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Healthcare has historically relied on medicinal plants, and research worldwide continues to 

assess their efficacy, resulting in the development of plant-based medications. This study 

proposes improving medicinal plant classification performance using transfer learning 

models. To address the limitations of small datasets, we employed StyleGAN2-ADA for 

data augmentation in comparison with conventional augmentation techniques. Also 

developed a challenging dataset, named the Iraqi Medicinal Plant Dataset, comprising 438 

images from ten medicinal plant species: Hibiscus rosa-sinensis, Brassica oleracea var. 

italica, Ricinus communis, Lactuca sativa, Datura innoxia, Capparis spinosa, Hibiscus 

sabdariffa, Senna sulfurea, Matricaria chamomilla, and Silybum marianum. The dataset was 

primarily collected from the Research Unit for Palms Lab at the College of Agricultural 

Engineering Sciences, University of Baghdad. then applied six pre-trained deep 

convolutional neural network architectures; Bit_Sr50x1, ResNet_V1_152, Inception_V3, 

MobileNetV2_130_224, Inception_ResNet_V2, and Nasnet Large on both conventional 

and GAN-augmented dataset. By integrating StyleGAN2-ADA augmented data led to 

significant improvements in F1-scores, outperforming conventional augmentation methods 

by margins of 3.56% to 19.42%, depending on the architecture. These results highlight the 

effectiveness of integrating GAN-based data augmentation with deep learning architectures 

in improving classification performance for small and complex datasets. 
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1. INTRODUCTION

Iraq's rich medicinal plant diversity, deeply rooted in 

Sumerian, Babylonian, and Assyrian traditions, presents 

classification challenges due to undocumented species, 

morphological similarities, and environmental variations. For 

instance, the diverse landscapes of Sulaymaniyah support a 

unique traditional healthcare system that relies heavily on oral 

knowledge. However, habitat destruction, overharvesting, and 

a lack of scientific validation threaten these valuable resources 

[1]. 

Medicinal plants are the plants or parts of plants that are 

used for therapeutic and nutritional purposes and from the 

beginning of human existence, plant materials with medicinal 

qualities have been used extensively to cure human illnesses 

[2]. Conserving biodiversity is essential due to the extinction 

risk encountered by several plant species, and conventional 

medicinal systems extensively depend on a wide variety of 

plants, providing an alternative to synthetic pharmaceuticals 

and fostering wellness. Notwithstanding the importance of 

these plants, records for medicinal herbs are not easily 

accessible [3]. Given their vital role in healthcare and 

biodiversity, medicinal plants have been the focus of extensive 

research. However, classifying and identifying these species 

remains a complex and time-consuming task, even for 

experienced botanists. This study aims to document medicinal 

plants to support conservation efforts and facilitate future 

phytochemical research.  

Consequently, a vision-based method like neural networks 

may assist scientists and the general populace in identifying 

plant species with higher speed and precision [4]. Especially 

since neural networks have shown significant progress in 

multiple fields. They have been used for object detection [5], 

design and implementation of monitoring robotic systems [6], 

malware detectors [7], predictive maintenance [8], and many 

applications in the medical field, including diagnosing 

diseases like COVID-19 [9]. However, deep learning models 

are data-intensive, requiring significant amounts of training 

data for optimal efficacy, and a limited dataset leads to 

overfitting. To address this issue, various approaches like 

dropout, data augmentation, and semi-supervised learning 

were implemented [10]. On the other hand, amassing a 

substantial training dataset requires significant time and effort, 

especially since the collection of plant samples is tough due to 

the changing environmental conditions and the extensive 

diversity of plants. Samples must be obtained under diverse 

weather circumstances and growth stages, encompassing 

differences in shape, size, and color [11]. 

Recently, Generative Adversarial Networks (GAN) 

developed by Ian Goodfellow in 2014 [12], are progressively 

utilized for the production of image data. Research 

demonstrates that GAN has superior capabilities for producing 

picture data for training compared to conventional data 

augmentation techniques in image processing [13]. Generative 

Adversarial Networks (GANs) are a form of deep learning 

models including two main components: the generating 
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network and the discriminative network. The primary neural 

network is the generator, which creates novel synthetic data 

instances that mimic the training data. The discriminator seeks 

to distinguish between real data and fake data generated by the 

generator network [14]. 

Collecting a sufficiently large dataset of images for a certain 

application is tough due to constraints related to subject type, 

quality of picture, geographical position, period of time, 

privacy, copyright status, and other factors. The challenges are 

intensified in applications involving the collecting of a new, 

distinct dataset: obtaining, processing, and distributing 

the images needed to train an effective, high-quality, high-

resolution GAN [12] is a cost-intensive operation. This 

restricts the increasing utilization of generative models in 

domains such as medicine. Since a significant amount of real 

training data is still required to train GAN models for 

generating samples with appropriate quality, in 2020, 

developers at NVIDIA released StyleGAN2-ADA [15], which 

significantly advances the effective training of GANs with 

limited data. This was achieved by the use of an Adaptive 

Discriminator Augmentation (ADA) mechanism, which 

stabilizes training in scenarios that have limited data, hence 

minimizing common overfitting concerns associated with the 

discriminator [16]. 

This study employed the StyleGAN2-ADA model to 

generate more samples for the ten medicinal plants dataset. 

Then compare the results of classification using six transfer 

learning models when using the conventional augmentation 

techniques versus StyleGAN2-ADA. Figure 1 shows the real 

data with the data generated by StyleGAN2-ADA of ten 

medicinal plant species. 

 

 

 

 

 

 

 

 

 

 

 
(a)  (b)  

 

Figure 1. The results of StyleGAN2-ADA on the Iraqi 

Medicinal Plant Dataset, (a) Real images, (b) StyleGAN2-

ADA 

 

This study made the following significance contributions: 

(1) To the best of the authors' knowledge, this is the first 

kind of Iraqi medicinal dataset created by the authors, 

where a total of 438 images are divided into 10 classes 

of medicinal plant images. 

(2) Successfully improve the accuracy of classification of 

limited data using StyleGAN2-ADA. 

(3) Comparison of performance of trained images of six 

models. 

(4) Adjusting the hyperparameters of classification models. 

The rest of the study is organized as follows: Section 2 is 

composed of the most recent related work in the field. Section 

3 explains the methodology in detail. Section 4 presents all 

experiments and results. Section 5 concludes the study. 

 

 

2. RELATED WORKS 
 

Since the initial development of GAN, various researchers 

have suggested numerous versions of GANs to improve the 

performance of deep learning models on plant classification. 

Sachar and Kumar [17] employed Deep Convolutional 

Generative Adversarial Networks (DCGAN) on their 

manually collected dataset of 30 leaves per species from five 

medicinal plant species. As a solution for the limited quantity 

of images, which prevents the convolutional neural network's 

ability to learn features, hence amplifying the dataset's 

variance. The authors conducted a comparative analysis of 

deep learning models, specifically VGG16, ResNet50, and 

DenseNet 121, as classifiers. The DenseNet architecture 

model produced the best mean accuracy of 97.51% across the 

five folds. 

Deshmukh [4] examined four deep learning classifiers: 

Convolutional Neural Networks (CNNs), Generative 

Adversarial Networks (GANs), Recurrent Neural Networks 

(RNNs), and Multilayer Perceptrons (MLPs), utilized on an 

optimized dataset of medicinal plant leaves. comprising 15 

distinct Indian species, totalling 82,500 images, with 

approximately 5,500 images per species. The Wasserstein 

GAN (WGAN) achieves 96.77%, while the multi-layer 

perceptron classifier exhibits a performance accuracy of 

99.01%. Convolutional neural networks achieve an accuracy 

of 98.3%, and Recurrent Neural Networks accuracy was 97%.  

Swathika et al. [3] applied Conditional Generative 

Adversarial Networks (CGAN) for data synthesis on a 

medium plant dataset consisting of 50 classes with 

approximately 5000 images in total and tested them using their 

model that combines the best features of three pretrained deep 

learning models, which were MobileNetV2, ResNet-50, and 

Xception, which achieved 98.6% accuracy.  

An improved conditional Deep Convolutional Generative 

applied on stressed strawberry leaves was grouped into seven 

small datasets [18]. The largest sample size was 100, and the 

smallest was 6. A Residual Network (ResNet) classifier was 

established before and  after data augmentation. The results 

showed an improvement in accuracy by 6.9%. It also showed 

that the minimal sample size achieving effective data 

augmentation could be as low as 20. 

A generative adversarial network (CA-GAN) powered by a 

channel attention strategy that can generate realistic synthetic 

weed data [19]. Two datasets were used to evaluate the model's 

performance: the Institute for Sustainable Agro-ecosystem 

Services (ISAS) dataset, which includes five common summer 

weeds in Japan, and the public segmented Plant Seedling 

Dataset (sPSD), which includes nine common broadleaf weeds 

from agricultural land. The suggested CA-GAN produced a 
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synthetic dataset with a recognition accuracy of 93.46% on the 

ISAS dataset and 82.63% on the sPSD. 

Diffusion models were employed to generate images of 

weeds, enhancing weed detection [20]. Experiments 

conducted on two publicly available multi-class weed datasets, 

CottonWeedID10 and Deep Weeds. The incorporation of 

synthetic weed images enhanced the accuracy of weed 

categorization by four deep learning models (VGG16, 

Inception-v3, and ResNet50) by 1.17%. yielded a testing 

accuracy over 94%. Table 1 summarizes the best results from 

recent related works that explored various generative 

adversarial networks (GANs) and, in one case, diffusion 

models to improve plant classification. These works addressed 

different dataset scenarios, including limited multiclass 

datasets, large multiclass datasets, and even single-class 

limited datasets. 

In contrast, the Iraqi Medicinal Plant Dataset posed a greater 

challenge as it consists of a limited number of multiclass 

images. Despite this, we surpassed the accuracies achieved in 

the related works by employing the StyleGAN2-ADA model, 

which effectively addressed the challenges of our dataset and 

improved classification performance. 

 

Table 1. Literature survey 

 
Reference Year Augmentation No. of Classes No. of Images Classification Accuracy 

Sachar and Kumar [17] 2023 DCGAN 5 150 97.51% 

Deshmukh [4] 2024 WGANs 15 82,500 96.77% 

Swathika et al. [3] 2024 cGAN 50 6000 97.96% 

Zhu et al. [18] 2024 cDCGAN 1 100 Acc gains 6.9% 

Li et al. [19] 2024 CA-GAN 
9 

5 

3097 

2997 

82.63% 

93.46% 

Chen et al. [20] 2024 Diffusion models 25 - 94% 

 

 

3. METHODOLOGY 
 

The main objective of this paper is to improve the 

performance of medicinal plants identification especially on 

limited or unbalanced dataset. To achieve this goal multiple 

stages have been done as shown in the framework in Figure 2.  

 

 
 

Figure 2. Overview of the proposed methodology 

 

Starting with the stage of forming a dataset for medicinal 

plants in Iraq by taking pictures of medicinal plants. Since 

plants have specific growth stages and seasons in different 

regions of Iraq, between north and south, east, and west, it 

takes a long time and effort to obtain a sufficient number of 

pictures. Therefore, additional pictures were collected from 

reliable flora sites. After that verify the collected images by a 

botanist to make sure that all the images are belonging to the 

right class and labelled with right scientific name. Then 

resizing all the images into 256 × 256 pixels and change their 

format to jpg. Next comes the most important stage that can 

improve the accuracy of classifier and solve overfitting 

problem, which is the augmentation. Two types of 

augmentation were applied, the conventional augmentation 

which includes a python code do rotation, translation and 

zoom processing and the other is a GAN-based augmentation 

by StyleGAN2-ADA model. After training StyleGAN2-ADA 

model on the dataset, it generates good quality images 

depending on the size of the training dataset. Both types of 

augmentation results will be classified by pretrained deep 

learning models.  

 

3.1 Dataset description 

 

This dataset is a worldwide attempt to document and study 

medicinal plants that support traditional medicinal systems 

internationally. A detailed description is provided in Table 2. 

Given the widespread distribution of medicinal plants across 

various provinces in Iraq some of which are difficult to access 

the ten species with the highest number of available images 

were selected to enhance accessibility and dataset quality. The 

collection has 438 photos across 10 species of medicinal plants: 

Hibiscus rosa-sinensis, Brassica oleracea var. italica, Ricinus 

communis, Lactuca sativa, Datura innoxia, Capparis spinosa, 

Hibiscus sabdariffa, Senna sulfurea, Matricaria chamomilla, 

and Silybum marianum. The majority of these images were 

independently obtained using an iPhone 13 camera at the 

Research Unit for Palms Lab, College of Agricultural 

Engineering Sciences, University of Baghdad. Meanwhile, the 

remaining data is gathered from botanical image repositories 

such as Plant of The World, all were scaled at 256 × 256 pixels. 
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Table 2. The Iraqi Medicinal Plant Dataset samples 
 

The Scientific Name No. of Samples Sample Image 

Hibiscus rosa-sinensis 59 

 

Brassica oleracea var. italica 57 

 

Ricinus communis 56 

 

Lactuca sativa 55 

 

Datura innoxia 42 

 

Capparis spinosa 37 

 

Hibiscus sabdariffa 35 

 

Senna sulfurea 34 

 

Matricaria chamomilla 32 

 

Silybum marianum 31 

 
Total 438  

 

3.2 Proposed model  

 

The proposed model includes two main deep learning 

components. The first component is GAN, which is used for 

the preprocessing phase, while the deep transfer model is used 

in the training, validation, and testing phases. The proposed 

GAN/deep transfer learning framework enhances image data 

preprocessing and augmentation using GANs, which boosts 

the dataset's quality and diversity. This data is fed into a CNN 

model for training, with performance assessed through 

validation and testing phases. The approach ensures robust 

model training and evaluation, improving generalizability and 

accuracy in image-based tasks. 

 

3.2.1 Training StyleGAN2-ADA 

The StyleGAN2-ADA algorithm is an enhanced version of 

StyleGAN2, with ADA signifying Adaptive Discriminator 

Augmentation. The primary objective is to address the issue of 

potential overfitting of the discriminator in StyleGAN2 during 

training whereas the training dataset is limited [21]. This may 

prevent the generator from successfully adjusting the model 

parameters, resulting in reduced training efficiency. 

The up-sampling network in Figure 3 comprises a latent 

input 𝑧, often a style picture, which is normalized, encoded, 

and non-linearly transformed into a latent space 𝑤 using a 

multi-layer perceptron (MLP) with 8 fully linked layers. The 

generator network comprises a constant input vector with a 

mean of zero and a standard deviation of one, which is 

employed in the first layer and acts as the input for the first 

Adaptive Instance Normalization (AdaIN) operation. The 

styles from the encoded latent space 𝑤 are applied via the 

AdaIN operation at the corresponding resolutions of the 

generator network. The output of the corresponding 

convolutional layers is dictated by the style imparted by the 

AdaIN operation. Gaussian-distributed noise is introduced per 

pixel following the corresponding convolutional layers to 

effectively mitigate distortions that may manifest in the picture, 

like water droplets in areas such as wrinkles and hair on human 

faces. This method successfully incorporates stochastic 

variance into the produced pictures. While the discriminator is 

a down sampling network shown below in Figure 4, that aligns 

the picture dimensions with the final output of the generating 

network. The picture is inputted into the discriminator network 

and subsequently enhanced with prescribed augmentation 

transformations. Additionally, these input pictures are down 

sampled to the appropriate resolutions of the generator 

network utilizing residual or skip connections. The 

discriminator network performs binary classification, 

differentiating between authentic and counterfeit pictures [22]. 

 

 
 

Figure 3. StyleGAN2-ADA generator network architecture [21] 
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Figure 4. StyleGAN2-ADA discriminator network architecture [21] 

 
Table 3. Parameters for StyleGAN2-ADA 

 
Parameters Values 

Tick/Epoch 416 

Kimg 1664 

Learning Rate 0.0025 

Resolution 256×256 

Batch 16 

 

Training StyleGAN2_ADA on Iraq Medicinal Plant Dataset 

duration was 18 hours, 11 minutes, and 27 seconds on a 

Google Colaboratory Pro Plus equipped with 52 GB of RAM 

and a P100 GPU. The dataset produced the model (.pkl) file 

following a designated training period. The (.pkl) file will be 

created every 100 epochs. Upon achieving training results of 

256×256 pixels, the training process terminated and utilized 

the final (.pkl) file, after saving it. The initial training iteration 

seemed irregular as they shifted from the original photos to a 

new set. Subsequently, the maximum number of iterations 

significantly differed from the initial iterations, and then 

images were generated.  

Even though the Iraq medicinal plants dataset is challenging 

because it is limited and unbalanced, the images of the ten 

classes dataset increased nearly two times to 856 medicinal 

plant images. The classes with the highest number of images 

get better quality images. Table 3 displays StyleGAN2-ADA 

parameters, where the model was trained with images at a 

resolution of 256×256, using a batch size of 16 and a learning 

rate of 0.0025. The training progressed over 416 ticks, 

corresponding to 1,664 kimg (1,664,000 images processed). 

These settings balance model stability and computational 

efficiency, allowing the generator and discriminator to learn 

effectively at this resolution. 

 

3.2.2 Classifiers 

In the second component of the methodology, this study 

employs the same transfer learning models that were utilized 

in previous study [23]. Selected deep learning models differ in 

architecture, efficiency, and feature extraction capabilities, 

making them suitable for various aspects of medicinal plant 

classification. Bit_Sr50x1 leverages strong transfer learning 

from large datasets, ensuring good generalization with 

minimal fine-tuning. ResNet_V1_152 and 

Inception_ResNet_V2 offer deep feature extraction and 

improved learning through residual connections, making them 

ideal for fine-grained plant classification. Inception_V3 

balances accuracy and computational efficiency by capturing 

multi-scale features, while MobileNetV2_130_224 is 

optimized for real-time classification on resource-limited 

devices. Finally, Nasnet Large, designed via Neural 

Architecture Search, dynamically optimizes performance, 

making it well-suited for complex plant datasets. This diverse 

selection enables a comprehensive evaluation of plant 

classification under different constraints and requirements. 

(1) Bit_Sr50x1 

A deep learning model that has been pre-trained [24]. The 

acronym "Bit_s" denotes the Big Transfer family-s, while 

"r50x1" implies ResNet-50x1. This implies that the 

architecture is a ResNet-50 that has been pretrained on 

ImageNet-1k. Bit_s-r50x1 is recognized for its outstanding 

performance across a wide range of image classifying task, 

which is a direct result of its exhaustive pre-training on large 

datasets. It was selected for its capacity to generalize 

effectively to new tasks with minimal fine-tuning. 

(2) Resnet_V1_152 

A deep convolutional neural network design was developed 

known as ResNet_v1_152, which is an abbreviation for 

Residual Network version 1 with 152 layers [25]. It is a 

member of the Res Net family, which was created to address 

the issue of very deep neural network degradation by 

implementing residual learning. Known for its exceptional 

performance in deep learning tasks, it was attributed to its 

residual connections, which effectively mitigated the 

vanishing gradient problem.  

(3) Inception_V3 

Inception-v3 is a convolutional neural network (CNN) 

architecture that belongs to the Inception family. Inception-v3 

[26] has been widely employed in several computer vision 

applications, including object recognition, picture 

segmentation, and image classification. It has exhibited 

superior performance on benchmarks such as the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC).  
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(4) MobileNetV2_130_224 

MobileNetV2 architecture has a special variant: 130_224. It 

has been developed for efficiency in picture classification [27]. 

"130" in MobileNetV2_130_224 is the width multiplier, 

which regulates the number of channels in each network layer, 

and "224" represents the input resolution. It is effective and 

lightweight in resource-constrained environments, such as IoT, 

mobile, and edge computing platforms. Depth wise separable 

convolutions, inverted residual blocks, and skip connections 

make the MobileNetV2_130_224 architecture efficient and 

accurate. The lightweight architecture was designed to 

evaluate plant recognition models on resource-limited devices.  

(5) Inception_Resenet_V2 

The Inception-ResNet-v2 deep convolutional neural 

network architecture combines the advantages of the Inception 

module with residual connections. This advanced deep neural 

network reaches superior performance across multiple 

computer vision tasks, such as object detection, image 

segmentation, and image classification [28]. Inception-

ResNet-v2 shares the same architecture as Inception-ResNet-

v1 but varies in its foundational elements. 

(6) Nasnet_Large 

NASNet-A is a convolutional neural network architecture 

designed for image classification. The configuration of its 

convolutional layers has been determined by Neural 

Architecture Search (NAS). NASNets, as revealed via 

researches [29, 30], are available in multiple sizes, including 

Nasnet_large of NASNet-A for ImageNet, which initiates with 

168 convolutional filters and utilizes 18 Normal Cells, 

Nasnet_large is an architecture developed by Neural 

Architecture Search (NAS), which enhances the network 

configuration for improved performance. It was incorporated 

to assess whether this automated design approach might 

surpass hard designed models. 

The classifiers were trained with a batch size of 16, a 

learning rate of 0.001, and a validation split of 20% over 10 

epochs, with fine-tuning enabled. The Categorical 

Crossentropy loss function, incorporating label smoothing 

(0.1), and the SGD optimizer with a momentum of 0.9 ensured 

stable and effective model optimization. This consistent setup 

allowed for a robust comparison across models under both 

conventional and StyleGAN2-ADA-augmented datasets. 

4. EXPERIMENTS AND RESULTS  

 

4.1 Experimental environment 

 

All experiments were executed on Google Colab Pro+ using 

Python 3.10.12. They were conducted on a PC equipped with 

a 12th Gen Intel® Core™ i7 processor and 16GB of RAM. 

 

4.2 Performance evaluation metrices 

 

The performance of deep learning models is assessed using 

accuracy, precision, recall, and F1-score to ensure a 

comprehensive evaluation of medicinal plant classification. 

These metrics provide insights into the model’s predictive 

capabilities, particularly in handling class imbalances and 

ensuring reliable classification. Accuracy serves as a general 

performance indicator but may be insufficient for imbalanced 

datasets. Precision measures the proportion of correctly 

classified positive instances, minimizing false positives and 

reducing misidentifications in ethnobotanical studies. Recall 

evaluates the model’s ability to identify all relevant instances, 

preventing the omission of medicinal plant species. The F1-

score balances precision and recall, offering a robust measure 

when false positives and false negatives must be considered 

[31]. The mathematical formulations of these metrics are 

provided in Eqs. (1)-(4). 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

 

Recall =
TP

TP + FN
 (2) 

 

Precision =  
TP

TP + FP
 (3) 

 

F1_score =
2 ∗ Precision ∗ Recall

Precision + Recall
 (4) 

 

where, true positive, true negative, false positive and false 

negative are denoted as TP, TN, FP and FN. 

 

 

Table 4. Performance analysis of classification method with conventional augmentation 

 

Transfer Learning Model 
Accuracy 

(%) 

Validation Accuracy 

(%) 
Loss Validation Loss 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Bit_Sr50x1 99.71 93.75 0.5505 0.7894 94.07 93.10 93.15 

Resnet_V1_152 97.67 81.25 0.9032 1.1957 83.54 81.60 82.08 

Inception_V3 96.79 88.75 0.9173 1.0685 91.25 88.50 89.27 

MobileNetV2_130_224 95.63 77.50 0.8098 1.3111 84.37 75.86 76.45 

Inception_Resenet_V2 93.29 86.25 1.2708 1.8002 86.65 85.05 84.90 

Nasnet_Large 91.84 90.00 2.0168 2.0976 93.65 90.80 91.24 

 

Table 5. Performance analysis of classification method with StyleGAN2_ADA augmentation 

 

Transfer Learning Model 
Accuracy 

(%) 

Validation Accuracy 

(%) 
Loss Validation Loss 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Bit_Sr50x1 100 96.43 0.5363 0.6096 96.59 96.49 96.47 

Resnet_V1_152 98.38 94.64 0.8708 0.9453 95.27 94.73 94.79 

Inception_V3 97.93 94.64 0.8566 0.9028 94.99 94.76 94.76 

MobileNetV2_130_224 96.45 91.07 0.7607 0.9072 92.12 91.22 91.30 

Inception_Resenet_V2 96.16 95.24 1.1779 1.2602 95.54 95.32 95.26 

Nasnet_Large 95.27 94.64 1.9202 1.9104 94.93 94.73 94.72 
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The performance of six transfer learning models was 

evaluated using the Iraqi Medicinal Plant Dataset enhanced 

first with conventional data augmentation techniques, 

including rotation, translation, and zoom operations. Table 4 

displays their results. Second, the performance evaluation 

when using StyleGAN2-ADA and Table 5 shows the results 

of them. The models were compared based on accuracy, 

validation accuracy, loss, validation loss, and additional 

metrics such as precision, recall, and F1-score. 

Using conventional augmentation techniques such as 

rotation, scaling, and flipping, the classifiers achieved 

moderate performance, with Bit_Sr50x1 leading with a 

training accuracy of 99.71% and validation accuracy of 

93.75%, alongside a balanced F1-score of 93.15%. 

Inception_V3 also performed well, with a validation accuracy 

of 88.75% and an F1-score of 89.27%, indicating good 

generalization. However, models like MobileNetV2_130_224 

and ResNet_V1_152 exhibited significant overfitting, with 

validation accuracy dropping to 77.50% and 81.25%, 

respectively, despite higher training accuracy. Similarly, 

Nasnet_Large demonstrated a competitive validation accuracy 

of 90.00% but suffered from high loss values, highlighting the 

limitations of conventional augmentation in handling a small 

and challenging dataset. 

In contrast, the incorporation of synthetic data generated 

using StyleGAN2-ADA markedly enhanced the performance 

of all models. Bit_Sr50x1 achieved a perfect training accuracy 

of 100% and an improved validation accuracy of 96.43%, with 

balanced metrics (F1-score of 96.47%) and reduced losses 

(0.5363 training and 0.6096 validation). 

Inception_ResNet_V2 also showed significant improvement, 

achieving a validation accuracy of 95.24% and an F1-score of 

95.26%, while ResNet_V1_152 and Inception_V3 reached 

validation accuracies of 94.64% with F1-scores of 94.79% and 

94.76%, respectively. Even MobileNetV2_130_224 improved 

substantially, with validation accuracy increasing to 91.07%, 

and Nasnet_Large reached a validation accuracy of 94.64%, 

overcoming earlier challenges. These results highlight the 

ability of StyleGAN2-ADA to generate high-quality synthetic 

data, effectively mitigating overfitting, improving 

generalization, and significantly enhancing classification 

performance compared to conventional augmentation methods. 

These results indicate that all models experienced an 

increase in validation accuracy after applying StyleGAN2-

ADA. The highest improvement ratios were observed in 

ResNet_V1_152 13.39% and MobileNetV2_130_224 

+13.57%. Among all models, Bit_Sr50x1 achieved the highest 

validation accuracy 96.43% and reached 100% training 

accuracy, highlighting its superior performance. Additionally, 

all models exhibited a decrease in validation loss, 

demonstrating that StyleGAN2-ADA enhanced model 

stability and learning efficiency. The most significant 

reduction in validation loss was observed in 

Inception_ResNet_V2, which dropped from 1.8002 to 1.2602, 

overcoming previous challenges with high loss values. Overall, 

Bit_Sr50x1 emerged as the most robust model, achieving the 

highest validation accuracy 96.43% and F1-score 96.47%. 

Figures 5-10 illustrate the loss and accuracy plots for the six 

models: Bit_Sr50x1, ResNet_V1_152, Inception_V3, 

MobileNetV2_130_224, Inception_ResNet_V2, and 

NasNet_Large respectively, comparing their performance 

with conventional augmentation and StyleGAN2-ADA 

augmentation.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5. (a, c) accuracy and loss of Bit_sr50x1 model with 

conventional augmentation, (b, d) accuracy and loss with 

StyleGAN2_ADA 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 6. (a, c) accuracy and loss of Resnet_v1_152 model 

with conventional augmentation, (b, d) accuracy and loss 

with StyleGAN2_ADA 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. (a, c) accuracy and loss of Inception_v3 model 

with conventional augmentation, (b, d) accuracy and loss 

with StyleGAN2_ADA 
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(b) 

 
(c) 

 
(d) 

 
Figure 8. (a, c) accuracy and loss of mobilenet_v2_224 

model with conventional augmentation, (b, d) accuracy and 

loss with StyleGAN2_ADA 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 9. (a, c) accuracy and loss of inception_resenet_v2 

model with conventional augmentation, (b, d) accuracy and 

loss with StyleGAN2_ADA 
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(a) (b) 

 
 

(c) (d) 

 

Figure 10. (a, c) accuracy and loss of Nasnet_Large model with conventional augmentation, (b, d) accuracy and loss with 

StyleGAN2_ADA 
 

Table 6. Performance comparison between classification 
 

Reference GAN Model 
No. of 

Classes 

No. of Images / 

Class 

Accuracy 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Sachar and Kumar [17] DCGAN 5 30 97.51 - - - 

Deshmukh [4] WGANs 15 5500 --- 92 92 96 

Swathika et al. [3] cGAN 50 100 93.06 93.13 ---- 94.32 

Proposed Approach Bit_Sr50x1 
StyleGAN2_

ADA 
10 +30 100 96.49 96.47 

 Resnet_V1_152    98.38 94.73 94.79 

 Inception_V3    97.93 94.76 94.76 

 MobileNetV2_130_224    96.45 91.22 91.30 

 Inception_Resenet_V2    96.16 95.32 95.26 

 Nasnet_Large    95.27 94.73 94.72 

 

StyleGAN2-ADA augmentation improved model 

performance by generating high-quality synthetic images, 

enhancing data diversity, and mitigating class imbalance. The 

added variations in texture, lighting, and morphology enriched 

feature representation, leading to better generalization. This 

augmentation reduced overfitting, particularly benefiting 

underrepresented classes. As a result, models trained with 

StyleGAN2-ADA-augmented datasets achieved higher 

accuracy, recall, and F1-score, demonstrating its effectiveness 

in medicinal plant classification. In a comparison with the 

state-of-the-art studies displayed in Table 6, demonstrated 

superior performance in medicinal plant classification. Sachar 

and Kumar [17] employed a DCGAN model on a dataset of 

five classes with 30 images per class, achieving an accuracy of 

97.51%. Deshmukh [4] utilized WGANs on a dataset of 15 

classes with 5,500 images per class, reporting a recall and 

precision of 92% and 96%, respectively. Swathika et al. [3] 

applied a cGAN for 50 classes with 100 images per class, 

achieving an accuracy of 93.06%, with a recall of 93.13% and 

precision of 94.32%. In comparison, the proposed approach 

using StyleGAN2-ADA for data augmentation achieved 

significantly higher results. The Bit_Sr50x1 model Results 

After Applying Different GAN Models reached 100% 

accuracy, with a recall of 96.49%, an F1-score of 96.47%, and 

a precision of 96.59%, outperforming the state-of-the-art 

methods. Similarly, ResNet_V1_152 and Inception_V3 

achieved high accuracies of 98.38% and 97.93%, respectively, 

with balanced recall, precision, and F1-scores above 94%. 

Even models like MobileNetV2_130_224 and Nasnet_Large, 

which showed lower performance, still achieved impressive 
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accuracies of 96.45% and 95.27%, respectively. These results 

highlight the effectiveness of the proposed approach in 

leveraging StyleGAN2-ADA to enhance dataset diversity and 

improve classification performance, surpassing all previously 

reported methods. 

While this study provides valuable insights into medicinal 

plant classification in Iraq, there are a few limitations to 

consider. First, the relatively small dataset size may limit the 

model's ability to fully capture the diversity of medicinal plant 

species. Although the most representative species were 

selected, expanding the dataset could improve model 

robustness and accuracy. Second, limitations in image 

capturing techniques may affect dataset quality. Variations in 

image resolution, lighting conditions, and angles could 

introduce inconsistencies, potentially impacting the model's 

generalization capabilities. Future studies could benefit from 

standardizing image capture methods to enhance dataset 

consistency and reliability. These limitations highlight the 

need for further research to validate the models and improve 

the dataset, enabling more robust and generalized prediction. 

 

 

5. CONCLUSIONS 

 

In this study, we introduced an innovative approach to 

address the challenge of limited datasets in medicinal plant 

classification by utilizing StyleGAN2-ADA for synthetic data 

augmentation. The results highlight the effectiveness of 

augmenting the dataset with synthetic images, leading to 

significant improvements in the performance and 

generalization capabilities of several state-of-the-art transfer 

learning models. Notably, the Bit_Sr50x1 model achieved an 

impressive 96.47 F1-score, with models like ResNet_V1_152 

and Inception_V3 also demonstrating substantial gains over 

traditional augmentation methods. This approach not only 

mitigates overfitting but also strengthens model robustness, 

showcasing StyleGAN2-ADA's potential as a valuable tool for 

improving plant classification with limited data. 

The novelty of this work lies in its application of advanced 

synthetic augmentation techniques to a domain with 

historically limited image datasets, providing a meaningful 

step toward more accurate and efficient automated plant 

recognition systems. 

Future research could expand on this approach by exploring 

the extension of StyleGAN2-ADA to larger, more complex 

datasets, including a wider range of plant species. Further 

investigations into the combination of synthetic data 

generation with other deep learning techniques may open new 

possibilities for enhanced plant classification in diverse 

environmental and geographical contexts. 
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NOMENCLATURE 

 

GAN Generative Adversarial Network 

ADA Adaptive Discriminator Augmentation 

DCGAN 
Deep Convolutional Generative Adversarial 

Networks 

CNN Convolutional Neural Network 

RNN Recurrent Neural Network 

MLPs Multilayer Perceptrons 

ResNet Residual Network 

AdaIN Adaptive Instance Normalization 

Bit_s Big Transfer family-s 

Nas Neural Architecture Search 

TP True Positive 

FP False Positive 

TN True Negative 

FN False Negative 
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