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Accurate, real-time vehicle detection is crucial for autonomous vehicles navigating 

dynamic traffic environments. This study compares YOLOv11 and the newly released 

YOLOv12, two state-of-the-art deep learning models for object detection, to assess 

enhancements in speed, accuracy, and robustness. YOLOv12 has improved upon 

YOLOv11's architecture with an attention mechanism and Residual Efficient Layer 

Aggregation Networks (R-ELAN). The improvements for YOLOv12 are designed to 

obtain better accuracy and improved computational performance as compared to 

YOLOv11. YOLOv11 and YOLOv12 were trained and tested on a newly developed 

dataset with 38,500 fully annotated images of seven classes of vehicles taken in different 

environmental conditions. Results show YOLOv12 achieves higher recall (95.0%), F1-

score (96.03%), and mAP@50–95 (88.6%), while both maintain real-time inference 

speeds. YOLOv12 also demonstrated an improved capacity to detect small or partially 

occluded objects in challenging scenes. Overall, these findings establish YOLOv12 as a 

better solution for perceiving real-time data while autonomous driving, with a real prospect 

for implementation in intelligent transportation systems and edge-computing. 
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1. INTRODUCTION

The rapid advancement of autonomous vehicles relies 

heavily on real-time object detection to identify surrounding 

vehicles, pedestrians, and road signs under various and 

complex traffic environments [1]. Luckily, this list has been 

compiled to present some of the most exciting developments 

that have made the most out of these new-found algorithms 

and methodologies, specifically the YOLO (You Only Look 

Once) family that has generated for itself a sunshed amount of 

popularity surely due to its relatively high-speed and accuracy 

when it comes to solving standards object detection problems 

[2, 3]. 

The evolution of the YOLO object detectors from YOLOv1 

(2016) to YOLOv12 (2025) depicts continuous enhancement 

in speed, performance, and computational efficiency, as 

shown in Figure 1. Over time, significant architectural 

modifications such as fusion schemes in features, attention 

units, and optimizations in the detection head have been 

introduced to improve object detection in autonomous 

vehicles, surveillance systems, and various real-world 

deployments [4]. This evolution outlines an unmistakable 

trajectory toward better generalizability, reduced latency, and 

improved detection performance, positioning YOLOv12 as 

the most advanced iteration to date [5, 6]. 

More recently, YOLOv11 and even more recently, 

YOLOv12 in early 2025, which implemented attention 

mechanisms, R-ELAN modules and improved detection heads. 

It significantly increases accuracy while also boosting 

inference speed, further solidifying its position as a valuable 

option to be incorporated into Advanced Driver Assistance 

Systems (ADAS) and intelligent transportation systems (ITS) 

[5]. 

However, despite the architectural innovations introduced 

in YOLOv12, a comprehensive comparative evaluation with 

its immediate predecessor, YOLOv11, remains lacking, 

particularly in the context of real-time vehicle detection for 

autonomous driving. 

The YOLO object detection framework has undergone 

continuous evolution since its initial introduction. Over the 

years, multiple versions have been developed, each bringing 

improvements in speed, accuracy, and computational 

efficiency. Early versions such as YOLOv3, YOLOv4, and 

YOLOv5 introduced enhanced feature extraction and 

detection head refinements, significantly improving real-time 

object detection performance [7]. 

This study addresses this gap by evaluating and comparing 

YOLOv12 with YOLOv11 regarding detection accuracy, 

inference speed, and computational efficiency in a driving 

environment. The outcomes will inform us on the best fit for 

deployment in ADAS in real-time. 

Subsequent models, including YOLOv6 and YOLOv7 
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added more advanced mechanisms, including Swin 

Transformers [8, 9] and Multi-Stage Feature Fusion (MSFF) 

modules [10], further improving detection performance, 

especially in the case of occlusion and challenging 

environments. Recent generations, such as YOLOv8 and 

YOLOv9, improved detection accuracy and efficiency, 

enabling them to be used in intelligent transportation systems 

and traffic monitoring applications [11-13]. 

Figure 1. Evolution of the YOLO architecture 

As discussed by Sundaresan Geetha et al. [14], YOLOv10 

and YOLOv11 continued this trend, improving the detection 

of small objects and crowded traffic scenarios. Sharma et al. 

[15] found that YOLOv11 notably outperformed all other

detectors for occluded vehicle detection, even in challenging

environments, showing that YOLOv11 is a great candidate for

real-time traffic surveillance [16, 17].

The most recent development in this lineage YOLOv12 

shows lackluster progress, moving towards an attention-

centric feature world, aiming etc., In terms of accuracy and 

real-time inference speeds. Studies by Tian et al. [18], 

YOLOv12 outperforms its predecessors, as well as the recent 

real-time Detection Transformer (RT-DETR) in terms of mean 

Average Precision (mAP) while consuming lower 

computational resources. Despite these advancements, a direct 

comparison between YOLOv11 and YOLOv12 specifically 

for autonomous vehicle perception remains an open research 

question, which this study aims to address. 

To address this research gap, this study proposes a detailed 

comparative analysis of YOLOv11 and YOLOv12, focusing 

on three key performance metrics: detection accuracy, 

inference speed, and computational efficiency in real-world 

autonomous driving conditions. In contrast to all previous 

studies, which have considered YOLO models on separate 

benchmarks, this work is intended to evaluate their 

performance when it comes to their direct use in real-world 

environments, where real-time is paramount for ADAS. 

Through a performance analysis over a diverse set of 

monitored traffic scenarios, this work aims to evaluate if 

YOLOv12's architectural benefits outweigh its predecessor 

YOLOv11, thus making a case towards its adoption as a 

coverage tool for safety-critical environments. 

The rest of the paper is organized as follows: Section 2 

describes the YOLOv12 architecture, dataset preparation, and 

evaluation metrics. In section 3, we present the experimental 

results and comparisons of YOLOv12 against YOLOv11, 

along with some of the key observations from these 

experiments with an emphasis on the trade-offs between 

accuracy, speed, and computational efficiency. Finally, 

Section 4 concludes the paper with a summary of important 

contributions and directions for further research in online 

object detection models for autonomous driving. 

2. MATERIAL AND METHOD

This study employs a systematic approach to evaluate and 

compare YOLOv11 and YOLOv12 in real-time vehicle 

detection for autonomous driving. YOLOv12 represents the 

latest milestone in real-time object detection, achieving state-

of-the-art performance through advanced attention 

mechanisms and Residual Efficient Layer Aggregation 

Networks (R-ELAN). By focusing on detection accuracy, 

inference speed, and computational overhead, this work 

highlights YOLOv12’s architectural innovations and 

demonstrates how it surpasses its predecessor, YOLOv11, 

without sacrificing efficiency. The findings offer valuable 

insights into the trade-offs between precision and speed, 

serving as a crucial benchmark for researchers and 

practitioners shaping the future of autonomous vehicle 

applications. 

2.1 YOLO neural network models 

The YOLO (You Only Look Once) neural network family, 

developed by Ultralytics, has established a strong reputation 

for real-time object detection by balancing high accuracy with 

computational efficiency. In this study, we examine two of its 

recent iterations YOLOv11 and YOLOv12, which have gained 

traction in autonomous vehicle applications, where rapid and 

precise detection of objects is paramount for operational safety. 

Both models stem from a lineage of continual refinements, 

targeting challenges such as detecting smaller objects, 

optimizing attention mechanisms, and reducing computational 

overhead [15, 17, 19]. 

YOLOv11 introduced several notable architectural updates 

compared to its predecessors. As shown in Figure 2(a), a key 

change involved replacing the C3k2 module with the more 

flexible C2f module, enabling the network to adapt more 

effectively to diverse detection scenarios. Additionally, 

YOLOv11 incorporated a C2PSA block that improved the 

attention mechanism, enhancing the extraction of contextual 

features in complex environments. Another significant 

improvement was the use of depthwise separable convolutions 

in the detection head, which streamlined computations while 

minimizing any impact on overall accuracy. Despite these 

advances, YOLOv11 exhibited limitations in detecting smaller 

objects, spurring further research into refined feature pyramids 

or enhanced upsampling strategies [20-22]. 

Building on YOLOv11’s framework, YOLOv12 broadened 

performance improvements through several innovations. As 

illustrated in Figure 2(b), YOLOv12 integrates A2 (area-

attention) modules for more fine-grained focus on salient 

regions, especially in cluttered scenes or varied lighting 

conditions. The network also leverages R-ELAN to optimize 

gradient flow and multi-scale feature aggregation, and 

continues using depthwise separable convolutions refined for 

even lower computational overhead. In addition, Figure 2(c) 

compares the attention modules C3K2 and the novel R-ELAN 

introduced in YOLOv12, highlighting how R-ELAN 
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significantly improves residual connections and enhances 

feature aggregation. These advancements contribute to 

YOLOv12’s improved ability to detect objects of varying sizes, 

even on resource-constrained platforms such as embedded 

systems and edge devices [6, 18]. 

Several new features (key improvements) further 

distinguish YOLOv12 from YOLOv11. Zone-based attention 

mechanisms efficiently handle large receptive fields while 

maintaining a balanced computational load across upstream 

layers. The enhanced feature aggregation in R-ELAN 

produces more robust multi-scale representations, and the 

integration of residual connections with scaling improves 

training stability, especially in larger models. Flash Attention 

minimizes memory overhead by optimizing access patterns, 

and the simplified attention implementation eliminates the 

need for positional encoding, reducing model complexity. 

Furthermore, the optimization of MLP ratios ensures more 

efficient allocation of computing resources, allowing 

YOLOv12 to achieve high accuracy with fewer parameters. 

[23]. 

 

 
(a) 

 

 
(c) 

 
(b) 

 

Figure 2. YOLO neural network architecture and module comparison: (a) YOLOv11 architecture; (b) YOLOv12 architecture, 

highlighting the integration of A2 modules; (c) Comparison of attention modules: C3K2 and the novel R-ELAN introduced in 

YOLOv12 

 

A comparative evaluation of YOLOv11, YOLOv12, and 

other object detection frameworks is presented in Figure 3, 

underscoring YOLOv12’s advantages in speed, accuracy, and 

overall computational load. Small-object detection, 

traditionally a challenge for real-time systems, benefits from 

refined feature scaling and hardware acceleration options, 
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enabling YOLOv12 to handle intricate scenarios more 

effectively. Researchers can consult supplementary materials 

and referenced literature for deeper insight into these 

architectures, including specific implementation strategies, 

hyperparameters, and ablation studies. By uniting advanced 

attention modules, efficient convolutional operations, and 

carefully tuned resource allocations, YOLOv12 offers a robust, 

forward-looking solution for modern object detection needs. 

 

 
 

Figure 3. Performance comparison of YOLOv12, YOLOv11, and other object detection models 

 

2.2 Dataset and resources for training and deployment 

 

In this study, we curated a diverse and meticulously 

annotated dataset of 38,500 images to train and evaluate both 

YOLOv11 and YOLOv12 for vehicle detection. The images 

were derived from video frames recorded in various traffic 

environments urban streets, highways, intersections, and 

parking lots to ensure broad coverage of real-world scenarios. 

To further enhance representativeness, we included images 

captured under different weather conditions (daylight, 

nighttime, fog, rain) and in the presence of occlusions. The 

dataset encompasses seven categories of vehicles E-Scooter, 

Bicycle, Bus, Car, Motorcycle, Truck, and Emergency Vehicle 

reflecting the spectrum of traffic objects typically encountered 

by autonomous driving systems, as shown in Table 1. High-

resolution images were collected from both in-vehicle cameras 

and roadside surveillance systems, supplemented by samples 

from open-source repositories. 

 

Table 1. Dataset image categories 

 
Id Class Image 

0 E-Scooter 

 
1 Emergency vehicle 

 
2 Bicycle 

 
3 Bus 

 
4 Car 

 
5 Motorcycle 

 
6 Truck 

 

Each image underwent manual annotation using Roboflow, 

with bounding boxes drawn around every target object. 

Annotations were then exported in YOLO format for 

streamlined integration with the training pipeline. 

Subsequently, images were resized to 640 × 640 pixels to 

strike a balance between computational efficiency and 

preservation of visual detail [24]. 

To enhance the dataset’s robustness, we applied data 

augmentation techniques such as flipping, rotation, noise 

injection, and exposure adjustments. These transformations 

effectively increased the variety of training samples, 

mitigating overfitting and improving generalization. In 

addition, saturation adjustment was introduced to account for 

varying lighting and color conditions. Specifically, saturation 

was modified within a range of -25% to +25%, simulating both 

muted and vibrant scenarios. The transformation can be 

described as: 

 

I'=adjust_saturation(I, α), α[−0.25,0.25] (1) 

 

where, I is the original image and I′ is the saturation-adjusted 

image. 

Noise augmentation was implemented by adding small 

random pixel perturbations to simulate real-world image 

imperfections such as sensor noise or compression artifacts. 

This process is mathematically expressed as: 

 

I′=I+N (2) 

 

where, N represents the noise applied to the image, affecting 

up to 0.1% of the pixels. 

For exposure adjustment, brightness was modified 

uniformly by approximately 10% across the image to simulate 

varying lighting conditions. The formula used is: 

 

I′=clip(I+β×I,0,255), β≈0.1 (3) 

 

This adjustment enhances the model’s resilience to extreme 

lighting environments, ensuring better generalization across 

day, night, or glare-affected scenes. 
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Random rotations were also introduced, wherein images 

were rotated between -15° and +15°, simulating camera tilt 

and slight perspective changes. This transformation can be 

written as 

 

I′=rotate (I, θ), θ[−15°,15°] (4) 

 

and the bounding boxes were dynamically adjusted to ensure 

vehicles remained properly enclosed after rotation. 

Geometrically, each pixel’s coordinates underwent a 2D 

rotation matrix transformation, 

 

R(θ)=[
cos(θ) − sin(θ)

sin(θ) cos(θ)
] (5) 

 

where, R(θ) denotes the rotation matrix, which is especially 

relevant for rotating or mobile cameras.  

In addition, horizontal flipping was applied with a 50% 

probability to simulate mirrored perspectives and enhance 

spatial diversity in vehicle orientation. 

These combined augmentation methods not only broaden 

the range of environmental variations but also help address 

class imbalance by expanding underrepresented categories. 

Finally, the dataset was divided into training (70%), 

validation (20%), and test (10%) sets to enable systematic 

hyperparameter tuning and unbiased performance evaluation. 

Figure 4 illustrates the workflow from image collection and 

annotation to structured dataset partitioning. By combining a 

thoroughly annotated dataset with systematic preprocessing 

and augmentation, this approach provides a robust foundation 

for assessing the accuracy, robustness, and real-time 

performance of YOLOv11 and YOLOv12 under challenging 

traffic conditions. 

 

 
 

Figure 4. Dataset preparation workflow 

 

2.3 Experimental environment and parameter settings 

 

To ensure a fair and efficient evaluation of YOLOv11 and 

YOLOv12, all experiments were conducted in a high-

performance computing environment, optimized for deep 

learning workloads. The training setup was carefully designed 

to provide consistent computational power and efficient GPU 

acceleration, ensuring stable model convergence and reliable 

performance assessment. The details of the hardware and 

software configurations, along with the hyperparameter 

settings, are summarized in Table 2. 

The system was equipped with an AMD Ryzen 9 7940HX 

CPU, an NVIDIA GeForce RTX 4070 GPU with 8 GB of 

VRAM, and 32 GB of DDR5 memory, running on Windows 

11. The software environment was built on Python 3.12.4, 

using PyTorch 2.5.1 with CUDA 11.8, ensuring compatibility 

with GPU acceleration for optimized deep learning 

computations. 

To achieve efficient convergence and optimal detection 

accuracy, key hyperparameters were configured as follows: 

100 epochs, a batch size of 16, an image resolution of 640 × 

640 pixels, and the Stochastic Gradient Descent (SGD) 

optimizer. Additional settings included a momentum of 0.937, 

a weight decay of 0.0005, an initial learning rate of 0.01, and 

a final learning rate of 0.01. These configurations, as detailed 

in Table 2, were selected to balance computational efficiency 

and model accuracy, ensuring robust real-time vehicle 

detection capabilities. 

 

Table 2. Hardware and software configurations with 

hyperparameter settings 

 
Hardware and Software 

Environment 
Hyperparameters 

Name Version Parameters Details 

CPU 
AMD Ryzen 9 

7940HX 
Epochs 100 

GPU 

NVIDIA 

GeForce 

RTX4070 

Batch size 16 

VRAM 8 GB Image size (Pixels) 640×640 

Memory 32 GB DDR5 Optimizer algorithm SGD 

Operating System Windows 11 Momentum 0.937 

Python Version 3.12.4 Weight Decay 0.0005 

PyTorch Version 2.5.1 Initial Learning Rate 0.01 

CUDA Version 11.8 Final Learning Rate 0.01 

 

2.4 Models evaluation metrics 

 

Precision, Recall, mAP, and F1-score are employed as the 

primary evaluation metrics for the thorough evaluation of 

YOLOv11 and YOLOv12 performance in vehicle detection in 

this study. These metrics measure the models' accuracy, 

stability, and generalization capacity for different categories 

of vehicles. 

Precision, Eq. (6), determines the proportion of true positive 

detections correctly identified, defining the ability of the 

model to suppress false positives. Recall, Eq. (7), determines 

the proportion of true objects detected correctly, representing 

the model's sensitivity to detect all relevant instances. Average 

Precision (AP), Eq. (8), taken across all categories, gives the 

mean Average Precision (mAP), Eq. (9), as the global 

performance indicator combining precision-recall values for 

all detected classes. The F1-score, Eq. (10), balances precision 

and recall and gives the global view of the model detection 

reliability in realistic situations [25, 26]. 

With these criteria, this study ensures that there is a 

standardized and rigorous measurement of the detection 

performance, which simplifies comparison of YOLOv11 and 

YOLOv12 for real-time autonomous vehicle detection. The 

criteria enable a balance between accuracy, computational 

overhead, and the capability to manage variability so that the 

models are viable for use in dynamic traffic conditions. 

 

Precision=
𝑇𝑃

TP+FP
×100% (6) 

 

Recall=
𝑇𝑃

TP+FN
×100% (7) 

 

AP=∫ 𝑃(𝑅)𝑑𝑅
1

0
 (8) 

43



 

 

mAP=
∑ (𝐴𝑃)𝑗𝑐
j=1

𝑐
 (9) 

 

F1-score=2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

Precision+Recall
 (10) 

 

 

3. RESULTS AND DISCUSSION 

 

The experimental results from training and validation of the 

YOLOv11 and YOLOv12 models demonstrate clear 

distinctions in their detection performance, which is critical for 

real-time autonomous driving applications. Both models were 

trained using NVIDIA GPUs in a high-performance 

computing environment, utilizing the PyTorch framework. 

The training setup incorporated an SGD optimizer with a 

learning rate of 0.01, momentum of 0.9, and a decay strategy. 

A batch size of 16 was used, and early stopping was activated 

after 20 epochs without validation improvement to mitigate 

overfitting. 

 

 

 
 

Figure 5. Training results of YOLOv11 

 

 
 

Figure 6. Training results of YOLOv12 

 

Table 3. Metrics of the proposed models 

 

Model 
Metrics of the Models 

Precision Recall F1-score mAP@50 mAP@50-95 

YOLOv11 97.7%  94.3% 95.96% 98% 88.1% 

YOLOv12 97.1% 95% 96.03% 98.2% 88.6% 

 

As shown in Figures 5 and 6, both models exhibited steady 

convergence, with training and validation losses decreasing 

smoothly over epochs. The quantitative performance 

comparison (Table 3) shows that while YOLOv11 achieved a 

slightly higher precision (97.7%), YOLOv12 demonstrated 

superior recall (95.0%), F1-score (96.03%), and mAP@50–95 

(88.6%). These improvements can be attributed to 

YOLOv12’s refined architecture, which incorporates 

advanced attention mechanisms and R-ELAN. These 

enhancements provide more effective feature extraction and 
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object localization, particularly in cluttered or occluded 

scenes. 

Nevertheless, YOLOv12 is not without limitations. Class-

specific analysis reveals that it still struggles with detecting 

certain categories such as bicycles and buses. These challenges 

are likely due to several factors: the relatively small size of 

these objects in the input images, frequent occlusions in urban 

environments, and high intra-class variability in shape, 

orientation, and color. Such characteristics reduce the 

effectiveness of feature extraction layers, especially when 

spatial resolution is limited. This indicates that while 

YOLOv12 improves overall performance, further refinement 

is needed to ensure reliable detection of all vehicle types. 

Future enhancements could include integrating multi-scale 

feature fusion to better preserve small object features and 

applying sensor fusion strategies such as incorporating LiDAR 

or radar data to complement visual inputs. 

Figures 7 and 8 illustrate the Precision-Recall (PR) 

confidence curves for both models. YOLOv12 consistently 

outperforms YOLOv11 in recall, demonstrating fewer missed 

detections, while maintaining high precision. Its mAP@50 

increased slightly from 0.980 (YOLOv11) to 0.982 

(YOLOv12), reinforcing its enhanced classification accuracy. 

Vehicle classes such as E-Scooters, motorcycles, and trucks 

show high and stable performance in both models. However, 

bicycles and buses display noticeable variability in recall, 

emphasizing the need for targeted improvements in these 

categories. 

 

 
 

Figure 7. Precision-Recall confidence curve of YOLOv11 

 

 
 

Figure 8. Precision-Recall confidence curves of YOLOv12 

 

The F1-confidence curves for YOLOv11 and YOLOv12, 

provide a detailed evaluation of their precision-recall trade-

offs at varying confidence thresholds. The F1 score, which 

balances precision and recall, is a key metric for determining 

the overall detection effectiveness of the models. 

 

 
 

Figure 9. F1 and confidence curves of YOLOv11 

 

 
 

Figure 10. F1 and confidence curves of YOLOv12 

 

As depicted in Figures 9 and 10, both models achieve 

consistently high F1 scores, indicating strong detection 

performance across multiple vehicle categories. However, 

YOLOv12 exhibits a superior F1 score at lower confidence 

thresholds (0.591) compared to YOLOv11 (0.671), 

confirming its enhanced detection capability and reduced false 

negatives. This improvement reflects YOLOv12’s refined 

feature extraction, optimized detection head, and better object 

classification under varying conditions. 

 

 
 

Figure 11. Normalized confusion matrix for YOLOv11 
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Figure 12. Normalized confusion matrix for YOLOv12 

 

 
 

Figure 13. Comparison of YOLOv11 and YOLOv12 in 

diverse driving conditions 

 

Among different vehicle classes, bicycles and buses show 

slight dips in F1 scores, likely due to occlusion challenges and 

size variations in the dataset. Conversely, E-Scooters, 

motorcycles, and trucks maintain stable F1 scores across both 

models, highlighting their robust detection accuracy. The 

improvements in YOLOv12’s architectural design, including 

R-ELAN and attention mechanisms, contribute to its higher 

efficiency in real-time autonomous vehicle perception. 

Figures 11 and 12 show the normalized confusion matrices, 

which offer deeper insights into classification performance. 

YOLOv11 displayed misclassifications, particularly for 

bicycles and cars, likely due to similarities in visual features 

and environmental clutter. YOLOv12, by contrast, achieved 

more accurate class distinctions and a reduced false positive 

rate, especially for visually similar objects. These 

improvements stem from the attention-based architecture and 

enhanced feature learning provided by the R-ELAN modules. 

Figure 13 presents qualitative comparisons in diverse 

environmental conditions, including fog, grayscale, occlusions, 

and dense traffic. YOLOv12 showed improved detection 

consistency and bounding box accuracy in all scenarios, 

especially under adverse conditions like low visibility and 

partial object obstruction. These results validate its superior 

real-time adaptability in complex driving environments. 

From a real-world perspective, the improved detection 

capabilities of YOLOv12 have several important implications 

for autonomous driving systems. Higher recall reduces the risk 

of missing critical objects, particularly in dense urban or high-

speed environments, enhancing situational awareness and 

safety. The model’s robustness in detecting occluded or small 

objects supports more reliable performance in complex real-

world traffic scenes, directly benefiting ADAS. However, 

these advantages must be balanced against deployment 

constraints, especially in edge-computing environments. 

YOLOv12's enhanced architecture introduces additional 

computational demands, making model optimization 

necessary for use in real-time applications. Techniques such as 

quantization, pruning, or deploying lightweight variants may 

be required to ensure responsiveness on embedded systems. 

YOLOv12 outperforms YOLOv11 in most evaluation 

metrics and real-world detection scenarios, confirming its 

readiness for advanced perception tasks in intelligent 

transportation systems. Yet, continued efforts are needed to 

address class-specific weaknesses and enhance its 

deployability across embedded systems. The findings in this 

study offer a strong foundation for future enhancements in 

object detection models tailored for autonomous driving. 

 

 

4. CONCLUSIONS 

 

The comparison of YOLOv11 and YOLOv12 demonstrates 

the continuous progress in real-time object detection, 

particularly for autonomous vehicle perception. YOLOv12 

exhibits significant enhancements in regard to the accuracy, 

recall, and robustness of detections built on architectural 

advances, including the design of attention modules and R-

ELANs. Experimental evaluation demonstrates stable 

performance of YOLOv12 in difficult conditions such as low 

visibility, occlusion, and high traffic density, suggesting its 

possibilities for real-world applications. 

In addition, the model has better capability to identify 

partially occluded or smaller cars, which is one of the needed 

capabilities for enhancing safety and situation perception in 

complex city driving environments. YOLOv12, though, still 

has difficulty with certain categories of objects, such as buses 

and bicycles, especially under cluttered or overlapping 

conditions. These issues indicate the need for further 

optimization in handling visually ambiguous or scale-invariant 

objects. 
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In the future, sensor fusion techniques that combine 

YOLOv12 with LiDAR or radar data need to be investigated 

for better performance in adverse weather or low-light 

environments. Multiscale feature learning improvements 

would address the model's issue with small and occluded 

objects. Model compression techniques such as quantization 

and pruning might also be necessary to enable real-time 

deployment on low-power embedded systems. Domain 

adaptation and expanding training datasets, especially for 

underrepresented classes, would further increase the 

detections' reliability. These areas will propel the further 

development of safe, efficient, and scalable object detection 

architectures for autonomous vehicles and intelligent 

transportation systems. 
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