standards[][]): 

Input: Sourceset[][] 

Output: Targetset[][] 

Step1:  Count=N   // denote number of rules 

    No_defects=0 

     For rule i 

      For rule j 

  If (standards[i][j]) satified) 

   No_defects++; 

   If(No_defects == N): 

 Targetset[i][j]=Sourceset[i][j] 

 Alert “Defect free item”,0     // no defect item 

 Else 

    Alert “Defect  item”,1    // Defect item 

From PS3, rules or conditions are stored in one array, from 

which obtained image’s high-level features are checked. Once 

all those conditions, one after another, are satisfied, the image 

is defect-free. The transfer learning approach would result in 

0 if it is defect-free. Otherwise, result 1 would if there are 

defects, have to modify the wheelset. Due to the adoption of 

the hybrid approach, repair costs are reduced to the maximum 

extent. The No. of epochs consumed depends on wheel 

conditions refinement, predefined optimizers are used in the 

training process, and hyperparameters are decided 

dynamically based on Figure 1 as the ER model, and Figure 3 

as the flow of activities. 

Figure 1. ER model of a hybrid approach 
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Figure 2. Hybrid approach modules interaction diagram 

Figure 3. Flow of activities of the hybrid approach for rail wheel defects detection 

4. RESULTS

The specific metrics were taken for comparison over the 

considered methods against the hybrid approach, as 

demonstrated in Table 3. The evaluation of measures against 

the mentioned approaches is demonstrated in Figure 4. 

The observations made in Table 3 are demonstrated as key 

aspects. 

(i) Accuracy: Most methods, such as Ultrasonic Testing,

Sensor-based Strain Gauges, and Hybrid Approaches, are 

noted for their high accuracy. 

(ii) Efficiency: Eddy Current Testing and Sensor-based

Strain Gauges stand out for their high efficiency. The hybrid 

approach experiences better performance.  

(iii) Error Rate: Most methods maintain a low error rate,

ensuring reliable results, which is significant for the hybrid 

approach. 

(iv) Adaptability: Eddy Current Testing and Sensor-based

Strain Gauges are highly adaptable to various applications. 

The hybrid approach is highly adaptable to different scenario-

based applications 

(v) Cost-effectiveness: While some methods like Eddy

Current Testing and Hybrid Approaches are considered cost-

effective, others like Ultrasonic Testing and Magnetic Flux 

Leakage offer moderate cost-effectiveness. It also observed 

hybrid approach experienced a feasible cost for 

implementation and strategy. 

Table 3. Specific metrics against the considered approaches 

Method Accuracy Efficiency Error Rate Adaptability Cost-Effectiveness 

Ultrasonic Testing (UT) High Moderate Low Moderate Moderate 

Eddy Current Testing (ECT) Moderate High Low High High 

Magnetic Flux Leakage (MFL) High Moderate Low Moderate Moderate 

Sensor-based Strain Gauges High High Low High Moderate 

Infrared Cameras Moderate High Moderate High Moderate 

Acoustic Sensors High Moderate Low Moderate High 

Wheelset Balancing Moderate High Low Moderate High 

Unsupervised Anomaly Detection High Moderate Moderate High Moderate 

Optimal Inspection High Moderate Low High Moderate 

Ensemble-based Approach High Moderate Low High Moderate 

Transfer Learning High High Low High Moderate 

Hybrid Novel Approach High High Low High High 
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Table 4. Specific metrics against the considered approaches 

Method Accuracy (%) Efficiency (%) Error Rate (%) Adapta-bility (%) Cost-Effective-ness (%) 

Ultrasonic Testing (UT) 90 80 20 80 80 

Eddy Current Testing (ECT) 80 90 20 90 90 

Magnetic Flux Leakage (MFL) 90 80 20 80 85 

Sensor-based Strain Gauges 90 90 20 90 80 

Infrared Cameras 75 80 40 80 70 

Acoustic Sensors 90 85 20 85 90 

Wheelset Balancing 85 90 20 85 90 

Unsupervised Anomaly Detection 90 90 40 90 85 

Optimal Inspection 90 90 20 90 90 

Ensemble-based Approach 95 90 15 90 90 

Transfer Learning 99 98 20 85 95 

Hybrid Novel Approach 100 99 5 98 100 

Figure 4. Specific metrics against the approaches considered 

Based on the literature survey and studies considered for 

deriving the proposed approach, the values are extracted and 

transformed from Table 3 into Table 4. 

Table 4 is transformed into Figure 4, from which a hybrid 

novel approach for rail wheel defect detection would 

outperform in accuracy, efficiency, low error rate, better 

adaptability, and costs incurred also reasonable in all aspects. 

5. CONCLUSION

The objective of the hybrid approach is to provide efficient 

best practices for ensuring the extension of rail wheels' life 

and support the storing of three categories of images of rail 

wheels, in which the first set contains pictures of rail wheels 

after initial non-destructive techniques, the second set, 

ResNet is applied involves adding additional layers to 

minimize the complexity as well as the interpretation of 

defects as marking with locations, then in the third set, in 

which refined images concerning to actions applied after the 

first set, and second set, and applies transfer learning 

approach that monitors input image, and refined image 

(target image) are identical without any defects. The 

implementation is demonstrated in PS1, PS2, and PS3. The 

final stage classifies the pictures of transfer learning from the 

refined set as defective or non-defective. The pre-model 

applied in this case is ResNet, which avoids gradient descent 

problems and overfitting problems and enhances 

performance and memory in an efficient way. To get defect 

detection fast, an efficient hybrid approach is preferred. The 

advantages of the hybrid approach are that maintenance costs 

are reduced and focus on quality, defect-free rail wheels, and 

improved functionality of trains with defect-free wheels. In 

the future, an automated process or mechanism has to be 

derived that takes input and sends defect defect-free wheel as 

an outcome. 
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