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The main objective of this research was to predict dilution, overbreak, and costs in 

underground mining using Kolmogorov-Arnold Networks (KAN). The KAN model 

was rigorously evaluated against other machine learning approaches, including Random 

Forest (RF), Extreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP). 

The methodology included the collection of 732 records, which was used for training 

and testing the models using the k-fold technique. The results indicated that the KAN 

model exhibited the highest performance, particularly in dilution prediction, with a 

Mean Squared Error (MSE) of 0.001, a Root Mean Squared Error (RMSE) of 0.032, a 

Mean Absolute Error (MAE) of 0.055, and an R² of 0.999. Regarding overbreak, KAN 

achieved an MSE of 0.002, an RMSE of 0.045, an MAE of 0.004, and an R² of 0.984. 

For cost, it achieved an MSE of 0.001, an RMSE of 0.032, a MAE of 0.027, and an R² 

of 0.999, reaffirming its position as the most efficient model. Additionally, the 

integration of a multi-objective particle swarm optimization algorithm enabled the 

optimization of drilling and blasting parameters, resulting in notable reductions: 11.3% 

in operational dilution, 25% in overbreak, and 7.6% in operational costs. This study 

demonstrates the effectiveness of KANs in predicting key mining indicators, improving 

efficiency, safety, and profitability. 
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1. INTRODUCTION

Drill and blast continue to stand out as one of the most 

versatile and widely employed techniques for excavation in 

mining, quarrying, and tunneling in hard rock, thanks to its 

relatively low cost, efficiency, and ease of implementation [1-

3].  

However, this method has some disadvantages, such as the 

destruction of the surrounding rock mass, which can result in 

unwanted cavities due to blasting, referred to as “overbreak” 

[4]. Furthermore, in mining, it is confronted with dilution, 

defined as the percentage of material or waste with economic 

value removed beyond the delimited area of extraction, 

whether planned or unplanned. Unplanned dilution not only 

reduces the quality of the extracted ore but also increases 

processing and transportation costs, which negatively impacts 

profits, underlining the need for effective management [5, 6]. 

Mine production capacity and profitability are directly 

dependent on ore loss and dilution indicators, which are key 

factors in assessing the development prospects of a mining 

company. Therefore, assessing the geological and economic 

factors associated with ore dilution and loss is critical at the 

feasibility stage of mine design, as well as during mining 

operations [7]. The rate of ore dilution varies based on the 

mining method employed for underground extraction of 

mineral resources [8-10].  

Ensuring integrity and quality in mineral resource 

utilization is the key driver of annual productivity growth in 

mining enterprises and the expansion of industrial reserves. 

However, factors such as mine structural complexity, ore and 

surrounding rock instability, and adverse hydrogeological 

conditions negatively impact mining productivity. These 

factors can lead to an increase in ore dilution of up to 35%-

40% and ore loss of up to 25%, highlighting the need for 

mitigation measures [11]. 

The problem arises in an underground mine, where 

traditional approaches are severely constrained, as evidenced 

by the large differences between predicted values and those 

observed in the field. Some critical factors behind this problem 

include errors in drill and blast design, such as incorrect drill 

hole placement, inappropriate application of explosives, and 

excessive charge length. In general, empirical estimates tend 

to be insufficient for properly modeling rock mass behavior 

because they do not include detailed analyses, such as 

numerical modeling or in-depth in-situ testing, which 

negatively affects operational planning and overall 

profitability. 

Such discrepancies lead to uncontrolled and excessive 

fragmentation of the rock mass, causing overbreak, which 

leads to dilution and unwanted extraction of waste material, 

increasing the operational costs associated with clearing, 

support, loading, and hauling.  

Therefore, predicting and mitigating overbreak and dilution 

during the mining process are considerable challenges for any 

mining project. To improve these predictions, there have been 

attempts to incorporate more advanced approaches that 
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employ artificial intelligence along with more sophisticated 

mathematical modeling techniques [12, 13].  

Recent studies have indicated substantial improvements in 

accuracy. Jorquera et al. [14] used various machine learning 

(ML) models to estimate dilution, achieving a precision score 

of 0.835, an accuracy of 0.804, and an area under the curve of 

0.942 with the Random Forest model.  

On the other hand, Chimunhu et al. [15] employed 

geological, geotechnical, and mine design variables available 

in the early stages of sub level open stopping to predict 

dilution. They achieved 93% accuracy in dilution prediction 

using the principal component analysis-classification and 

regression trees (PCA-CART) model.  

Zhao and Niu [16] used a backpropagation neural network 

to estimate unplanned mineral dilution, overcoming the 

limitations of the empirical ELOS graph method and achieving 

a determination coefficient (R²) greater than 0.95. Jang et al. 

[17] developed a neuro-fuzzy system to predict unplanned 

dilution and mineral loss, obtaining a correlation coefficient 

(R) of 0.72. 

Models ranging from simple to hybrid approaches have 

been used for overbreak prediction, with the latter showing 

superior performance. Jang and Topal [18] utilized 49 datasets 

of Rock Mass Rating (RMR) and overbreak as input and 

output variables, respectively, to predict overbreak, achieving 

an R² of 0.945 using an Artificial Neural Network (ANN).  

To forecast overbreak and manage it prior to drilling and 

blasting activities, they implemented an ANN alongside a 

hybrid system combining a genetic algorithm and an artificial 

bee colony algorithm with an ANN, yielding an R² exceeding 

0.90 [19-22]. Furthermore, models incorporating fuzzy logic 

and adaptive neuro-fuzzy inference systems integrated with 

particle swarm optimization have been developed, delivering 

predictions with an R² above 0.94 [23, 24]. 

Due to the non-linear and multifactorial nature of mining 

operations such as blasting, multi-objective intelligent 

optimization algorithms have been implemented to address 

these challenges. Bakhtavar et al. [25] mainly reduced 

fragmentation size and costs through a multi-objective 

stochastic planning model. The multi-objective particle swarm 

optimization method (MOPSO) has evolved as a highly 

effective technique for optimizing multiple indices in blasting 

operations, where several objectives can be improved 

simultaneously [26, 27]. 

This study uses Kolmogorov-Arnold networks to predict 

dilution, overbreak, and costs in underground mining. It 

combines geological, geomechanical, and operational data in 

a deep learning model to improve economic viability. This 

new approach integrates theory with deep learning, enhancing 

efficiency and optimization for sustainable mining. 

This research follows the following structure: Section 2 

presents the materials and methodology, including the 

fundamentals of the KAN model. Section 3 discusses the 

model's performance and results. Finally, Section 4 provides 

conclusions and recommendations for further research. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Data collection and analysis 

 

The database was from an underground mine in northern 

Peru, which consisted of 732 records. These records included 

geometric, geological, geomechanically and operational 

parameters, as well as the costs associated with each unit 

operation. This stage was critical, as the most important 

variables were identified in order to train the model and predict 

the three targets of the project. 

The variables for the creation of the predictive model were: 

mining width (MW), working height (WH), vein thickness 

(VT), dip, RQD, RMR, charge length (CL), stemming (S), 

advance length (AL), explosive quantity (EQ), broken volume 

(BV), tonnage (TN), charge factor (CF), power factor (PF), 

operating dilution (OD), overbreak (OB), drill and blast cost 

(CBD), clean-up cost (CC), loading cost (LC), haulage cost 

(HC), support cost (SC) and total operating cost (TOC). 

Table 1 presents a statistical analysis of 732 observations 

per variable. The main characteristics of the operational and 

geomechanically parameters considered in the model are 

presented.  

 

Table 1. Input and target statistics 

 
Variables  Mean Var. Std. Min. Max. 

MW (m) 2.39 0.00 0.03 2.34 2.44 

WH (m) 2.19 0.00 0.03 2.14 2.24 

VT (m) 0.45 0.01 0.09 0.30 0.60 

Dip 47.54 2.17 1.47 45.00 50.00 

RQD 65.05 12.50 3.54 60.03 69.97 

RMR 55.06 49.49 7.04 45.00 65.00 

CL (m) 1.24 0.00 0.01 1.22 1.26 

S (m) 0.38 0.00 0.01 0.36 0.40 

AL (m) 1.46 0.00 0.03 1.41 1.51 

BV (m³) 6.18 0.01 0.11 5.97 6.37 

TN (Tn) 16.37 0.08 0.29 15.88 16.88 

EQ (kg) 15.73 0.32 0.57 14.71 16.71 

CF (kg/ m³) 2.55 0.01 0.10 2.31 2.77 

PF (kg/Tn) 0.96 0.00 0.04 0.88 1.05 

OD (%) 81.23 13.61 3.69 74.55 87.67 

OB (m³) 0.29 0.01 0.11 0.08 0.48 

CBD (US$/Tn) 47.56 1.30 1.14 45.51 49.50 

CC (US$/Tn) 21.85 0.34 0.58 20.85 22.85 

HC (US$/Tn) 14.63 0.35 0.59 13.65 15.65 

LC (US$/Tn) 15.41 0.34 0.59 14.40 16.40 

SC (US$/Tn) 5.59 0.08 0.28 5.10 6.10 

TOC (US$/Tn) 105.03 2.49 1.58 100.93 109.53 

 

The MW has an average of 2.39 m with a minimum 

variability (±0.03 m), as well as the height of the workings, 

which has an average of 2.19 m. The actual VT shows a larger 

dispersion with a mean of 0.45 m and a standard deviation of 

±0.09 m. The dip reaches a mean value of 47.54°, with a range 

varying between 45° and 50°, reflecting its relative stability. 

As for the geomechanically parameters, the RQD and RMR 

register averages of 65.05 and 55.06, respectively, 

highlighting that the RMR has a greater dispersion (±7.04), 

which could significantly influence the mine planning. The 

target total operating cost averages 105.03 US$/Tn, with main 

components being drilling and blasting (47.56 US$/Tn), 

cleaning (21.85 US$/Tn), hauling (14.63 US$/Tn), loading 

(15.41 US$/Tn) and support (5.59 US$/Tn). These values 

show that drilling and blasting accounts for the largest 

percentage of the total cost. The targets, operational dilution, 

averages 81.23%, and overbreak, averages 0.29 m³, 

evidencing the need to optimize operations to reduce costs and 

minimize losses associated with unwanted material or excess 

fragmentation. 

The detection of multicollinearity among the predictors was 

conducted through Variance Inflation Factor (VIF) analysis, 

given that excessive multicollinearity can affect model 
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stability and the interpretation of coefficients. A threshold of 

VIF ≤ 10 was established, where Work Area (WA) exhibited 

a value of 24.03 and Hydraulic Radius (HR) reached 22.07. 

Consequently, both were removed due to their high correlation 

with other variables, posing a risk of redundancy and result 

distortion. 

The remaining variables had VIF values ≤ 10, ensuring that 

they did not compromise model stability. Among them, CL 

(4.43), S (4.34), EQ (4.20), PF (3.12), and CF (3.08) showed 

moderate correlations but were deemed acceptable.  

TN (3.06) and BV (2.05) were also retained in the analysis. 

The rest of the variables presented values < 2, including HC 

(1.04), WH (1.03), and RQD (1.02), indicating low 

collinearity. This selection ensures the model's robustness by 

reducing variance overestimation and increasing the reliability 

of the results. 

Figure 1 illustrates the correlation matrix for the factors 

examined in the study. The primary factors correlated with OD 

are EQ=0.44, PF=0.43, and CL=0.28. Furthermore, RMR=-

0.55 demonstrates a moderate negative correlation.  

The data suggest that operational dilution is affected by a 

combination of blast design parameters (EQ, PF, and CL), the 

geomechanically properties of the RMR, and the results of the 

blasting process. OB exhibits the highest correlation with 

EQ=0.51 and PF=0.52. 

This analysis substantiates the idea that overbreak is 

influenced by both blast design parameters (EQ, PF) and the 

geomechanically properties of the RMR=-0.46. The variables 

that most significantly influence TOC are OB=0.67, OD=0.64, 

LC=0.39, SC=0.27, and CDB=0.46.  

These results highlight the importance of expenditures 

related to essential operating tasks, stressing the need to 

improve these elements to reduce overall costs in mining 

operations. 

The range of distribution of the data for each of the 

characteristics varied considerably. For example, RMR ranges 

from 45 to 65. OD ranges from 74.55 to 87.67. If feature 

scaling is not considered, the marked differences in the ranges 

could lead the machine learning algorithm to incorrectly assess 

the relative importance of each feature [28]. Therefore, before 

training the machine learning models, feature scaling was 

performed in order to normalize the distribution of the data in 

each feature. In this study, the normalization process was 

adopted, in which the values were adjusted and scaled to lie 

within the range of 0 to 1. Eq. (1) was used to find the 

normalization. 

 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1) 

 
The normalized value is represented by 𝑋′, the real value is 

X. The minimum and maximum values of the distribution for 

the selected features are defined by 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 . After data 

normalization, k-fold was applied. K-fold cross-validation is a 

fundamental method in machine learning and statistical 

modeling for assessing model performance. It is obtained by 

partitioning the data into k equally sized subsets, training the 

model on k-1 folds, and validating it on the remaining one, 

repeating the cycle k times [29]. This improves data utilization 

by minimizing bias and enhancing evaluation stability [30]. 

For our study, k-fold with k=5 was used across all models, 

ensuring a balance between computational efficiency and 

validation robustness. Once the KAN model was 

implemented, it was compared with the three most commonly 

used ML models to predict the established objectives. 

 

 
 

Figure 1. Correlation matrix of study variables 
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2.2 KAN 

 

It is an innovative neural network architecture based on the 

Kolmogorov and Arnold theorems, which state that any 

continuous function of multiple variables can be expressed as 

the sum of single-variable functions [31]. 

Vladimir Arnold and Andrey Kolmogorov proved that any 

continuous multivariate function 𝐹  defined on a bounded 

domain can be expressed as a finite combination of continuous 

univariate functions, linked through the binary operation of 

addition. This representation is particularly significant in the 

context of smooth operations, as it ensures that the involved 

functions are differentiable and possess mathematical 

properties that optimize their analysis and applicability in 

modelling complex systems across various scientific and 

engineering disciplines. 

 

𝑓(𝑥) = 𝑓(𝑥1, … 𝑥𝑛) = ∑ 𝛷𝑞

2𝑛+1

𝑞=1

(∑ 𝛷𝑞,𝑝(𝑥𝑝)

𝑛

𝑝=1

) (2) 

 

Eq. (2) shows an external and an internal sum. The outer 

sum computes ∑ 𝛷𝑞
2𝑛+1
𝑞=1 , from 2n+1 in terms of 𝛷𝑞 = ℝ → ℝ. 

The inner sum computes n terms for each q, where 𝛷𝑞,𝑝 =

[0,1]𝑛 → ℝ. In this way, KAN networks are able to use single-

variable functions that can be learned and incorporated instead 

of the fixed weights typical of traditional neural networks. 

This feature allows for better modelling and fitting of the 

network to complex patterns in the data. 

All the weight parameters of this models are treated as 

functions of a variable and more often than not are 

parameterized by splines. Spline functions are piecewise 

polynomials and are defined by a group of control points 

which shape the boundary. These control points can be altered 

without restriction which enables the local contour of the 

function to be modified while its global behavior remains 

unaffected. This is the reason why spline functions, while 

being able to fit the complex patterns in the data, are able to 

retain the smoothness of the activation functions [32]. 

Not only does this enhance the flexibility of the network but 

also enhances its capability to capture and model highly 

nonlinear relationships [33]. This model has been subject to 

extensive validation and benchmarking and it is known to 

deliver solid performance in different domains, which proves 

the model efficiency and performance [31-39]. 

The KAN model based on B-Splines enables flexible and 

differentiable approximations of the nonlinear relationships 

implicit in the data. The KAN architecture is defined by a set 

of k nodes and a spline degree d, which determine the 

complexity of interpolation for each layer [31]. Each input is 

transformed through a combination of B-Spline basis 

functions, which are weighted by trainable parameters [40]. 

These basis functions divide the input domain into smooth and 

continuous regions, avoiding the saturation issues associated 

with traditional activation functions. The input values are 

evaluated in these basis functions during forward propagation, 

generating nonlinear representations that can be modified 

through training. 

The KAN model for the project consists of a structure 

composed of two B-Spline layers with 512 and 256 nodes, 

respectively, followed by a dense layer with three output 

neurons, optimized to predict the target variables. The B-

Spline layers are defined by a number of divisions (G) 

determined by the knots and a polynomial degree (k). The 

optimization of the splines is performed iteratively using the 

Adam algorithm and by minimizing the MSE, adjusting the 

weights associated with the basic functions until the model 

achieves its best predictive capability. The established 

TensorFlow implementation ensures that the parameter update 

process remains efficient and stable during training. Below, a 

detailed pseudocode is provided, as shown in Figure 2, 

specifying the model structure and the calculation of B-Spline 

activations, ensuring that this pseudocode offers a clear 

representation of the training process. 

 

 
 

Figure 2. Pseudocode of the model 

 

2.3 MLP 

 

This type of neural network is created with an architecture 

that has an input layer, one or several hidden layers, and an 

output layer. Unlike a single-layer network such as the 

perceptron, multi-layer networks can learn and model complex 

non-linear relationships, enabling them to process data with 

complex and difficult patterns much more effectively [41]. 

 

�̂�(𝑥) = ∑ 𝑣𝑗𝑓(𝑤𝐽
𝑇𝑥 + 𝑤𝑏𝑗) + 𝑣𝑏

𝐻

𝑗=1

 (3) 

 

where, �̂�(𝑥) represents the neural network’s output 

corresponding to an input “ 𝑥 ”. H denotes the number of 

neurons in the hidden layer, while “vj” corresponds to the 

weights linking the hidden layer neurons to the output node. 

Each neuron in the hidden layer uses an activation function, 

referred to as “f”. The term “ 𝑤𝐽
𝑇𝑥 + 𝑤𝑏𝑗 ” describes the 

weighted combination of the input “𝑥” where “𝑤𝑗”, are the 

weights and “𝑤𝑏𝑗” is the bias term. The bias at the output of 

the network is represented by “𝑣𝑏”. 

ReLU is the most common activation function used on this 

model because it is also the most common activation function 

used on deep neural networks these days given its simplicity 

to use [42]. In addition, the Adam optimization algorithm is 

also used, which is famous for its ability to adjust and optimize 

parameters while maintaining the stability of the system 
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during optimization [43]. 

 

2.4 RF 

 

RF is a machine learning method that consists of many 

decision trees to improve the prediction score and robustness. 

Each tree is built around a certain portion of the training data 

set, which can be created using bootstrapping or random 

selects. Then the individual votes from the trees are added 

together, using mean value in regression works or majority 

vote in classification, to produce a more accurate and robust 

result [44]. Such measure decreases the model’s variance and 

improves the model’s ability to learn from complex noisy data 

[45].  

In regression, the predictions are created by average the 

response variable of training instances from the leaf nodes. In 

classification, the output is voted on and whatever gets the 

majority wins. It is called aggregation with R. In regressions, 

the predictions from all trees are aggregated to form a single 

result but depending on the needed accuracy, “T” confirms set 

out level of accuracy. 

 

�̂�(𝑥) =
1

𝑇
∑ �̂�(𝑡)(𝑥)

𝑇

𝑡=1

 (4) 

 

2.5 XGBoost 

 

This model utilizes the decision tree boosting methodology, 

renowned for its efficacy and robustness in addressing both 

regression and classification challenges. Its increasing 

popularity arises from its exceptional performance in data 

science competitions and its capacity to efficiently process 

massive datasets and handle complicated features. XGBoost is 

highly valued for its swift processing, robust generalization 

abilities, and effectiveness in optimizing models in high- 

dimensional or noisy datasets [46]. 

XGBoost improves decision tree efficacy through the 

application of boosting techniques. Unlike classic ensemble 

methods that train models independently, boosting combines 

models sequentially. Here, each new model is designed to 

address the errors of its predecessors, resulting in an ensemble 

that is both more precise and resilient [47]. 

Eq. (5) describes the prediction of �́�𝑖, for an input 𝑥𝑖  as the 

sum of K base functions 𝑓𝑘(𝑥𝑖). 

 

�́�𝑖 = ∅(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 (5) 

 

where, each 𝑓𝑘 belongs to the functional space F, as defined in 

Eq. (6). The 𝑞(𝑥) is a function that assigns each input “𝑥” to a 

specific partition of the feature space, represented by “𝑇”. The 

expression 𝑤𝑞(𝑥) represents the parameters associated with the 

partition defined by 𝑞(𝑥). Furthermore, m is the dimension of 

the input space, and 𝑡 corresponds to the size of the parameter 

vector 𝑤. 

 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞: 𝑅𝑚 → 𝑇, 𝑤 ∈ 𝑅𝑡) (6) 

 

In summary, the equation models the prediction as a 

combination of parameterized base functions, where the 

structure of “𝐹” defines how the parameters w and the input 

space partitions 𝑤𝑞(𝑥) interacts to generate the predictions. 

2.6 Performance metrics 

 

The performance of each prediction model was assessed 

using four key metrics, defined as follows. MSE measures the 

average squared deviation between observed and predicted 

values. RMSE scales the errors to match the units of the actual 

data, enhancing interpretability. MAE computes the average 

absolute deviation between predicted and actual values, 

offering a straightforward measure of error magnitude, 

independent of direction. Values closer to 0 indicate a 

substantial improvement in the predictive performance of the 

machine learning methods [48]. On the other hand, the 

coefficient of determination (R²) ranges from 0 to 1, with 

higher values reflecting the model’s ability to better explain 

the variability in the observed data [49]. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (7) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (8) 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (9) 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1

1
𝑁

∑ (𝑦𝑖 −  �̅�𝑖)
2𝑁

𝑖=1

 (10) 

 

where, 𝑦𝑖  represents the observed value, �̂�𝑖 corresponds to the 

predicted value, �̅�𝑖 signifies the mean of the observed data, and 

N denotes the total number of samples in the training or testing 

phase. 

 

2.7 Definition of hyperparameters 

 

In this analysis, four machine learning models were used, 

each with different architectures and optimization approaches. 

KAN is based on B-Splines and is designed to approximate 

nonlinear relationships in a flexible and differentiable manner. 

Its design consists of an input layer with 19 nodes, two hidden 

layers with 512 and 256 neurons, respectively, and an output 

layer with three neurons. This model employs the B-Spline 

activation function (k=3, G=12), is optimized using the Adam 

algorithm, and utilizes a batch size of 32. 

Meanwhile, MLP consists of three hidden layers, each with 

512 neurons. This model uses the ReLU activation function 

and is trained for 300 epochs with a batch size of 32, also using 

the Adam optimizer. Additionally, the RF algorithm was 

implemented, which is based on constructing an ensemble of 

300 decision trees. This model is configured with a minimum 

of 10 samples per node and a maximum depth of 10, along 

with a minimum of 5 samples per leaf, providing good stability 

and generalization capability. 

Finally, the XGBoost method was applied, which is based 

on a boosting approach over trees. This model optimizes 

performance by performing 500 iterations and has a learning 

rate of 0.1. Its maximum depth is set to 6, and it is configured 

with a random state of 42 to ensure result reproducibility (refer 

to Table 2). 
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Table 2. Hyperparameters of the models 

 
Model Hyperparameters Value 

KAN 

Input layers 19 

Hidden layers 2 

Neurons per hidden layer 512-256 

Epochs 300 

Output layer 3 

Optimizer Adam 

Batch size 32 

Activation function B-Spline, k=3, G=12  

MLP 

Input layer 19 

Hidden layers 3 

Neurons in hidden layer 512-512-512 

Optimization Adam 

Output layer 3 

Activation function ReLU 

Training epochs 300 

Batch size 32 

RF 

Number of trees 300 

Random seed 42 

Minimum samples to split 10 

Maximum depth 10 

Minimum samples per leaf 5 

XGBoost 

Number of iterations 500 

Learning rate 0.1 

Maximum depth 6 

Random state 42 

 

 

3. RESULTS AND DISCUSSION 

 

A total of 732 records were processed, with 19 critical 

variables selected for the prediction of dilution, overbreak, and 

operational costs. The models were evaluated on different 

datasets using k-fold, and their results are detailed below. 

 

3.1 Training, validation and test by model 

 

Figure 3 shows the loss function process during training and 

validation over 300 epochs for the KAN model. The training 

and validation lines are observed for each fold. Both lines 

decrease rapidly and then stabilize, converging towards 

constant values. This behavior indicates that the model is not 

experiencing overfitting, as the training and validation losses 

remain similar, suggesting an adequate generalization 

capability and accuracy on unseen data. 

Figure 4 presents three scatter plots comparing the KAN 

model's predictions with actual values across the k-fold 

phases. The results show high correlations, suggesting that the 

model is robust and generalizes effectively. For dilution, 

overbreak, and cost, the correlation is nearly perfect (0.99) 

across all phases, with data points closely following the ideal 

regression line, indicating precise learning. Furthermore, the 

results for each fold remain consistent without significant 

variance, reinforcing the conclusion that the model is reliable 

and does not exhibit overfitting, demonstrating its ability to 

generalize to new data. 

Figure 5 presents the results of the XGBoost model. The 

results show high accuracy for each fold, with an overall R² of 

0.97 for operational dilution, while for overbreak, the value is 

0.99. For total operating cost, it demonstrates high accuracy 

with an overall R² of 0.94.  

Figure 6 shows the results of the RF model. The overall R² 

is 0.91 for dilution, demonstrating its good performance in 

predicting this target. For overbreak, the model showed a 

slight decrease in performance for each fold, obtaining an R² 

of 0.94. Similarly, in cost prediction, its performance declined 

for each fold, resulting in an overall R² of 0.84. 

 

 
 

Figure 3. Training and validation curve – KAN 

 

 

 
 

Figure 4. Evaluation of real vs. predicted values – KAN 

820



 

 
 

Figure 5. Evaluation of real vs. predicted values – XGBoost 

 

Figure 7 depicts the evolution of the loss function during the 

training and validation phases of the MLP model, using MSE. 

The loss function shows a rapid initial decrease, followed by 

stabilization, as the training and validation curves align 

closely. This behavior suggests the model is free from 

overfitting, since the training loss does not significantly 

exceed the validation loss. 

In Figure 8, the MLP model demonstrates strong 

performance across all variables. For operational dilution, the 

R² is 0.99 for all datasets, indicating excellent correlation 

during training and high accuracy. For overbreak, it achieved 

an overall R² of 0.93, reflecting solid overall performance with 

slight dispersion across folds, with the lowest values in folds 

1 and 5, where R² is 0.91. Finally, for total operating cost, the 

R² values remain at 0.99 across all datasets, demonstrating 

robust performance. 

 
 

Figure 6. Evaluation of real vs. predicted values – RF 

 

 
 

Figure 7. Training and validation curve – MLP 
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Figure 8. Evaluation of real vs. predicted values – MLP 

 

3.2 Comparison and evaluation of the KAN model 

 

Table 3 presents the analysis of the metrics. It is evident that 

the KAN model excels in all evaluations. In terms of dilution, 

KAN achieves the best values with MSE, RMSE, MAE, and 

R² of 0.001, 0.032, 0.055, and 0.999, respectively, indicating 

an exceptional fit. For the overbreak metric, KAN has an MSE 

of 0.002 and RMSE of 0.045, an MAE of 0.004, and an R² of 

0.984. Regarding costs, KAN remains the leader with MSE, 

RMSE, MAE, and R² of 0.001, 0.032, 0.027, and 0.999, 

respectively, reflecting the best fit among all models. 

To rigorously evaluate the effectiveness of the implemented 

KAN model, both non-parametric and parametric statistical 

tests were conducted based on the data distribution. The 

Wilcoxon signed-rank test (WSRT) was applied to OD and 

OB, as these data do not follow a normal distribution. On the 

other hand, for the TOC, which exhibits a normal distribution, 

the student’s t-test was used. 

 

Table 3. Performance metrics by model 

 
Target Metrics KAN MLP XGBoost RF 

Operational 

dilution 

MSE 0.001 0.019 0.285 1.177 

RMSE 0.032 0.138 0.534 1.085 

MAE 0.055 0.109 0.426 0.830 

R² 0.999 0.998 0.974 0.912 

Overbreak 

MSE 0.002 0.114 0.001 0.132 

RMSE 0.045 0.333 0.032 0.363 

MAE 0.004 0.242 0.003 0.219 

R² 0.984 0.934 0.992 0.943 

Costs 

MSE 0.001 0.013 0.132 0.405 

RMSE 0.032 0.114 0.363 0.636 

MAE 0.027 0.062 0.287 0.497 

R² 0.999 0.995 0.943 0.837 

 

Table 4. p-value result  

 
Target Comparison p-value Significance 

Operational 

dilution 

KAN vs. MLP 3.22 e-4 Yes 

KAN vs. RF 5.23 e-7 Yes 

KAN vs. XGBoost 4.31 e-4 Yes 

Overbreak 

KAN vs. MLP 1.19 e-6 Yes 

KAN vs. RF 4.49 e-6 Yes 

KAN vs. XGBoost 8.32 e-4 No 

Costs 

KAN vs. MLP 4.12 e-4 Yes 

KAN vs. RF 4.78 e-9 Yes 

KAN vs. XGBoost 3.51 e-4 Yes 

 

The results of the WSRT test and student's t-test, presented 

in Table 4, reveal p-values (all below 0.05, except for 

XGBoost in overbreak), statistically validating significant 

distinctions between the KAN model and the alternative 

models evaluated. Regarding operational dilution, overbreak, 

and total operating cost, the KAN model demonstrated 

superior performance compared to MLP and RF. Conversely, 

XGBoost achieved better performance in predicting 

overbreak; however, KAN showed a significant difference in 

predicting dilution and cost. Therefore, the KAN model was 

chosen as the best-performing approach, outperforming MLP, 

XGBoost, and RF in the evaluated tasks. 

As discussed previously, the KAN model outperformed 

other techniques based on various key metrics of performance. 

The superiority of the KAN model over other architectures lies 

in its use of learnable univariate functions. Unlike MLPs, 

which apply fixed activation functions such as ReLU or Tanh, 

KAN dynamically optimizes its activation functions through 

parameterized functions, such as splines, allowing for a more 

precise capture of complex relationships within the data. This 

leads to significantly more accurate models. Liu et al. [31] 

state that the primary strength of KAN architectures is their 

ability to increase the expressiveness of the approximation 

function by eliminating traditional fixed weights and inferring 

activation functions from univariate functions. This facilitates 

a better function fitting and helps solve partial differential 

equations with greater structural flexibility compared to MLP 

architectures [31, 32]. KAN also has the important ability to 

modify only the relevant regions without damaging prior 

knowledge and is less vulnerable to catastrophic forgetting 

during continuous learning; this latter feature is crucial in 

problems where stability and flexibility are essential. On the 

other hand, Ta [37] proposed the BSRBF-KAN architecture, 

which combines KAN, B-Splines, and radial basis functions 
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(RBF); this architecture can achieve better fitting in image 

classification problems, converging more stably and rapidly 

than MLPs and other KAN architectures, optimizing 

flexibility and interpretability. Moreover, in time series 

prediction problems, KAN models have outperformed MLPs 

and Recurrent Neural Networks (RNNs), achieving greater 

interpretability, efficiency, and accuracy while using 

significantly fewer parameters [34]. This establishes KAN as 

a remarkable architecture for modeling complex problems. In 

one study, Spline-KAN was used and achieved the same 

accuracy as MLPs but in half the training rounds, which 

translated into an improvement, despite a slight transition in 

computational time, as it demonstrated faster and more 

efficient convergence [38]. Similarly, Shukla et al. [39] 

analyzed the effectiveness of KAN and MLP in solving partial 

differential equations trained with noisy data; the results 

showed that when KAN was properly adjusted, it 

outperformed MLP in terms of accuracy and stability, 

enhancing KAN’s capability in environments where 

flexibility, robustness, and computational efficiency are 

essential. 

In this study, KAN achieved similar and superior 

performance compared to MLP, XGBoost, and RF models, 

while also providing advantages in both stability and 

flexibility in data representation. In this case, although MLP 

and XGBoost achieved high accuracy, KAN was chosen for 

its adaptability and ability to reach high levels of accuracy in 

the tasks performed. 

 

3.3 Sensitivity analysis 

 

The Sobol analysis is a sensitivity technique based on the 

concept of variance decomposition, which quantifies the effect 

that each input variable has on the model's response.  

This procedure was used in the present research to 

characterize the effect of certain geomechanically and 

operational parameters on two key variables in underground 

mining: dilution behavior and overbreak behavior. The 

variables used for the analysis were defined along with their 

respective ranges, and samples were generated using the 

Saltelli method (5000 samples), which allows for a robust 

estimation of sensitivity indices. The analysis was also 

complemented by the use of normalized values in the range 

[0,1], which express the relative influence of each variable 

within the response of the model. 

The first-order Sobol indices (S₁) were calculated to 

determine the effect of each input variable on the output, while 

the second-order indices (S₂) were computed to characterize 

interaction effects between pairs of input variables on the 

model’s response. The total-order indices (ST) were 

calculated, including interactions with other input variables, 

even those corresponding to first- and second-order effects. 

The results were complemented with 95% confidence 

intervals, allowing for a more rigorous interpretation of the 

influence each factor has on the variability of the obtained 

results. 

Table 5 presents the S₁, ST and half-width (HW) of the 95% 

confidence interval. MW emerges as the most relevant 

parameter in both scenarios, with S₁ values of 0.643 in dilution 

and 0.533 in overbreak. This suggests that adjusting the MW 

can significantly reduce mineral losses and unwanted 

excavations. On the other hand, both PF and EQ exert a 

notable influence, especially in overbreak situations, with S₁ 

values of 0.129 and 0.102, respectively. This highlights that an 

inadequate configuration of explosive energy significantly 

contributes to overbreak. Therefore, optimizing fragmentation 

through a proper selection of specific energy can positively 

impact stope stability. Regarding RMR, its impact is more 

significant in dilution (S₁=0.115) than in overbreak 

(S₁=0.057), reinforcing the idea that weaker rocks experience 

higher mineral losses. The discrepancy between S₁ and ST in 

variables such as PF, EQ, and AL suggests that their effect is 

not only direct but also depends on interactions with other 

factors. Hence, controlling these parameters must be 

approached holistically rather than in isolation. Finally, the 

minimal impact of CL and CF indicates that managing 

explosive charge design should prioritize the total amount of 

explosive and its distribution, rather than focusing solely on 

CL. 

The S₂ interaction analysis between key variables is 

presented in Table 6. The results indicate that RMR has a 

significant influence on the MW, as the coefficients remain 

stable at 0.054 for overbreak and 0.052 for dilution, suggesting 

that lower rock quality amplifies this effect. The powder factor 

(PF) also affects MW, with coefficients of 0.043 and 0.033, 

indicating that excessive explosive energy results in 

unnecessary fracturing, while an insufficient charge 

compromises rock fragmentation. The EQ must also be 

adjusted, as coefficients of 0.051 for overbreak and 0.055 for 

dilution indicate that an overload leads to excessive 

excavation, whereas an insufficient charge leaves unblasted 

rock. Finally, the EQ-RMR interaction confirms that rock 

mass strength determines the required explosive charge, as 

harder rocks demand more energy, whereas in weaker rock 

masses, excessive explosives increase dilution and overbreak. 

 

Table 5. S₁ and ST values 

 
Target Variable S₁ S₁-HW ST ST-HW 

Dilution 

MW 0.643 0.028 0.681 0.019 

RMR 0.115 0.014 0.152 0.006 

PF 0.049 0.012 0.092 0.004 

AL 0.045 0.011 0.078 0.004 

EQ 0.040 0.012 0.080 0.003 

RQD 0.033 0.011 0.069 0.003 

CF 0.026 0.010 0.065 0.003 

CL 0.008 0.009 0.050 0.002 

Overbreak 

MW 0.533 0.028 0.573 0.022 

PF 0.129 0.015 0.177 0.007 

EQ 0.102 0.013 0.147 0.007 

RMR 0.057 0.013 0.099 0.004 

AL 0.053 0.011 0.087 0.004 

CL 0.043 0.012 0.090 0.004 

RQD 0.039 0.010 0.077 0.003 

CF 0.010 0.008 0.052 0.003 

 

Table 6. S₂ values 

 
Variables S₂-Overbreak S₂-Dilution 

MW-RMR 0.054 0.052 

MW-PF 0.043 0.033 

MW-EQ 0.051 0.055 

EQ-RMR 0.042 0.057 

 

Therefore, to reduce dilution and overbreak, optimization 

should focus on ensuring that the MW is adjusted to optimal 

operational limits, guaranteeing both stability and safety. The 

controllability of explosive energy must also be considered, as 

adjusting the powder factor and the amount of explosive 

should help reduce unwanted excavation and operational risks. 
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Proper characterization of the rock mass before designing 

drilling and blasting is essential to prevent structural failures 

and improve efficiency. Finally, optimizing PF, EQ, and 

considering RMR will lead to a more precise, efficient, and 

safer excavation. 

 

 
 

Figure 9. Prediction of OD (%)-OB(m³) – TOC ($/ton) 

 

3.4 Application in an underground mine 

 

The KAN model was applied to an underground mine 

located in the province of Pataz, northern Peru. The mining 

operation shares similar characteristics with the variables used 

to train the model, ensuring its applicability. The dataset used 

for testing consisted of 246 records. 

Figure 9 indicates that the model demonstrates strong 

predictive potential for dilution, with a coefficient of 

determination of R²=0.99. Similarly, its prediction accuracy 

for overbreak is also high, with R²=0.97. Additionally, the 

model exhibits good predictive performance in estimating 

operational costs, reinforcing its effectiveness in optimizing 

the mining process. 

Once its validity was verified, its effectiveness was 

compared with traditional methods (TM) used in this mine to 

estimate dilution and overbreak. In this mine, the operational 

dilution estimation method considers the impact on the 

footwall and hanging wall due to overbreak caused by 

explosive detonation, taking into account the mining section, 

blast effects, geomechanically conditions, and the cleaning of 

extracted ore. This combination of factors determines the 

designed operational dilution percentage, which is calculated 

using the formulas established for this case by Pakalnis. To 

improve overbreak estimation, numerical models such as the 

Finite Element Method (FEM) are used. 

A total of 30 blasts were evaluated, comparing the 

performance of the KAN model against traditional methods. 

Figure 10 shows that KAN achieved a 97% accuracy in 

predicting dilution, significantly outperforming the traditional 

method, which obtained 77%. 

 

 
 

Figure 10. Comparison real vs. TM vs. KAN 
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Regarding overbreak, the KAN model reached an accuracy 

of 94%, whereas the FEM achieved 86%, demonstrating the 

superiority of KAN in estimating these key parameters for 

optimizing mine design. 

 

3.5 Parameter optimization with MOPSO 

 

MOPSO was used exclusively to determine the optimal 

controllable parameters, such as MW (m), CL (m), AL (m), 

and EQ (kg). This approach focuses on optimization on 

directly adjustable variables to minimize dilution, overbreak, 

and costs. 

Table 7 presents the optimal values identified by MOPSO. 

The MW shows a difference of 3.38%, which remains within 

an acceptable margin, ensuring consistency in mining 

practices. The CL deviates by 3.94%, indicating potential 

opportunities to optimize material loading precision. 

Similarly, the AL exhibits a variation of 2.76%, which, while 

within operational limits, could be further refined to enhance 

efficiency. Finally, the quantity of explosive used exceeds the 

optimal value by 5.07%. 

 

Table 7. Main optimized parameters 

 
Parameter Optimal Value Real Value Difference (%) 

MW (m) 2.30 2.38 3.38% 

CL (m) 1.27 1.32 3.94% 

AL (m) 1.45 1.49 2.76% 

EQ (kg) 14.60 15.34 5.07% 

 

 
 

Figure 11. OD (%) - OB(m³) before vs. after 

 

 
 

Figure 12. Operational costs before vs. after 

 

Although these variables allow for a high degree of control, 

their adjustment is constrained by technical limitations, 

operating costs, safety regulations, and local geomechanically 

conditions. In this case, the RMR averages 65 (IIB), 

classifying the rock as good quality. 

The optimal values recommended for use in drilling and 

blasting design were analyzed according to the 

geomechanically factors of the operation, achieving changes 

that improve rock mass stability by reducing overbreak and 

minimizing dilution. These adjustments can lead to increased 

operational efficiency, better material fragmentation, and 

optimized explosive consumption, thereby ensuring the safety 

and profitability of the mining process. 

Figure 11 presents a comparison between the average values 

from the database and the improvements achieved by the 

model after applying the new parameters in the simulation. 

The initial average dilution was 79.5%, whereas the model 

successfully reduced it to 68.2%, decreasing by 11.3%. This 

represents a significant improvement in the accuracy of 

dilution control. Similarly, for overbreak, which initially 

averaged 0.32 m³, the model optimized it to 0.24 m³, 

decreasing by 25%, indicating a notable reduction in unwanted 

material volumes. 

Figure 12 shows that for drilling and blasting, the cost 

decreased from 48.65 to 45.30 US$/Tn, representing a 6.89% 

reduction. In clean-up, the cost dropped from 22.35 to 19.82 

US$/Tn, equating to an 11.33% saving. Haulage costs declined 

from 15.85 US$/Tn to 14.62 US$/Tn, showing a 7.77% 

improvement, while loading costs decreased from 16.42 to 

15.34 US$/Tn, resulting in a 6.58% saving. Finally, the 

support cost was reduced from 5.60 to 5.52 US$/Tn, achieving 

a 1.43% reduction. 

Overall, the total operating cost decreased from 108.87 to 

100.60 US$/Tn, representing a global optimization of 7.60%. 

These improvements support the synergy between KAN and 

MOPSO, highlighting how their combination enhances 

modelling capabilities by providing more accurate and 

applicable solutions in the mining sector. This approach 

establishes itself as a solid and efficient framework for 

addressing optimization in complex underground mining 

scenarios.  

Chimunhu et al. [15] utilized geological, geotechnical, and 

design data accessible early in the mine planning phase to 

forecast dilution, attaining a remarkable accuracy of 93% with 

the PCA-CART hybrid model. Their investigation also 

observed a minor underestimation of dilution by 13% relative 

to the stopes in the initial design. In a similar vein, Jang et al. 

[17] applied a neuro-fuzzy system to predict unplanned 

dilution and ore loss, achieving an R-value of 0.72. Their 

model also offered practical recommendations to reduce 

dilution and ore loss, emphasizing the importance of factors 

like powder factor and ground support, highlights the critical 

role of selecting the right variables. 

This study included significant geometric aspects, such as 

MW, and geomechanically characteristics like RMR, in 

addition to drilling and blasting variables, to guarantee precise 

forecasts of dilution and overbreak. Hong et al. [22] 

determined that tunnel diameter was the predominant factor in 

calculating overbreak, accounting for 90.5%, with RMR 

contributing 1.80%. Their BO-XGBoost model attained a 

robust R² score of 0.94. Jang and Topal [18] utilized RMR and 

overbreak as input and output parameters, respectively, 

attaining a remarkable R² of 0.95 with an optimized ANN. 

Mottahedi et al. [24] conducted a sensitivity analysis utilizing 
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the cosine amplitude method (CAM) and found that the S/B 

and S/D parameters exerted the most significant influence on 

their model, whereas RMR demonstrated an effectiveness of 

0.79 in the ANFIS-PSO model, achieving an R² of 0.96. 

Similarly, this study showed that MW is the most influential 

variable responsible for overbreak and dilution. It contributes 

64.3% to dilution and 53.3% to overbreak, also highlighting 

the importance of RMR and RQD in the prediction of these 

targets, achieving an R² greater than 0.95. 

Guo et al. [27] integrated the MOPSO algorithm into their 

model, thereby identifying the optimal set of blasting 

parameters. In practical operational environments, these 

parameters demonstrated both efficacy and reliability, 

resulting in a 3% decrease in total costs across the mining 

process, encompassing drilling, blasting, loading, hauling, and 

crushing. This research demonstrated that MOPSO facilitated 

the KAN model in precisely determining the parameters to 

prioritize for minimizing dilution and overbreak, achieving a 

7.60% reduction in total operating expenses. 

 

 

4. CONCLUSIONS 

 

4.1 Key findings, importance, and relevance 

 

In this research, dilution, overbreak, and costs were 

successfully predicted using KAN networks in underground 

mining. 

The KAN model was implemented, and its effectiveness 

was assessed in comparison to the MLP, RF, and XGBoost 

models. The results demonstrated that KAN outperformed the 

other models in forecasting dilution, with metrics of 

MSE=0.001, RMSE=0.032, MAE=0.055, and R²=0.99, 

indicating an exceptional match. For overbreak, KAN 

achieved MSE=0.00, RMSE=0.00, MAE=0.008, and R²=0.99. 

For costs, KAN exhibited MSE=0.001, RMSE=0.032, 

MAE=0.027, and R²=0.99, signifying exceptional 

performance relative to other evaluated models. 

Sobol sensitivity analysis on KAN model showed that MW 

is the most influential variable responsible for overbreak and 

dilution. It contributes 64.3% to dilution and 53.3% to 

overbreak, thus confirming its predominant influence in these 

findings. Other moderate contributory factors of overbreak are 

EQ and PF, which are EQ and powder factor, respectively, 

contributing about 10.2% and 12.9%. 

The MOPSO algorithm was used to optimize the drilling 

and blasting parameters based on design specifications. The 

model indicated the optimal parameters: an MW of 2.30 m, an 

AL of 1.27 m, a CL of 1.45 m, and 14.60 kg of explosives. 

When analyzed and implemented, these parameters resulted in 

an 11.3% reduction in operational dilution, a 25% decrease in 

overbreak, and a 7.60% reduction in total operating costs. 

These findings represent a crucial advancement in 

predictive modeling for underground mining, providing 

practical solutions to genuinely enhance operational efficiency 

while ensuring operational safety and profitability in the 

mining process. 

 

4.2 Limitations of the study and recommendations for 

future work 

 

The KAN has proven to be highly robust in predicting 

dilution, overbreak, and operational costs. However, its 

effectiveness relies on the careful selection and use of spline 

functions, which are crucial for accurately modeling the 

nonlinear relationships between input and output variables. 

These findings strongly depend on the quality and 

representativeness of the dataset, which may limit their 

applicability to other mining contexts. This issue becomes 

particularly critical due to the various parameters that 

influence different mining environments. Therefore, there is a 

need to expand the analysis and modify the model to adapt to 

more varied and complex conditions. 

Future research should focus on automating and refining the 

selection and adaptation of basic functions through approaches 

such as evolutionary algorithms or Bayesian optimization. 

These enhancements would improve the KAN model’s ability 

to learn nonlinear patterns while mitigating overfitting. 

Additionally, conducting a comprehensive analysis of the 

variables and parameters included in the model is 

recommended. Ultimately, expanding the dataset and 

validating the model across various mining scenarios with 

diverse attributes would enhance its generalization and ensure 

broader applicability. 
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