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Airfoil shape optimization is crucial for improving aerodynamic efficiency across 
various engineering applications. This study employs reinforcement learning, 
specifically the trust region policy optimization algorithm, to optimize airfoil designs 
from the NACA 4-digit series. A custom RL environment was developed in MATLAB, 
where an agent modified airfoil geometry by adjusting the maximum camber (m), 
position of maximum camber (p), and maximum thickness (t). The optimized airfoils 
were then analyzed using Computational Fluid Dynamics (CFD) simulations in ANSYS 
Fluent with the SST k-omega turbulence model at a Reynolds number of 106. Results 
indicate that the TRPO-optimized airfoils demonstrated a significant improvement in 
aerodynamic performance. The optimized NACA 2412 airfoil exhibited a 17.8% 
increase in lift coefficient (CL) at an angle of attack of 10°, while the NACA 0012 and 
NACA 0015 airfoils saw CL improvements of 22.3% and 15.5%, respectively. Drag 
coefficient (Cd) reductions were also observed, particularly at higher AoAs, where the 
optimized NACA 0012 achieved a 12.4% reduction. The optimized airfoils maintained 
aerodynamic stability and exhibited delayed stall characteristics compared to their 
original counterparts. These findings highlight the efficacy of RL-based optimization, 
demonstrating its potential to enhance airfoil performance across different aerodynamic 
applications. 
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1. INTRODUCTION

Optimizing airfoil geometries plays a pivotal role in
enhancing efficiency and performance across multiple 
industries, particularly in aerospace and energy sectors. By 
refining airfoil shapes, engineers can achieve superior 
aerodynamic characteristics, including an improved lift-to-
drag ratio, reduced drag forces, and enhanced energy 
conversion efficiency. These advancements contribute to fuel 
savings, enhanced flight stability, better maneuverability, and 
lower noise emissions. As Skinner and Zare-Behtash [1] have 
emphasized, airfoil optimization extends beyond aviation and 
is equally crucial in industrial applications such as fans, 
pumps, conveyor systems, and wind turbines, where improved 
aerodynamic performance significantly enhances energy 
capture efficiency. Nevertheless, achieving an optimal airfoil 
design requires balancing multiple factors, including 
aerodynamic efficiency, structural robustness, and 
manufacturability. 

Several methodologies have been proposed for 

aerodynamic shape optimization, each offering a trade-off 
between computational efficiency and optimization 
effectiveness [1]. Common shape parameterization techniques 
include cubic spline interpolation, the parametric airfoil 
representation with spline-based excessive control (PARSEC), 
and the class-shape transformation (CST), as demonstrated by 
Anitha et al. [2]. Gradient-based optimization techniques 
leverage derivative information to identify local optima, 
making them particularly effective for fine-tuning well-
defined initial designs. However, these approaches are often 
computationally demanding and may struggle with complex, 
non-linear design spaces. In contrast, gradient-free methods, 
such as genetic algorithms (GA), particle swarm optimization 
(PSO), and simulated annealing (SA), explore broader design 
spaces without requiring gradient calculations, thereby 
offering greater flexibility in handling highly non-linear 
aerodynamic challenges. Hybrid approaches that integrate 
both techniques often yield superior optimization outcomes. 

Mukesh et al. [3] developed an optimization framework 
integrating PARSEC parameterization, the Panel method, and 
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GA. This method effectively balances shape controllability 
and optimization efficiency, though it may restrict the 
diversity of possible airfoil geometries. GA has proven to be 
highly effective in optimizing airfoil designs under low-speed, 
incompressible flow conditions, with validation studies 
confirming its efficacy through wind tunnel experiments. 
However, to accurately capture real-world aerodynamic 
phenomena, high-fidelity models are essential. 

To address the limitations of traditional parameterization-
based optimization, Sheikh et al. [4] proposed the design-by-
morphing (DbM) methodology, which allows for greater 
design flexibility while reducing the number of shape 
parameters. This technique avoids over-constraining airfoil 
geometries, thereby enabling a broader exploration of design 
space. However, challenges such as the generation of non-
physical airfoil shapes and the necessity of carefully selecting 
baseline geometries can constrain its practical applicability. 

High-fidelity optimization methods, as investigated by 
Poole et al. [5], employ orthogonal modal design variables and 
global optimization strategies to achieve highly efficient and 
accurate aerodynamic designs. Through Proper Orthogonal 
Decomposition (POD), they successfully generated shock-free 
airfoil designs while maintaining minimal design parameters. 
However, the effectiveness of these approaches is contingent 
upon well-structured training libraries and may introduce 
unwanted pressure fluctuations. 

Reduced-order models (ROMs) have emerged as an 
effective solution for airfoil optimization due to their ability to 
significantly reduce computational costs. Li et al. [6] 
demonstrated that Long Short-Term Memory (LSTM) 
networks can effectively model unsteady aerodynamic 
behaviors in ROM frameworks. While ROMs substantially 
accelerate optimization processes, their accuracy is highly 
dependent on the availability of extensive training data and can 
be limited when extrapolating beyond the trained design space. 

Morphing airfoil concepts, as explored by Nemati and 
Jahangirian [7], present exciting opportunities for dynamic 
aerodynamic adaptation, particularly in high-lift mission 
scenarios. By optimizing leading and trailing edge 
displacements, significant improvements in lift coefficient can 
be achieved. However, implementing morphing airfoils 
requires considerable resources and involves complex 
mechanical actuation mechanisms. To enhance aerodynamic 
performance, advanced optimization techniques such as the 
improved fruit fly optimization algorithm (IFOA) have been 
investigated. Tian and Li [8] integrated CFD simulations with 
IFOA, achieving notable drag reductions in transonic flow 
conditions. Despite these improvements, the high 
computational costs associated with such methodologies 
remain a challenge. 

Recent advancements in machine learning (ML) have 
revolutionized airfoil shape optimization (ASO), enabling 
rapid and data-driven aerodynamic design improvements. Li 
et al. [9] emphasized that ML models can significantly 
accelerate ASO processes by approximating aerodynamic 
behavior without directly solving complex equations. 
However, ML-based approaches are often constrained by the 
computational costs of training large-scale models and the 
need for diverse and representative datasets [10]. 

Supervised learning, as described by Daussage et al. [11], is 
inherently limited by the quality of available datasets, often 
restricting design innovation due to human biases. 
Unsupervised learning, while capable of uncovering hidden 
patterns in aerodynamic data, struggles to directly optimize 

performance metrics. In contrast, deep reinforcement learning 
(DRL) provides a promising alternative by autonomously 
exploring optimal airfoil geometries through continuous 
interaction with the environment [12]. Unlike traditional ML 
techniques, DRL circumvents the need for pre-existing labeled 
datasets, making it highly adaptable for complex, high-
dimensional optimization problems. 

Viquerat et al. [13] demonstrated the feasibility of applying 
DRL to direct shape optimization, where an artificial neural 
network (ANN) was trained to generate optimal airfoil 
geometries without relying on prior data. Using proximal 
policy optimization (PPO) in conjunction with CFD 
simulations, they successfully maximized lift-to-drag ratios. 
While this methodology has shown significant promise for 
aerodynamic optimization, it also holds potential for broader 
applications in computational mechanics. 

Selecting an appropriate reinforcement learning (RL) agent 
is crucial for ASO, as different agents exhibit varying 
strengths and limitations. Mnih et al. [14] highlighted the 
effectiveness of the deep Q-network (DQN) algorithm in 
handling high-dimensional problems, though its applicability 
to continuous action spaces remains limited. PPO introduced 
by Schulman et al. [15] offers a more stable and reliable 
learning framework for continuous control applications, 
making it particularly suitable for airfoil shape optimization, 
where small design adjustments can have significant 
aerodynamic effects. 

Our study addresses the gap in ASO by focusing on the trust 
region policy optimization (TRPO) algorithm. TRPO is 
particularly well-suited for ASO as it enforces stability during 
policy updates, ensuring reliable convergence even in complex 
aerodynamic design spaces. Unlike traditional gradient-free 
methods such as GA and PSO, TRPO offers more efficient 
exploration without the risk of premature convergence. By 
optimizing airfoil lift performance using TRPO, we 
demonstrate its ability to navigate high-dimensional, non-
linear design spaces while maintaining robustness against 
drastic design changes. This study provides critical insights 
into the advantages of TRPO over conventional optimization 
methodologies, offering a more stable and flexible approach 
for aerodynamic design improvement. 

2. METHOD

Reinforcement learning (RL) is a computational method
where an agent learns to complete tasks by interacting with an 
unknown dynamic environment. An RL agent comprises a 
policy and a learning algorithm.  

Figure 1. Working of RL 
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The policy, typically a function approximator like a neural 
network, maps observations from the environment to actions. 
Within this framework, the actor network decides which 
actions to take grounded in the present observations, while the 
critic network assesses these actions by assessing their rewards 
or penalties. The learning algorithm updates the policy using 
the feedback from the critic network to optimize cumulative 
rewards. This iterative process allows the agent to learn 
optimal behavior via experimentation and feedback, without 
human intervention. Figure 1 depicts the working of RL [16]. 

 
2.1 Reinforcement learning environment 

 
In this study, a custom RL environment was created to 

optimize the geometry of aircraft wing airfoils utilizing the 
NACA 4-digit airfoil series. Implemented in MATLAB, this 
environment was designed to train an agent to modify airfoil 
geometry by adjusting three critical control parameters: m, p, 
and t. The primary objective was to maximize the lift 
coefficient while ensuring the structural integrity of the airfoil. 

The RL environment encompasses several essential 
components to facilitate the optimization process. Variables 
representing the x- and y-coordinates of the airfoil shape at 
various stages were established, enabling precise definition 
and updates of the airfoil shape. The initial state of the airfoil 
profile, along with the computed lift coefficient, was stored in 
dedicated variables to evaluate aerodynamic performance 
characteristics. 

To compute lift coefficients efficiently, a simplified panel 
method [17] was employed. While the panel method is 
computationally efficient and suitable for this preliminary 
design phase, it does have limitations, such as its assumption 
of inviscid, incompressible flow, which may not fully capture 
real-world flow dynamics. These limitations were accepted 
given the trade-off between computational efficiency and 
accuracy for iterative optimization. 

Control action limits were specified to maintain 
modifications within reasonable bounds, ensuring realistic 
airfoil shapes. Additionally, a plotting function was included 
to provide visual feedback on the airfoil modifications, which 
is crucial for understanding the aerodynamic implications of 
adjustments. 

 
Environment setup: 
•Observation space: 
The observation space was defined by parameters that 

characterize the airfoil profile, including: 
m: A scalar value representing the maximum height of the 

camber line. 
p: A scalar value indicating the location along the chord 

where the maximum camber occurs, typically expressed as a 
fraction of the chord length. 

t: A scalar value defining the maximum thickness of the 
airfoil as a fraction of the chord length. 

Airfoil coordinates: Arrays of x- and y-coordinates 
representing the airfoil geometry at various points along the 
chord, allowing for detailed geometric representation. 

These observations provided the RL agent with the 
necessary context to understand the current shape and 
performance of the airfoil. 

•Action space 
The action space included control over the following 

parameters: 
Adjustment of maximum camber (Δm): The RL agent was 

allowed to increase or decrease the maximum camber within 
defined limits, facilitating exploration of different 
aerodynamic characteristics. 

Adjustment of camber position (Δp): The agent was 
permitted to modify the position of maximum camber along 
the chord, impacting lift and drag performance. 

Adjustment of thickness (Δt): The agent was enabled to 
change the thickness of the airfoil, influencing structural 
integrity and aerodynamic efficiency. 

Each action was constrained to prevent unrealistic 
modifications, ensuring that the airfoil remained within 
practical design specifications. 

During the environment's initialization, observation and 
action specifications were defined. Observations represented 
the airfoil profile, while actions corresponded to control 
adjustments. The initialization process included resetting the 
environment to its starting conditions, precomputing 
necessary values, and establishing the initial observation, 
ensuring that the RL agent began each training episode with a 
consistent and well-defined airfoil profile. 

The reset method played an integral role in reinitializing the 
environment, recalculating the airfoil profile, and configuring 
the initial observation by integrating the y-coordinates of the 
airfoil. This process maintained consistency across training 
episodes. A method was implemented to adjust the airfoil 
profile based on the RL agent's actions, enabling iterative 
improvements to the shape. 

To compute the lift coefficient, a dedicated method utilized 
the panel method, calculating the angle of attack and 
circulation around the airfoil panels. This approach provided a 
reliable measure of aerodynamic performance. The core 
method executed the agent’s action, updated the airfoil profile 
and lift coefficient, and delivered feedback, complemented by 
visual plotting of the airfoil shape. 

The reward mechanism was defined as the difference 
between the lift coefficient and the total of the absolute values 
of the actions. The explicit reward function is formulated as 
follows: 

 

action valuesLR C λ= − ∆∑
 

 
where, CL is the computed lift coefficient, and λ is a weighting 
factor balancing aerodynamic performance and the magnitude 
of changes. 

This structure incentivized the agent to achieve a high lift 
coefficient while minimizing drastic changes to the airfoil 
shape, promoting efficient and effective optimization. An 
episode termination condition was established to ensure that 
the airfoil's thickness did not fall below a specified threshold 
(0.7 times the original thickness), thereby preventing the 
generation of unrealistic or structurally compromised designs. 

Moreover, method functions were included to delineate the 
observation and action spaces, explicitly defining the limits 
and structure of inputs and outputs for the RL agent. A 
function for computing the y-coordinates based on the NACA 
code was also incorporated, considering camber and thickness 
distributions to define the airfoil shape accurately. This 
comprehensive simulation environment enabled effective 
training of RL agents for airfoil shape optimization, balancing 
aerodynamic performance and structural constraints. The 
iterative training process allowed the agent to explore and 
exploit the control actions, facilitating the discovery of optimal 
airfoil configurations. 
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2.2 Agent 

In this study, the TRPO agent was trained using a custom 
reinforcement learning environment specifically designed for 
the optimization of airfoil shapes. The study focused on three 
distinct airfoil profiles: NACA 2412, NACA 0012, and NACA 
0015. The selection of these airfoils was based on their varying 
aerodynamic characteristics, making them suitable for 
evaluating the effectiveness of reinforcement learning in 
airfoil shape optimization. NACA 2412, a cambered airfoil, is 
commonly used in general aviation and provides insights into 
optimizing lift generation. NACA 0012, a symmetric airfoil, 
serves as a baseline for evaluating performance improvements 
in both symmetric and asymmetric airfoils. NACA 0015, with 
a thicker profile, is relevant for applications requiring 
increased structural strength and stall resistance. These airfoils 
represent a diverse set of aerodynamic properties, allowing for 
a comprehensive assessment of the optimization process. 

For this study, the TRPO agent was implemented using the 
RL Designer app within MATLAB. TRPO was selected due 
to its robust approach to policy optimization, enforcing 
constraints on policy updates to ensure stable learning, which 
is particularly advantageous in complex, non-linear 
optimization problems like airfoil shape optimization. 

TRPO is an RL algorithm that focuses on improving 
policies in a stable and reliable manner. It achieves this by 
ensuring that each update to the policy is small enough to 
prevent instability. This is done through the concept of a "trust 
region," which keeps policy updates within a safe boundary to 
avoid drastic changes that could destabilize learning. TRPO 
uses mathematical constraints to guarantee that the new policy 
stays near the old one, thereby maintaining stability while still 
allowing for incremental improvements. This method is 
particularly useful for environments where stable learning and 
reliable policy updates are crucial [18]. 

By leveraging these properties, TRPO ensures that the 
optimization process remains steady and efficient, making it 
well-suited for airfoil shape optimization, where minor 
modifications in geometry can have significant aerodynamic 
effects. 

Hyperparameters for TRPO agent: 
To ensure effective training, the following key 

hyperparameters were employed: 
Learning rate: 0.001 
Discount factor (γ): 0.99 
Exploration-exploitation balance: Adaptive exploration 

through a stochastic policy, allowing for a dynamic balance 
between exploration and exploitation based on the agent's 
performance. 

The selection of these hyperparameters was driven by 
empirical studies and best practices in reinforcement learning. 
The learning rate of 0.001 was chosen as a widely 
recommended value that balances convergence speed and 
stability, preventing oscillations during training. This choice 
was validated through a grid search method, where multiple 
learning rates were tested, and the one yielding the most stable 
and efficient convergence was selected. 

The discount factor (γ=0.99) ensures that the agent 
effectively values long-term rewards, which is crucial in airfoil 
optimization, as future aerodynamic states significantly 
influence overall performance. The adaptive exploration 
mechanism was implemented to dynamically adjust the 
agent’s exploration behavior, ensuring sufficient exploration 

of the action space while maintaining the ability to converge 
on optimal policies. 

By carefully tuning these hyperparameters, the TRPO agent 
demonstrated stable and efficient learning, contributing to 
enhanced optimization of airfoil shapes across the selected 
NACA profiles. 

2.3 Simulation and testing using ANSYS fluent 

The aerodynamic performance of the airfoils was analyzed 
using ANSYS Fluent with the SST k-omega model, suitable 
for high Reynolds number flow conditions, with a Reynolds 
number set to 106. This setup is representative of practical 
aerodynamic applications [19]. The angles of attack (AoAs) 
tested in the analysis ranged from -8° to 20°, ensuring a 
comprehensive evaluation of aerodynamic performance across 
both negative and positive lift conditions. This broad range 
allowed for an in-depth comparison between the conventional 
and TRPO-optimized NACA 2412 airfoils, capturing key 
aerodynamic trends such as lift generation, drag behavior, and 
stall characteristics. 

The process commenced with the optimization of airfoil 
geometries using RL agents. These optimized geometries were 
then imported into ANSYS Fluent for detailed simulations. A 
baseline NACA 2412 airfoil was used for comparison against 
the aerodynamic performance of the optimized airfoils, 
allowing for an assessment of each RL agent's effectiveness in 
enhancing airfoil performance. 

The airfoil geometries, including both the baseline NACA 
2412 and the optimized versions, were prepared in ANSYS 
SpaceClaim to ensure accurate representation for simulation. 
An unstructured triangular mesh was generated using ANSYS 
Meshing, with a focus on developing a high-quality grid that 
aligns with the airfoil geometries. Mesh refinement was 
strategically applied in the boundary layer regions to capture 
significant flow gradients, ensuring that the boundary layer 
effects were adequately resolved. The first cell height was set 
to achieve a non-dimensional wall distance of less than 1, 
accurately representing the flow near the wall, while a coarser 
mesh was implemented further away from the airfoils to 
balance accuracy and computational efficiency [20]. 

Boundary conditions were defined to replicate the physical 
scenario accurately: 

Velocity inlet: This condition specified the incoming flow 
velocity corresponding to the target Reynolds number (Re = 
106), with turbulence intensity defined to realistically 
represent the incoming turbulent flow.  

Pressure outlet: Set to ambient pressure, this boundary 
allowed flow to exit the computational domain without 
introducing artificial constraints. 

No-slip wall condition: Applied to the surfaces of the 
airfoils, this condition assumes zero fluid velocity at the wall, 
simulating viscous effects in the boundary layer. 

These boundary conditions facilitated a realistic flow 
environment for the aerodynamic analysis of the airfoils. The 
simulations utilized second-order upwind schemes for spatial 
discretization to enhance accuracy, with the SIMPLE 
algorithm employed for pressure-velocity coupling. Initial 
conditions were established using hybrid initialization, 
ensuring a stable start for the iterative process. Convergence 
was monitored through residuals, as well as lift and drag 
coefficients, to maintain stability and accuracy of the result. 

Finally, the results were analyzed to evaluate aerodynamic 
performance. Lift and drag coefficients for various AoAs were 
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calculated and compared against the original NACA airfoils, 
providing insights into the performance improvements 
achieved by the RL-optimized airfoils.  

3. RESULTS AND DISCUSSIONS

3.1 NACA 2412 

Figure 2 illustrates a comparison between the original and 
optimized airfoil profiles. It is evident that the TRPO agent has 
modified the airfoil by increasing both the camber and 
thickness. These changes suggest an adaptive response aimed 
at enhancing aerodynamic performance, likely optimizing lift 
characteristics while maintaining structural integrity. 

(a) 

(b) 

Figure 2. Comparison between the original and optimized 
NACA 2412 airfoil 

Figure 3 illustrate a comparative analysis between the 
aerodynamic characteristics of the NACA 2412 airfoil and a 
TRPO-optimized airfoil over a range of AoAs. The upper 
graph represents the variation of CL with AoA, while the lower 
graph depicts the corresponding Cd trends. 

The TRPO-optimized airfoil exhibits a significantly higher 
lift coefficient across all AoAs compared to the NACA 2412 
airfoil. At negative AoAs, both airfoils exhibit negative lift, 
though the TRPO-optimized airfoil transitions to positive lift 
more rapidly. As the AoA increases, CL of the TRPO-

optimized airfoil grows at a steeper rate, reaching values well 
beyond those of the NACA 2412. The NACA 2412 airfoil, in 
contrast, follows a more moderate upward trend, with a 
noticeable plateau around an AoA of 8–12 degrees. This 
suggests that the optimized airfoil maintains superior lift 
performance and improve aerodynamic efficiency. 

The lower graph indicates that Cd behaves quite differently 
for the two airfoils. The NACA 2412 airfoil maintains a 
relatively stable and slightly increasing Cd up to an AoA of 
approximately 8 degrees, beyond which it fluctuates slightly 
but remains near zero. The TRPO-optimized airfoil, on the 
other hand, exhibits a higher Cd value at lower AoAs, peaking 
between -2 and 0 degrees. However, beyond 6 degrees AoA, 
Cd begins a sharp decline, reaching significantly negative 
values at higher AoAs. This could suggest a unique 
aerodynamic characteristic of the optimized airfoil, possibly 
indicative of a design that leverages favorable pressure 
distributions to reduce drag at high angles of attack. 

The TRPO-optimized airfoil outperforms the NACA 2412 
airfoil in terms of lift generation across all tested AoAs. While 
it experiences slightly higher drag at low AoA, its significant 
reduction in drag at higher AoA may contribute to improved 
aerodynamic efficiency, particularly in high-lift scenarios. The 
NACA 2412 airfoil, in contrast, maintains a more predictable 
and stable drag profile but does not achieve the same lift 
augmentation as the optimized airfoil. This suggests that the 
TRPO-optimized design may be better suited for applications 
requiring high-lift performance, such as high-angle-of-attack 
flight regimes, where maintaining lift while minimizing drag 
is crucial.  

(a) 

(b) 

Figure 3. (a) CL vs. AoA and (b) Cd vs. AoA for NACA 
2412 and optimized airfoil 
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3.2 NACA 0012 
 
Figure 4 presents the original and optimized airfoil profiles, 

highlighting the modifications introduced by the TRPO agent. 
A noticeable increase in camber is observed, indicating an 
adjustment to improve lift generation. This modification is 
particularly significant for symmetrical airfoils, as it 
transforms their aerodynamic behavior, potentially improving 
efficiency at various angles of attack. 
 

 
(a) 

 
(b) 

 
Figure 4. Comparison between the original and optimized 

NACA 0012 airfoil 
 
Figure 5(a) and Figure 5(b) depict a comparative analysis of 

the aerodynamic performance of the NACA 0012 airfoil and a 
TRPO-optimized airfoil across a range of AoAs. The upper 
graph represents the variation of CL with AoA, while the lower 
graph depicts the corresponding Cd trends. A detailed 
examination of these graphs reveals significant differences in 
the aerodynamic behavior of the two airfoils. 

The TRPO-optimized airfoil consistently exhibits superior 
lift generation across the entire range of AoAs in comparison 
to the NACA 0012 airfoil. At negative AoA, both airfoils 
display negative lift, with the optimized airfoil achieving a 
more rapid transition to positive values. As AoA increases, the 
lift coefficient of the TRPO-optimized airfoil rises steeply, 
reaching a peak at approximately 10 degrees before 
experiencing a slight decline. In contrast, the NACA 0012 
airfoil demonstrates a more gradual increase in lift, with 

noticeably lower CL values across all AoA. The relatively early 
saturation in CL for the optimized airfoil suggests that it 
benefits from an advanced aerodynamic design, likely 
mitigating flow separation and improving high-lift 
performance. 

The lower graph reveals a stark contrast in the drag 
characteristics of the two airfoils. The NACA 0012 airfoil 
maintains a relatively stable Cd, with minor fluctuations and a 
slight increase at lower AoAs. Beyond an AoA of 
approximately 6 degrees, Cd remains nearly constant, 
indicating that the airfoil maintains a steady aerodynamic 
resistance. The TRPO-optimized airfoil, on the other hand, 
exhibits markedly different behavior. While its drag 
coefficient is initially higher at low AoA, it undergoes a sharp 
decline beyond 4 degrees, reaching significantly negative 
values at higher AoA. This unusual trend suggests that the 
optimized airfoil benefits from an advanced pressure 
distribution that reduces overall drag, potentially employing 
lift-enhancing mechanisms that counteract aerodynamic 
resistance. 

The TRPO-optimized airfoil demonstrates superior 
aerodynamic efficiency, achieving substantially higher lift 
coefficients across all AoA while maintaining remarkably 
lower drag at elevated angles of attack. This suggests that the 
optimized design is better suited for applications requiring 
enhanced lift-to-drag performance, particularly in scenarios 
where high lift and minimized drag are crucial, such as in high-
angle-of-attack maneuvers or energy-efficient flight 
conditions. In contrast, the NACA 0012 airfoil exhibits a more 
conventional lift and drag profile, making it less 
aerodynamically efficient in direct comparison. The 
substantial improvement in both CL and Cd for the optimized 
airfoil underscores the effectiveness of the TRPO optimization 
approach in refining airfoil performance.  

 

 
(a) 

 
(b) 

 
Figure 5. (a) CL vs. AoA and (b) Cd vs. AoA for NACA 

0012 and optimized airfoil 
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3.3 NACA 0015  
 
Figure 6 displays the original and optimized airfoil profiles, 

revealing that the TRPO agent has introduced two key 
modifications: an increase in camber and a reduction in 
thickness. The increase in camber suggests an effort to 
enhance lift, while the reduction in thickness may be aimed at 
minimizing drag. This dual modification reflects an 
optimization strategy balancing aerodynamic efficiency with 
structural and performance considerations. 
 

 
(a) 

 
(b) 

 
Figure 6. Comparison between the original and optimized 

NACA 0015 airfoil 
 
Figure 7 provides a comparative evaluation of the 

aerodynamic performance of the NACA 0015 airfoil and a 
TRPO-optimized airfoil across a spectrum of AoAs. The upper 
graph shows the variation of CL with AoA, while the lower 
graph depicts the corresponding Cd trends. The observed 
aerodynamic characteristics highlight the advantages 
conferred by the TRPO optimization. 

The TRPO-optimized airfoil consistently outperforms the 
NACA 0015 airfoil in lift generation across all AoA. At 
negative angles of attack, both airfoils exhibit negative lift; 
however, the TRPO-optimized airfoil transitions to positive 
lift more rapidly. As AoA increases, the TRPO-optimized 
airfoil displays a significantly higher CL, peaking at around 8 
degrees before experiencing a slight decline. In contrast, the 
NACA 0015 airfoil demonstrates a steady but less pronounced 

increase in lift, maintaining substantially lower CL values 
throughout the AoA range. The early saturation in lift for the 
optimized airfoil suggests a superior aerodynamic design, 
potentially enhancing flow attachment and postponing stall. 

A striking difference in drag characteristics is observed 
between the two airfoils. The NACA 0015 airfoil maintains a 
relatively stable Cd profile, exhibiting a gradual increase at low 
AoA, followed by slight fluctuations at higher AoA. 
Conversely, the TRPO-optimized airfoil initially exhibits 
higher drag at low AoA but experiences a pronounced 
decrease beyond approximately 4 degrees. Notably, the 
optimized airfoil achieves negative drag coefficients at 
moderate to high AoA, which may be indicative of favorable 
aerodynamic forces, potentially due to pressure distribution 
effects or lift-induced drag mitigation mechanisms. However, 
at very high AoA, the TRPO-optimized airfoil experiences an 
increase in drag, suggesting a possible trade-off between 
enhanced lift and aerodynamic resistance. 

The TRPO-optimized airfoil exhibits superior aerodynamic 
efficiency, achieving significantly higher lift coefficients 
while demonstrating a remarkable reduction in drag, 
particularly at higher AoA. These characteristics suggest that 
the optimized airfoil is well-suited for applications where 
maximizing lift and minimizing drag are paramount, such as 
high-performance aerodynamic systems or energy-efficient 
flight regimes. In contrast, the NACA 0015 airfoil follows a 
more conventional aerodynamic trend, with moderate lift 
increments and relatively stable drag characteristics, making it 
a more predictable but less efficient choice in direct 
comparison. The substantial performance gains in both CL and 
Cd underscore the effectiveness of the TRPO optimization 
process in enhancing airfoil aerodynamic performance. 

 

 
(a) 

 
(b) 

 
Figure 7. (a) CL vs. AoA and (b) Cd vs. AoA for NACA 

0015 and optimized airfoil 
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4. CONCLUSION 
 
This study demonstrated the effectiveness of RL, 

specifically the TRPO agent, in optimizing airfoil geometries 
to improve aerodynamic performance. By adjusting critical 
shape parameters such as maximum camber (m), camber 
position (p), and maximum thickness (t), the RL-based 
optimization approach achieved significant improvements in 
lift-to-drag ratio across different airfoil profiles. The 
optimized NACA 2412 airfoil exhibited a 17.8% increase in 
CL at an AoA of 10°, while the optimized NACA 0012 and 
NACA 0015 airfoils saw improvements of 22.3% and 15.5%, 
respectively. Additionally, the optimized airfoils 
demonstrated a stall delay of approximately 2°-3° AoA, 
enabling sustained lift generation at higher angles. These 
results validate the potential of RL-based aerodynamic shape 
optimization as a viable alternative to traditional gradient-free 
optimization methods. 

The broader significance of this study lies in its potential 
applications in aerospace and related industries. The optimized 
airfoils designed through RL can lead to more fuel-efficient 
and performance-optimized aircraft, ultimately reducing 
operational costs and environmental impact. Lower drag and 
improved aerodynamic efficiency translate to reduced fuel 
consumption, which is a critical factor in commercial aviation, 
defense, and unmanned aerial vehicles (UAVs) applications. 
Furthermore, the methodologies employed in this study can be 
extended to other domains, such as wind turbine blade design, 
where maximizing lift and minimizing drag directly impact 
energy generation efficiency. Similarly, RL-based 
aerodynamic optimization can enhance UAVs, where 
achieving optimal lift-to-drag characteristics is essential for 
endurance and maneuverability. 

Despite the promising results, certain limitations exist in the 
present study. The findings are based on computational 
simulations, and experimental validation through wind tunnel 
testing is necessary to confirm the real-world applicability of 
the optimized airfoils. Physical testing would help account for 
factors such as turbulence, surface roughness, and structural 
deformations, which are difficult to model accurately in 
simulations. Future research should include wind tunnel 
experiments to compare the optimized airfoils' performance 
against baseline designs and validate the computational 
results. Additionally, structural integrity constraints were not 
explicitly considered in the optimization process. Future work 
should integrate aeroelastic constraints to ensure that 
optimized airfoils are not only aerodynamically efficient but 
also structurally feasible for manufacturing and real-world 
deployment.  

In conclusion, this study highlights the potential of RL-
based optimization for aerodynamic design and provides a 
foundation for future research in AI-driven engineering 
applications. Expanding the RL framework to incorporate 
multi-objective optimization, including noise reduction and 
material constraints, can further enhance its applicability. With 
continued advancements in reinforcement learning algorithms 
and computational power, AI-driven aerodynamic design 
could play a transformative role in next-generation aircraft, 
renewable energy systems, and autonomous aerial vehicles.  
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NOMENCLATURE 

m maximum camber 

p position of maximum camber 
t maximum thickness 
CL coefficient of lift 
Cd coefficient of drag 

Subscripts 

L lift 
d drag 

Abbreviations 

RL Reinforcement Learning 
TRPO Trust Region Policy Optimization 
NACA National Advisory Committee for Aeronautics 
ASO Aerodynamic Shape Optimization 
GA Genetic Algorithm 
PSO Particle Swarm Optimization 
ANN Artificial Neural Network 
SA Simulated Annealing 
CST Class Shape Transformation 
DbM Design-by-Morphing 
POD Proper Orthogonal Decomposition 
ROM Reduced-Order Model 
LSTM Long Short-Term Memory 
IFOA Improved Fruit Fly Optimization Algorithm 
CFD Computational Fluid Dynamics 
DRL Deep Reinforcement Learning 
ML Machine Learning 
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