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With the rise of voice and audio data processing, data mining now enables the automatic 

extraction of hidden knowledge from vast datasets, particularly in speech processing and 

spoken language dialogue. In light of the growing volume of voice data generated by 

applications such as e-learning and e-conferences, data warehouses hold a substantial 

amount of audio data requiring efficient indexing. However, traditional algorithms struggle 

to handle the specificities of such voice data. This work proposed a novel extraction 

approach leveraging heuristic algorithms based on original descriptors obtained through 

wavelet analysis, an audio feature engineering process, and an autoencoder for selecting 

relevant descriptors. We extracted 119 descriptors from 1,000 audio files in the GTZAN 

database. After the extraction phase, we used machine learning in the encoder's latent space 

to select 80 relevant descriptors that preserve the semantic meaning of the files. We 

evaluated the effectiveness of our approach using a multilayer perceptron. The neural 

network achieved an accuracy of 87.5% compared to 77.8% reported in the literature. 
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1. INTRODUCTION

With the rise of digital technologies and the continuous 

increase in data storage and processing capacities, the volume 

of audio and voice data has experienced exponential growth 

[1]. This evolution is primarily driven by the widespread 

adoption of digital platforms across various domains such as 

e-learning, e-conferences, automatic transcription systems,

and intelligent voice assistants [2]. These systems generate

massive amounts of audio data that require efficient indexing

for optimal utilization. For instance, online courses and virtual

conferences produce thousands of hours of audio recordings

daily that need to be classified, searched, and reused.

However, audio signals exhibit complex variability due to 

several factors, such as variations in speech rhythm, pitch, and 

intensity, speaker-specific resonances, and background noise 

[3, 4]. In the face of this complexity, traditional methods for 

extracting audio descriptors, often based on heuristic 

algorithms for simple feature extraction (e.g., Mel-Frequency 

Cepstral Coefficients (MFCC) techniques), show significant 

limitations. They struggle to capture the rich spectral and 

temporal characteristics of audio signals, especially in noisy 

environments or for complex spoken files [5]. 

Recent advances in audio descriptor extraction techniques 

and machine learning have enabled new approaches capable 

of better handling this variability. For example, wavelet 

analysis can decompose audio signals into time-frequency 

coefficients, providing a multi-scale representation of the 

signal [6]. While commonly used models such as Support 

Vector Machines (SVM) with the One-vs-Rest (OVR) strategy 

have demonstrated robust performance for classifying audio 

files in multi-class environments [3], they generally 

underperform compared to ensemble learning methods. As 

indicated by Gnagne et al. [7], individual models struggle to 

surpass ensemble learning methods. Furthermore, traditional 

algorithms have difficulty managing the complex specificities 

of voice data, particularly when signals are subject to 

perturbations or nonlinear spectral variations. 

A central question emerges: How can we extract and select 

optimal audio descriptors for efficient indexing of spoken 

audio files? 

Based on the premise that descriptors distinctively 

characterize each audio file, we hypothesize that audio data are 

inherently nonlinear, requiring nonlinear models for analysis. 

From this hypothesis, we derive the following subsidiary 

questions: 

RQ1: How can we extract and select the most relevant audio 

descriptors for indexing? 

RQ2: What is the best kernel configuration for an SVM 

model? 

RQ3: What classification approach for spoken audio files 

ensures better indexing? 

Our solution involves developing a hybrid system that 

combines an innovative heuristic extraction method with a 

machine learning-based approach for selecting relevant 

descriptors, all evaluated using a neural network. 

To address these concerns, we organize this article as 

follows: In the second section, we present a related work on 
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approaches for extracting and classifying audio files. 

Section 3 presents our approach. In Section 4, we present 

and discuss our results, and finally, we conclude the article. 

 

 

2. RELATED WORK 

 

The indexing of spoken audio files relies on two essential 

components: the extraction and selection of audio descriptors, 

and supervised classification. Recent research focuses on 

optimizing the relevance of descriptors and selecting the most 

effective classification algorithms, based on rigorous 

mathematical foundations to refine these steps. The extraction 

and selection of audio descriptors are crucial steps in the 

analysis of vocal and audio data. These descriptors serve as 

numerical representations of the acoustic features of audio 

signals, including elements such as the spectrum, energy, as 

well as temporal and prosodic characteristics. Table 1 provides 

an overview of recent advances in this field. 

The extraction methods from previous works are generally 

either basic techniques or combined approaches. These 

methods have allowed the extraction of a large set of high-

dimensional descriptors. A complementary approach of 

selecting a subset of features that retains the semantic content 

of the audio files has been introduced in some works, thereby 

improving the quality of the extracted descriptors. Most 

methods are evaluated using SVMs, and occasionally Random 

Forest. Although these approaches yield acceptable results, 

they do not leverage machine learning in the selection of the 

extracted descriptors. 

 

Table 1. Summary of audio file extraction, selection, and classification methods from the state of the art 

 
Ref. Extraction and Selection Methods Classification Methods Contribution Limit 

Santiago et 

al. [2] 

Audio descriptor engineering that 

focuses on efficient extraction and 

selection of relevant features 

Generalized Linear Model 

(GLM), Random Forests 

(RF) and XGBoost 

Optimization of 

functionalities for occupancy 

and activity detection in 

smart buildings 

Specificity of 

functionalities for 

precise scenarios, 

limiting 

generalization 

Besbes and 

Lachiri [3] 

Extraction of spectral (MFCC, GFCC) 

and prosodic (Energy, formants, pich) 

features and combination of features 

for selection. 

Multi-class SVM (OVR, 

OVO, Direct Acyclic 

Graph (DAG) 

Improved speech recognition 

under stress 

Method sensitive to 

noise and interlocutor 

variations 

Kobayashi 

et al. [4] 

Wavelet transform, rasterization and 

local feature extractions 

Multi-class SVM. The 

unspecified binary 

transformation 

Accurate classification of 

music genres based on 

innovative features 

Not evaluated because 

evaluation procedure 

not specified 

Jimenez et 

al. [5] 

Sound engineering, Statistical 

measurement of the time series and the 

genetic algorithm 

SVM à noyaux Kernel 

SVM with unspecified 

strategy 

Proposal of a complete and 

automated method for the 

extraction and selection of 

audio descriptors 

Performance 

dependent on the size 

and diversity of the 

datasets 

Abdoune 

and Fezari 

[6] 

Windowing process for extraction of 

temporal and frequency features and 

for Matching Pursuit (MP) selection, 

Fisher Discriminant Ratio (FDR) and 

Principal Component Analysis (PCA) 

Gaussian Melange Model 

(GMM), Hidden Markov 

Model (HMM), Nearest 

Neighbors (KNN), SVM, 

Random Forest, TESPAR 

(Time Encoded Signal 

Processing and 

Recognition) 

Detection and recognition of 

environmental sounds for 

distress situations 

Lack of database 

standardization for 

performance 

validation 

Besbes and 

Lachiri [8] 

Using Mel frequency cepstral 

coefficients (MFCC) and multitaper 

MFCC 

Gaussian kernel SVM 

(OVR) OAO, One Class 

SVM 

Better consideration of 

variations due to stress in 

vocal signals 

Limited reliability in 

the presence of high 

environmental noise 

Barandas et 

al. [9] 

Using the Time Series Feature 

Extraction Library (TSFEL) 
Not specified 

TSFEL offers more than 60 

methods for feature 

extraction from time series, 

covering temporal, statistical 

and spectral domains. 

Reliance on data 

quality and lack of 

integrated 

classification methods 

Alam et al. 

[10] 
Not taken into account 

One-Class Support Vector 

Classifier (OCSVC) 

Comprehensive review of 

available OCSVC algorithms 

Unidentified in the 

context of audio file 

descriptors 

Zaman et 

al. [11] 

STFT (Short-Time Fourier 

Transform), Mel-spectrograms, MFCC 
Random Forest, SVM 

Comprehensive review of 

audio classification 

techniques using deep 

learning 

Strong dependence on 

training data and 

significant 

computational costs 

Bernard et 

al. [12] 

Extraction of MFCC Estimation of 

pitch (pitch), Normalization with 

VTLN (Vocal Tract Length 

Normalization) coefficients 

Assessment of phoneme 

discriminability 

Not specified 
Open-source tool for speech 

feature extraction 

Complexity of 

integration and 

limited applicability 

in an environment 

with noise 

Hurbungs 

et al. [13] 
Not specified SVM (OVO, OVR, OVN) 

Proposal of an innovative 

multi-class classification 

method to reduce 

interclassification errors 

Method still limited to 

specific applications 

requiring more testing 

on varied real data 
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3. METHODOLOGY 

 

3.1 Datasets used 

 

To evaluate the proposed method, we used the GTZAN 

dataset [14, 15], a standard reference for audio classification 

tasks used by around a hundred works. 

This dataset contains 1000 audio recordings evenly 

distributed across 10 music genres: Blues, Classical, Country, 

Disco, Hip-Hop, Jazz, Metal, Pop, Reggae, and Rock [5]. Each 

recording lasts 30 seconds and is in WAV format, providing 

sufficient quality for extracting relevant audio features. The 

choice of the GTZAN dataset is based on several criteria: 

• Data diversity: The 10 genres cover a wide range of sound 

characteristics, enabling robust analysis of various acoustic 

variations; 

• Data size: With 1000 samples, the dataset is large enough 

to train and test supervised learning models; 

• Popularity: This dataset is widely used in research, 

enabling direct performance comparisons with other existing 

methods [16]. 

In the case of our study, Table 2 shows the distribution of 

the 1000 files by genre. Each type of audio contains 100 files. 

 

Table 2. Distribution of musical genres in the GTZAN 

dataset 

 
Genres Pop Blues Reggae Classical Rock 

Labels 0 1 2 3 4 

Genres Jazz Metal Hiphop Disco Country 

Labels 5 6 7 8 9 

The ability of a model to adapt to different types of data is 

essential for evaluating its robustness and applicability in real-

world scenarios. With this in mind, we chose to test our model 

on data from FMA (Free Music Archive), a vast database 

consisting of 106,574 music tracks categorized into a 

hierarchical taxonomy of 161 genres. FMA provides full, 

high-quality audio excerpts, with MP3-encoded files and 

various sizes of audio data: 

fma_small: 8,000 tracks, 8 balanced genres (similar to 

GTZAN); 

fma_medium: 25,000 tracks, 16 imbalanced genres; 

fma_large: 106,574 tracks, 161 imbalanced genres. 

We chose fma_small to maintain class balance, which helps 

avoid biases caused by imbalanced class distributions. 

Table 3 shows the distribution of the 8000 files by genre. 

Each type of audio contains 100 files. 

 

3.2 Audio descriptor extraction methods 

 

Audio descriptors play a key role in the analysis and 

classification of spoken audio files. They represent numerical 

characteristics of the audio signal, allowing its distinctive 

properties to be captured. Our extraction approach combines 

the audio feature extraction method based on undecimated 

wavelet transform (UWT), used to decompose an audio signal 

into multiple sub-bands in order to analyze the different 

frequencies in detail [4], with techniques based on sound 

engineering, descriptive statistics of central tendency or 

variability, and time series [5]. Tables 4 and 5 summarize the 

list of descriptor classes used in our combination approach. 

 

Table 3. Distribution of musical genres in the FMA dataset 

 
Genres Pop HipHop' Rock Electronic 

Labels 0 1 2 3 

Genres Experimental Instrumental International Folk 

Labels 4 5 6 7 

 

Table 4. Classes of descriptors proposed by Kobayashi et al. [4] 

 
Methods Type of Descriptors Some Descriptors 

Descriptive statistics 

Local sub-band statistics 

Average of subband values: 𝜇∝
(𝑗)

 

Coefficient of variation: 𝑣∝
(𝑗)

 

Average coefficient of variation: 𝜇𝛽
(𝑗)

 

Coefficient of variation of coefficient of variation: 𝜈𝛽
(𝑗)

 

Correlations between sub-bands 
Average of correlation coefficients between two sub-bands: 𝜇𝛾

(𝑗𝑒,𝑗)
 

Variance of correlation coefficients: 𝜎𝛾
(𝑗𝑒,𝑗)

 

Global statistics Average absolute value of the signal: A 

 

Table 5. Classes of descriptors used by Jiménez et al. [5] 
 

Methods Type of Descriptors Some Descriptors 

Sound 

engineering 

Acoustic descriptors 
ACI (Acoustic Complexity Index), M (Acoustic Index based on the median of the amplitude 

envelope), NDSI (Normalized Difference Soundscape Index), Q (Quality Factor)  

Spectral descriptors 
Mean frequency, Median frequency, Mode (dominant frequency), Quartiles (Q25, Q75), IQR 

(Interquartile Range), Roughness 

Descriptive 

statistics 

Statistics based on STFT 

time and frequency contours 

Time P1 (The time initial percentile of the time contour), Time IPR (The time interpercentile 

range), Freq M (The frequency median), Freq P2 (The frequency terminal percentile) 

Statistical properties of a 

frequency spectrum 
Mean: Mean frequency, Median: Median frequency, Kurtosis Kurtosis, a measure of peakedness 

Time series 
Statistical descriptors of time 

series 

Entropy Spectral entropy, Stability Variance of the means for tiled (non-overlapping) windows 

Lumpiness Variance of the variances for tiled (non-overlapping) windows 

Crossing points the number of times a time series crosses the median line 
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3.3 Descriptor selection approach 

 

In the process of using audio files for a particular task, two 

steps are essential. After the extraction phase, the selection of 

relevant descriptors is crucial to reduce the dimensionality of 

the feature space while preserving the file's semantics. Several 

approaches have been proposed, including heuristic methods 

such as Forward, Backward, and genetic algorithms [5]. We 

propose an approach based on machine learning, more 

specifically, an autoencoder. Generally, an autoencoder is 

modeled by a function ℋ  applied to a random 𝑋 ∈ ℛ𝑛such 

that: ‖ℋ(𝑥) − 𝑥‖ ≤ 𝜀 [14]. 

That is, the image of x by ℋ is a reconstruction of x with an 

error 𝜀. More specifically, ℋ = 𝒟𝑜ℰ with ℰ: ℛ𝑛 → ℛ𝑑called 

the encoder and 𝒟: ℛ𝑑 → ℛ𝑛the decoder (d≤n). The encoder 

compresses x by reducing its dimension, while the decoder 

reconstructs x from the reduced code z. The space of reduced 

codes, ℛ𝑑, is called the latent space. It is this space that will 

provide us with the essential descriptors for our indexing 

through machine learning. The selection of the latent space 

dimension represents a good compromise between model 

complexity and generalization capability. 

We opted for multiple trials followed by cross-validation, 

evaluated the model's performance using metrics such as 

reconstruction error, training loss, and validation loss, and 

ultimately selected the dimension that minimizes 

reconstruction error while avoiding overfitting. 

We will evaluate the relevance of the selected descriptors 

using a dense neural network. The process of the overall 

approach unfolds in three essential phases. The first step 

involves extracting potential relevant descriptors using 

heuristic methods. Next, with an autoencoder, we select a 

subset of essential features through machine learning in the 

latent space of the encoder. Finally, we evaluate the relevance 

of the extracted descriptors using a neural network. The 

process of the overall approach is illustrated in Figure 1. 
 

 
 

Figure 1. Process of extracting and selecting audio 

descriptors 

 

3.4 Evaluation of descriptors selection 

 

Supervised classification is a crucial step in evaluating the 

relevance of the selected descriptors. In the context of our 

study, several models will be experimented with. 

 

3.4.1 Classification using SVM and OVR strategy 

Support vector Machine (SVM) are particularly well-suited 

for tasks requiring cleat separation between multiple classes.  

Since audio files are complex data, they are generally not 

linearly separable [17].  

We will therefore use kernel SVM adapted to this type of 

data. Several kernel SVM models are described in the 

literature. 

They solve optimization problems under the following 

constraint. 

 

{
 
 

 
 Minimise 

1

2
‖𝑤‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

under the contraints
𝑦𝑖(𝑤. 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,  𝜉𝑖 ≥ 0, ∀𝑖 ∈ {1,2, … , 𝑛}

 (1) 

 

The decision function is translated as follows: 

 

𝑓(𝑥) =∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖  K(𝑥𝑖 , 𝑥) + 𝑏 (2) 

 

The dual problem is defined by: 

 

{
  
 

  
 𝑚𝑎𝑥∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑖,𝑗=1

K(𝑥𝑖 , 𝑥𝑗)

𝑐 ≥ 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑛

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0

 (3) 

 

where: 

• C: the regularization parameter that controls the 

trade-off between a large margin and minimizing 

errors; 

• c: Regularization parameter; 

• ξi: relaxation variable; 

• ϕ: a kernel function that projects the data into a 

higher-dimensional space to handle nonlinear 

relationships; 

• K: new kernel function using kernel trick; 

• The αi are the Lagrange multipliers from the dual 

problem; for better numerical stability, b is obtained 

from the average over the set I of vectors for which 0 

<αi<c. 

Our evaluation was based on the commonly used kernels 

presented below: 

• The Gaussian kernel: K(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖²; 

• The polynomial kernel: K(𝑥𝑖 , 𝑥𝑗) = (< 𝑥𝑖 , 𝑥𝑗 >

+ 𝑏)
𝑑
; 

• The linear kernel: K(𝑥𝑖 , 𝑥𝑗) = < 𝑥𝑖 , 𝑥𝑗 >. 

The initiative is due to the fact that for some studies [8, 17], 

the SVM model with a gaussian kernel is the most effective, 

while Jimenez et al. [5] argue that linear kernel SVM 

outperform other kernel-based models. 

To solve our multi-class problem with SVM, we use the 

One-vs-Rest (OVR) strategy to transform it into several binary 

classification, as it is robust for complex and noisy data, such 

as spoken audio files. 

It is mathematically formulated as follows: 
 

𝑦𝑖 = {
1, 𝑠𝑖 𝑐𝑙𝑎𝑠𝑠𝑒 𝑖
0, 𝑠𝑖𝑛𝑜𝑛

 (4) 

 

For a new observation, the class is determined as: 
 

𝑐𝑙𝑎𝑠𝑠𝑒 𝑝𝑟𝑒𝑑𝑖𝑡𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓𝑖(𝑥) (5) 

766



 

where, fi is the decision function for class i. 

 

3.4.2 Ensemble learning model 

We formalize the bagging technique as proposed by Gnagne 

et al. [7]. 

Let 𝑍 = {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)} be the initial sample where 

xi is a code snippet, yi ∈{0, 1} and 𝑍𝑏 =
{(𝑥1

𝑏 , 𝑦1
𝑏), … , (𝑥𝑛

𝑏 , 𝑦𝑛
𝑏)}  be the bootstrap samples of n 

observations with b=1, …, B. 

The bagging ensemble model is defined as follows: 

 

𝑓(𝑍) = 𝑉𝑜𝑡𝑒𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑎𝑖𝑟𝑒𝑖=1
𝐵 {𝑓𝑏̂(𝑍

𝑏)} (6) 

 

where, 𝑓𝑏̂(𝑍
𝑏) represents the predictions of the weak model 

with 𝑓𝑏̂ trained using the bootstrap sample b. 

We selected 100 Random Forests as the base estimator. This 

choice was derived from a comparative study of performance 

metrics (accuracy, precision, recall, and F1-score) for our 

ensemble model using different latent space dimensions (25, 

50, 75, 100, 125, 150, 175, 200), as described in the table. We 

observed that the accuracy remained stable starting from 100 

Random Forests. Table 6 shows performance measurement 

based on latent dimensions. 

 

Table 6. Performance measurement based on latent 

dimensions 

 
Latent 

Dimension 
Accuracy Precision Recall F1-score 

25 0.61 0.62 0.63 0.62 

50 0.62 0.62 0.64 0.63 

75 0.62 0.63 0.64 0.63 

100 0.63 0.64 0.65 0.63 

125 0.63 0.63 0.64 0.63 

150 0.63 0.64 0.65 0.64 

200 0.63 0.63 0.65 0.63 

 

3.4.3 Multilayer perceptron 

The multilayer perceptron (MLP) is a type of artificial 

neural network based on fully connected (or dense) layers. The 

deep learning approach is favored over traditional machine 

learning methods, such as SVM, due to its superior 

performance in sound classification [18]. Although 

computational cost and data size are critical factors in 

choosing the classification method, particularly for neural 

networks that require large datasets and significant 

computational cost to achieve good performance, these two 

aspects are set aside in the context of our study. Indeed, our 

future research will focus on large-scale environments, where 

these challenges will be more effectively addressed. 

The architecture can be represented in Figures 2 and 3. 

In a simplified way, for any input data 𝑥, the perceptron 

assigns a weight vector W1 to the neurons in the first layer, 

which will be activated by the activation function σ. The result 

of this activation will give an output 𝑥̂, which will represent 

the input to the second layer. The second will undergo the 

same process with the weight vector W2 and the activation φ 

to produce the output y. in this simplified case, the bias bi is 

not represented.  

The graphic representation above corresponds to the 

following model [19]: 

 

𝑦⏞ = 𝜑𝑜𝑢𝑡 (∑𝑊𝑖
(2)ℎ𝑖

(2)

𝑖

+ 𝑏(2)) 

∀𝑖, ℎ𝑖
(1) = 𝜑(∑𝑊𝑖𝑗

(0)𝑥𝑗
𝑗

+ 𝑏𝑖
(0)) 

∀𝑖, ℎ𝑖
(2) = 𝜑(∑𝑊𝑖𝑗

(1)ℎ𝑗
(1)

𝑗

+ 𝑏𝑖
(1)) 

 

With φ an activation function and 𝑊𝑖𝑗
(𝑙)

 and 𝑏𝑖
(𝑙)

 

respectively the weight and bias of the ith neuron of layer (l). 

Rigor in the selection and optimization of hyperparameters 

is essential for the deployment of a high-performance model. 

We therefore used the grid search technique to determine the 

optimal hyperparameters.  

The hyperparameters used are defined in Table 7. 

 

 
 

Figure 2. Structure of a two-layer perceptron 

 

 
 

Figure 3. Simplified notation of the two-layer perceptron [7] 

 

Table 7. The hyperparameters used 

 
Hyperparameters Values 

Input layer  (100; 64) 

Hidden layers 3 layers (64; 32) et (32; 16)  

Output layer (16; 10) 

Learning rate 0.001 

Activation function Relu 

Loss function CrossEntropyLoss() 

Optimization function Adam() 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Results 

 

Our approach, which we call KouaExtract, enabled the 

extraction of 119 descriptors compared to the 300 extracted by 

Jimenez et al. [5]. Our strategy involved designing heuristic 

algorithms that utilized all descriptor classes from the studies 

[4, 5], returning potentially relevant descriptors. To refine the 

obtained set of descriptors, we have, through automatic 

learning using an autoencoder, experimentally varied the 

dimension of the latent space. 

Our goal was to identify a dimension that would 

W1 X Y W2 𝜎 

 

𝜑 
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significantly reduce reconstruction error. The relevance of our 

selection approach is demonstrated by the convergence of the 

loss function curve, as shown in Figure 4. 

It is worth nothing that the convergence of the loss function 

towards zero indicates a low reconstruction error, which reflets 

a good reproduction of the original data. 

Our KouaExtract approach demonstrates improved audio 

file recognition with a performance of 87.5%, indicating 

effective extraction and optimal selection of descriptors. Table 

8 provide a summary of these comparison. 

 

 
 

Figure 4. Loss function curve 

 

Table 8. Performance comparison 

 

Models 

 

Number of 

Descriptors 

Extracted 

Number of 

Descriptors 

Selected 

Accuracy 

Jimenez et al. 

[5] 
300 57 

75.3% 

(2.5%) 

Kobayashi et 

al. [4] 
239 0 81.3% 

KouaExtract 119 100 87.5% 

 

A visualization of the accuracies is illustrated in Figure 5. 

To evaluate the performance of our novel method, 

Kouaextract, compared to existing methods, we conducted a 

rigorous statistical analysis. This approach is essential to 

distinguish significant results from random fluctuations 

inherent in the data. Our study focused on a set of 20 trials, a 

number exceeding the threshold of 10 recommended to ensure 

the reliability of statistical tests. As the data were paired and 

of multiclass nature, and not necessarily following a normal 

distribution, we opted for the non-parametric Wilcoxon 

signed-rank test. 

The hypotheses of our test were as follows: 

Null hypothesis (H0): There is no significant difference 

between the performances (accuracies) of the two models. 

Alternative hypothesis (H1): There is a significant 

difference between the performances of the two models. 

The Wilcoxon test revealed a p-value of 0.001, which is 

lower than the significance level α of 0.05. Therefore, we 

rejected the null hypothesis (H0). This conclusion supports the 

existence of a significant difference between the performances 

of Kouaextract and the Marvin model. 

Our results confirm the superiority of Kouaextract in terms 

of performance. All of our calculations were performed using 

the wilcoxon function from the scipy.stats library in Python. 

To perform a comparative study of the classification model 

accuracies based on the same dataset, we conducted two 

experiments on the "Features 3-sec.csv" dataset from GTZAN, 

which contains 10,000 audio files with the same number of 

descriptors as Jimenez et al. [5]. We then reduced the number 

of files to 1,000 as described by the authors. Tables 9 and 10 

provide a summary of these experiments. 

 

 
 

Figure 5. Distribution of extracted and selected descriptors 

 

Table 9. Accuracy of models applied to 10,000 3-second 

audio files 

 
Models Accuracy 

SVM with Gaussian kernel 84.8% 

SVM with polynomial kernel 87.1% 

SVM with linear kernel [5] 
7.5% (75.3% 

[2.2]) 

Bagging with Random Forest 86.2% 

Multilayer Perceptron  92.8% 

 

Table 10. Accuracy of models applied to 1,000 3-second 

audio files 

 
Models Accuracy 

SVM with Gaussian kernel 60% 

SVM with polynomial kernel 60% 

SVM with linear kernel [5] 55.5%  

Bagging with Random Forest 63% 

Multilayer Perceptron  75% 

 

 
 

Figure 6. Distribution of model accuracies 

 

Figure 6 illustrates the distribution of accuracies 

summarized in Tables 9 and 10. 

This comparative study indicates three essential results. 

Firstly, it does not confirm the assertions in the literature 
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concerning the best SVM model with kernels, then it shows 

that neural networks are better classifiers compared to 

commonly used SVM models and finally shows the impact of 

data size in performance extraction and selection approaches. 

To validate the generalization capability of our approach, we 

evaluated our model on a separate database, namely FMA. We 

first selected 100 relevant descriptors from the 140 available 

and then conducted a second experiment with all 140 

descriptors. Table 11 presents the results of these experiments. 

 

Table 11. Generalization of Kouaextract 

 

Dataset 

Number of 

Descriptors 

Extracted 

Number of 

Descriptors 

Selected 

Accuracy 

FMA_small 140 100 58% 

FMA_small 140 0 45% 

GTZAN 119 100 87.5% 

 

4.2 Discussion 

 

The performance of the KouaExtract model, compared to 

the studies [4, 5], highlights the importance of a robust 

descriptor selection approach. KouaExtract optimally reduces 

the dimensionality of the descriptor space while preserving 

essential information. This reduction significantly decreases 

the computational cost, and unlike a genetic algorithm, once 

the auto-encoder is trained, it adapts more effectively to 

complex data and converges quickly. The relevance of the 

selection indicates that simple descriptor extraction may 

contain non-significant information. This assertion is 

corroborated by the results obtained with the FMA database: 

58% with 100 selected descriptors versus 45% with 140 

extracted descriptors without a selection process. Research 

into relevant descriptor selection approaches should be further 

explored after the extraction phase.  

We achieved an accuracy of 58% on the FMA dataset, 

demonstrating a certain degree of generalization of our 

approach, although it is lower than the model's performance 

on the training set, which reached 87.5%. However, it is 

important to note that the similarity in format between FMA 

and GTZAN poses a challenge to the generalization principle, 

potentially limiting the model's adaptability to new and diverse 

audio data. 

The comparative study of SVM kernel models reveals that 

the polynomial SVM approach yields better results, contrary 

to previous studies. This suggests that the performance of an 

SVM model depends on factors such as hyperparameters. 

Therefore, in a given context, simulating different models is 

necessary to determine the most suitable one. However, the 

superior performance observed with neural networks, even 

when compared to ensemble learning methods, underscores 

their suitability for evaluation tasks. 

We also observe that dataset size significantly impacts the 

performance of classification models. This reflects the 

principles of machine learning: the larger the training dataset, 

the better the model's generalization capabilities. 

While deep learning methods are powerful and often 

superior for audio recognition, they require considerable 

resources in terms of computing power and large datasets for 

training. This can be problematic for real-time applications. 

However, the increasing diversity of files and the ever-

growing size of databases, such as the Million Song Dataset 

(MSD) [20], require a compromise between computational 

cost and achieving optimal results. In the context of our study, 

the computation time does not exceed 70 seconds. It is also 

worth noting that the use of GPUs for processing large datasets 

provides a solution to temporal complexity. The GTZAN files 

were extracted from commercial music tracks. Although they 

are relatively clean in terms of sound quality, some 

background noise or minor imperfections may be present. 

However, they were not explicitly designed to include 

background noise or interferences. In certain genres, such as 

jazz, hip-hop, or metal, ambient sounds (like crowd noises or 

non-musical instruments) may occasionally be heard, but they 

are very subtle. Notably, GTZAN does not contain specific 

environmental background noises. Consequently, noise 

considerations were not included in this study. Future work 

will explore the use of noisy datasets to evaluate model 

robustness. 

 

 

5. CONCLUSIONS AND PERSPECTIVES 

 

Effective application of tasks to audio files requires an 

extraction and selection phase for their optimal descriptors. 

Existing approaches do not leverage the potential of machine 

learning models to select relevant features. This study 

proposed an innovative approach for the extraction and 

selection process of spoken audio files. We introduced 

heuristic descriptor extraction methods based on various 

descriptor classes from the literature. Our approach 

successfully identified potentially relevant descriptors. After 

the extraction phase, we reduced the dimensionality of our 

feature space while preserving the semantics of the audio file 

using an autoencoder. 

We evaluated the effectiveness of our approach by training 

a multilayer perceptron on the selected dataset. The results 

demonstrated that neural networks generalized better on the 

test dataset compared to SVM and Random Forest models. 

Furthermore, we showed that the size of the descriptor set had 

little influence on the accuracy of the model used. These 

contributions confirm the relevance of the proposed approach 

for vocal data mining and open up new perspectives for 

applications in various contexts. 

The KouaExtract method may not be well-suited for 

extremely noisy environments, as performance can vary 

significantly with high noise levels. Our future research will 

focus on developing preprocessing techniques to reduce noise 

before feature extraction. Additionally, we plan to adapt the 

model using audio data from diverse contexts (e.g., different 

accents or sound environments) to enhance generalization and 

robustness. 
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