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 The aim of this study is to improve the performance of the sliding mode controller 

(SMC) for controlling and stabilizing a steel ball of the Magnetic Levitation (Maglev) 

system at a desired position with the existence of disturbance, noise and parameters 

uncertainty in the system model. This enhancement is achieved by replacing the 

equivalent control law of the SMC with the backstepping control law to construct a 

controller from the backstepping controller (BSC) and the SMC to have a new controller 

called the backstepping sliding mode controller (BSSMC). Due to the nonlinearity of 

the system model, nonlinear and robust controllers such as BSSMC have been designed. 

The suggested controller can successfully reduce the settling time, which is regarded as 

an essential property in control system engineering. The simulation results obtained 

using the MATLAB program demonstrated the proposed controller ’s effectiveness. The 

comparison of results between the BSSMC and other controllers indicated a smaller 

settling time in BSSMC. The Lyapunov theory has been adopted to check the system’s 
stability when applying the BSSMC controller. 
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1. INTRODUCTION 

 

The Maglev system has many applications because it 

eliminates energy losses caused by surface friction. The 

Maglev system is a technique that allows an object (the ball) 

to float in the air without support. Therefore, it must generate 

a flux by controlling the amount of a coil current. The 

generated magnetic flux will be utilized to make the body 

levitate in the air at a predetermined distance from the coil 

position so that the body movement within that generated 

magnetic flux can be negligible [1]. The magnetic field’s 

power is in the opposite direction to the gravity attraction of 

the ball, so the body will be lifted toward the coil. Using 

vibration isolation, this system is capable of solving the 

friction problem. Consequently, friction loss can be negligible 

in this system, which undoubtedly impacts both the desired 

response and the performance of the system [2]. 

The non-contact property with zero friction of the Maglev 

system makes it very popular, and it is considered as the future 

technology. The Maglev system has many applications, such 

as high-speed transportation systems, launching rockets, as 

well as other applications, etc. [3, 4]. Many controllers have 

been proposed to control the Maglev model, as discussed 

below. 

Jose and Mija [5] proposed a fractional order sliding mode 

controller (FOSMC) for controlling the position of the Maglev 

system. The Particle Swarm Optimization (PSO) algorithm is 

employed to determine the fractional order switching surface 

and the order of the fractional derivative. Adil et al. [6] used 

supertwisting SMC and integral backstepping SMC for 

controlling the position of the Maglev model. The 

supertwisting SMC provides a superior dynamic response with 

negligible chattering and is robust against external 

disturbances in controlling the Maglev model compared to the 

integral backstepping SMC and other nonlinear controllers. 

Burakov [7] utilized a fuzzy PID controller for the Maglev 

system control system. The controller is structured with three 

channels, each with its own control function that characterizes 

the variation in the gain factor based on the input variable's 

value. The process of setting the controller entails performing 

genetic optimization algorithm in off-line mode. Wei et al. [8] 

used a deep neural network feedforward compensation 

controller based on an enhanced Adagrad optimization 

algorithm for the position control of the Maglev system. The 

control structure of the controller comprises a deep neural 

network identifier, a deep neural network feedforward 

compensator, and a PID controller. The performance proposed 

controller demonstrates good dynamic and static performance 

as well as some robustness. Humaidi et al. [9] proposed the 

design and analysis of the Active Disturbance Rejection 

Control (ADRC) approach for the control and disturbance 

rejection of the Maglev system. Two controllers are 

considered using the ADRC structure. These controllers are 

known as the Linear ADRC (LADRC) and Nonlinear ADRC 

(NADRC). A comparison of the robustness against parameter 

variation and the capability to reject applied disturbance of 

LADRC and NADRC has been conducted. The MATLAB 

simulation results showed that LADRC exhibits better 

robustness characteristics compared to NADRC. Moreover, 

when a specific disturbing force is applied to the ball mass, the 
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LADRC shows superior disturbance rejection capabilities 

compared to the NADRC. 

MohammadRidha and Kadhim [10] used an Adaptive 

Variable Structure Controller based on barrier function 

(AVSCbf) for position control of the Maglev system. The 

performance of the AVSCbf has been compared with that of 

the Adaptive Variable Structure Controller without the barrier 

(AVSC) and the classical Variable Structure Controller 

(VSC). The simulation results show that the AVSCbf 

outperforms the AVSC and VSC in reducing steady-state error 

and improving disturbance rejection. Yadav et al. [11] utilized 

an optimized proportional-integral-derivative (PID) controller 

for position control of the Maglev system. The variables of the 

PID controller are optimized using Grey Wolf Optimizer 

(GWO). The proposed controller's effectiveness has been 

validated through comparison with a classical PID controller 

tuned using Ziegler-Nichols tuning criteria. 

The following points summarize the contributions of this 

study: 

• To enhance and develop the performance of the SMC for 

controlling the position of the steel ball of the Maglev model 

by replacing the equivalent control law of the SMC with the 

backstepping control law. 

• To employ a BSSMC in order to better cope with the effect 

of the external disturbances that affect the position control of 

the Maglev system. 

• To perform a comparative study of the controlled system 

performance utilizing a BSSMC and other controllers. The 

assessment of each controller used to control the position of 

the ball of the Maglev system is conducted based on 

minimizing the settling time and the external disturbance 

effect. 

This work is addressed as follows: the mathematical model 

for the Maglev system is presented in section two. The 

controllers design for the SMC and BSSMC are explained in 

section three. In section four, the computer simulation results 

are discussed to verify the proposed controller’s effectiveness. 

Finally, the conclusion is addressed in section five. 

 

 

2. DESCRIPTION OF THE MATHEMATICAL MODEL  
 

The position of the ball of the Maglev model is controlled 

by adjusting the coil current and, consequently, controlling the 

magnetic field produced by the coil, as shown in Figure 1. The 

applied voltage 𝑢(𝑡)  can be described using Kirchhoff’s 

voltage law, as follows [12, 13]: 

 

𝑢(𝑡) = 𝑅 𝑖(𝑡) + 𝐿
𝑑𝑖

𝑑𝑡
  (1) 

 

where, 𝑅  represents the coil resistor, 𝐿  represents the coil 

inductance, and 𝑖(𝑡) represents the current flowing in the coil. 

For 𝑅 >> 𝐿, the Eq. (1) can be written as follows: 

 

𝑖(𝑡) = 𝑘1𝑢(𝑡) (2) 

 

where, 𝑘1 is the control voltage to coil current gain. 

The equation for the motion of the steel ball influenced by 

gravity can be derived using Newton’s principle of motion [13, 

14]: 

 

𝑚�̈�(𝑡) = 𝑚𝑔 − 𝑓(𝑥, 𝑖) + 𝑑(𝑡) (3) 

 

where, 𝑚  represents the mass of the ball, 𝑥  represents the 

position of the ball, 𝑔  represents the acceleration due to 

gravity, 𝑓(𝑥, 𝑖)  represents the magnetic force, and 

𝑑 represents the disturbance. 

A force that is generated as a result of the magnetic effect 

can be expressed as: 

 

𝑓(𝑥, 𝑖) =
𝑖2(𝑡)

2
𝐿𝑜𝑥𝑜

1

𝑥2(𝑡)
  (4) 

 

where, 𝑖(𝑡)  represents the current flowing through the coil, 𝐿𝑜 

represents the increment in inductance due to the ball, 𝑥𝑜 

represents the equilibrium position of the levitating ball, and x 

represents the actual position of the levitating ball. 

The equation of motion can be expressed as follows: 

 

𝑚�̈�(𝑡) = 𝑚𝑔 − 𝑘𝑜
𝑖2(𝑡)

𝑥2(𝑡)
+ 𝑑(𝑡)  (5) 

 

𝑘𝑜 =
𝐿𝑜𝑥𝑜

2
  (6) 

 

Finally, the equation of motion of the Maglev system can be 

expressed using Eqs. (2), (5), and (6) in the state space 

representation form as follows: 

 

�̇�1(𝑡) = 𝑥2(𝑡) (7) 

 

�̇�2(𝑡) = 𝑔 −
𝑘𝑜𝑘1

2

𝑚

𝑢2(𝑡)

𝑥1
2(𝑡)

+ 𝑑(𝑡)  (8) 

 

where, 𝑢(𝑡) represents the voltage control input to the Maglev 

system, 𝑥1(𝑡)  represents the steel ball position, and 𝑥2(𝑡) 

represents the steel ball velocity. 

The nominal parameters of the Maglev model are as 

presented in Table 1 [13, 14]. 

 

 
 

Figure 1. The schematic representation of Maglev model 

 

Table 1. The physical parameters of the Maglev model [13, 

14] 

 

Parameters Value Unit 

Mass of the ball (m) 0.02 kg 

Acceleration due to gravity (g) 9.81 m/s2 

Control input voltage level (u) ±5 V 

Equilibrium value of position (xo) 0.009 m 

Equilibrium value of current (io) 0.8 A 

The increment in inductance due to ball 

(Lo) 
5.518125×10-3 H 

Control voltage to coil current gain (k1) 1.05 A/V 
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3. THE CONTROLLER DESIGN 
 

The first design step involves defining the error 𝑧1(𝑡) 

between the actual position of the ball 𝑥1(𝑡) and the desired 

position 𝑥𝑑(𝑡) as follows [15-18]: 

 

𝑧1(𝑡) = 𝑥1(𝑡) − 𝑥𝑑(𝑡)   (9) 

 

The first- and second-time derivative of Eq. (9) can be 

obtained as follows: 

 

�̇�1(𝑡) = �̇�1(𝑡) − �̇�𝑑(𝑡)  (10) 

 

�̇�1(𝑡) = 𝑥2(𝑡) − �̇�𝑑(𝑡)  (11) 

 

�̈�1(𝑡) = �̇�2(𝑡) − �̈�𝑑(𝑡) (12) 

 

where, 𝑥1(𝑡)  is the actual position of the ball, 𝑥𝑑(𝑡)  

represents the desired position of the ball, and 𝑥2(𝑡)  is the 

actual velocity of the ball. 

Eq. (12) can be expressed as follows: 

 

�̈�1(𝑡) = 𝑔 −
𝑘𝑜𝑘1

2

𝑚

𝑢2(𝑡)

𝑥1
2(𝑡)

+ 𝑑(𝑡) − �̈�𝑑(𝑡)  (13) 

 

To design a SMC, the sliding surface can be expressed using 

the error equations provided in Eqs. (9) and (11) as follows: 

 

𝑠(𝑡) = 𝜆 𝑧1(𝑡) + �̇�1(𝑡)  (14) 

 

where, 𝜆 is a positive constant. 

The first-time derivative of the equation for a sliding surface 

is given by: 

 

�̇�(𝑡) = 𝜆 (𝑥2(𝑡) − �̇�𝑑(𝑡)) + 𝑔 −
𝑘𝑜𝑘1

2

𝑚

𝑢2(𝑡)

𝑥1
2(𝑡)

+ 𝑑(𝑡) −

�̈�𝑑(𝑡)  
(15) 

 

By setting (𝑖 = 𝑢), the above equation is written as follows: 

�̇�(𝑡) = 𝜆 (𝑥2(𝑡) − �̇�𝑑(𝑡)) + 𝑔 −
𝑘𝑜𝑘1

2

𝑚

𝑢2(𝑡)

𝑥1
2(𝑡)

+ 𝑑(𝑡) −

�̈�𝑑(𝑡)  
(16) 

 

Based on SMC theory, the control law 𝑢  consists of the 

following: 

 

𝑢1 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤 (17) 

 

where, 𝑢𝑒𝑞  represents the equivalent control law, and 𝑢𝑠𝑤 

represents the switching control law. 

These two control laws can be described as follows: 

 

𝑢𝑒𝑞 = √(
𝑚𝑥1

2

𝑘𝑜𝑘1
2)(𝜆𝑥2(𝑡) − 𝜆�̇�𝑑(𝑡) + 𝑔 − �̈�𝑑(𝑡))  (18) 

 

𝑢𝑠𝑤 = 𝐾𝑠𝑎𝑡(𝑠)  (19) 

 

where, 𝐾  represents a scaler design constant and 𝑠𝑎𝑡(𝑠) 

represents the saturation function (boundary layer function) 

used instead of the signum function in the sliding mode control 

effort to avoid the chattering effect. 

The saturation function is defined in Eq. (20) as follows: 

 

𝑠𝑎𝑡(𝑠) = {

1                            𝑠 ≥ ∆
𝑠

∆
               − ∆< 𝑠 < ∆

−1                     𝑠 ≤ −∆

   (20) 

 

where, ∆ represents the boundary layer thickness. 

When the sliding surface and its derivative are set to zero, 

the sliding mode control effort can be expressed as follows: 

 

𝑢1 = √(
𝑚𝑥1

2

𝑘𝑜𝑘1
2)(𝜆𝑥2(𝑡) − 𝜆�̇�𝑑(𝑡) + 𝑔 − �̈�𝑑(𝑡) + 𝐾𝑠𝑎𝑡(𝑠))  (21) 

 

The controlled system block diagram using MSMC for 

controlling the ball position of the Maglev model is shown in 

Figure 2. 

 

 
 

Figure 2. The block diagram of the controlled system using MSMC for the position control of the steel ball of the Maglev model 
 

To design a BSSMC, the backstepping control law is used 

instead of the equivalent control law in the SMC. To design 

the backstepping control law, the error 𝑧2(𝑡)  between the 

actual velocity of the ball and the virtual controller is defined 

as follows [19-22]: 

 

𝑧2(𝑡) = 𝑥2(𝑡) − 𝛼(𝑡) (22) 
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where, 𝛼(𝑡) is the virtual controller. 

Eq. (23) is derived by substituting Eq. (22) into Eq. (11) as 

follows: 

 

�̇�1(𝑡) = 𝑧2(𝑡) + 𝛼(𝑡) − �̇�𝑑(𝑡) (23) 

 

Using the virtual controller as in Eq. (24), the Eq. (23) is 

written as follows: 

 

𝛼(𝑡) = −𝑐1𝑧1(𝑡) + �̇�𝑑(𝑡) (24) 

 

�̇�1(𝑡) = −𝑐1𝑧1(𝑡) + 𝑧2(𝑡) (25) 

 

where, 𝑐1 a positive design variable. 

Taking the time derivative of Eqs. (22) and (24) gives: 

 

�̇�2(𝑡) = 𝑔 −
𝑘𝑜𝑘1

2

𝑚

𝑢2(𝑡)

𝑥1
2(𝑡)

− �̇�(𝑡) (26) 

 

�̇�(𝑡) = −𝑐1(𝑥2(𝑡) − �̇�𝑑(𝑡)) + �̈�𝑑(𝑡) (27) 

 

The time derivative of the error 𝑧2(𝑡) can be expressed as 

follows: 

 

�̇�2(𝑡) = −𝑐2𝑧2(𝑡) − 𝑧1(𝑡) (28) 

 

where, 𝑐2 is a positive design variable. 

The backstepping control law is obtained by substituting 

Eqs. (9), (22), (24), (27), and (28) in Eq. (26) with some 

rearrangements as in Eq. (29). Finally, the backstepping 

sliding mode control law is expressed in Eq. (30). The block 

diagram of the controlled system using BSSMC for controlling 

the position of the ball of the Maglev model is shown in Figure 

3. 

 

𝑢𝑏 = √
(

𝑚𝑥1
2

𝑘𝑜𝑘1
2)((𝑐1𝑐2 + 1)𝑥1(𝑡) + (𝑐1 + 𝑐2)𝑥2(𝑡)

−(1 + 𝑐1𝑐2)𝑥𝑑(𝑡) − (𝑐1 + 𝑐2)�̇�𝑑(𝑡) − �̈�𝑑(𝑡) + 𝑔)
  (29) 

 
𝑢2 =

√
(

𝑚𝑥1
2

𝑘𝑜𝑘1
2)((𝑐1𝑐2 + 1)𝑥1(𝑡) + (𝑐1 + 𝑐2)𝑥2(𝑡)

−(1 + 𝑐1𝑐2)𝑥𝑑(𝑡) − (𝑐1 + 𝑐2)�̇�𝑑(𝑡) − �̈�𝑑(𝑡) + 𝑔 + 𝐾𝑠𝑎𝑡(𝑠))
  

(30) 

 
 

Figure 3. The block diagram of the controlled system using BSSMC for the position control of the steel ball of the Maglev model 

 

 

4. SIMULATION RESULTS 

 

The designed controllers are simulated and evaluated by 

numerical simulations conducted in the MATLAB program. 

The numeric values of Maglev system parameters are 

presented in Table 1. The parameters of the controllers are 

chosen using the trial-and-error method and presented in Table 

2. The initial values of variables x and �̇�, which are used to 

initialize the simulation for the SMC and BSSMC, were 

chosen as follows: [𝑥(0), �̇�(0)]𝑇 = [0.009,0]𝑇 . Two 

scenarios are used to conduct the simulations, where the 

results of SMC and BSSMC are compared as follows: 

 

Table 2. The parameter settings of the proposed controllers 

 

Controller 𝐾 ∆ 𝜆 𝑐1 𝑐2 

MSMC 25 0.5 25 - - 

BSSMC 25 0.5 25 120.25 103.69 

 

 

4.1 Scenario I 

 

In this scenario, the desired position of the steel ball is fixed 

at 𝑥𝑑(𝑡) = 0.01 m . The Maglev system is subjected to an 

unknown external force acting as a disturbance. The 

disturbance is in the form of a pulse signal with a unity 

magnitude, and the time of the applied pulse is of 5 seconds. 

The proposed controllers have the ability in forcing the steel 

ball to follow the desired position as illustrated in Figure 4. 

Additionally, the settling time of the controlled system using 

BSSMC is less than that of the controlled system using 

MSMC. In addition, using the proposed controllers, the steel 

ball follows the desired position robustly, and the BSSMC is 

less affected by the perturbation than the MSMC. The velocity 

of the ball using the proposed controllers is depicted in Figure 

5. As seen in this figure, the controlled system dynamic 

behaviour using the BSSMC is faster than that using the 

MSMC. The dynamic behaviours of the proposed controllers 

for the controlling the steel ball position of the Maglev model 

are presented in Table 3. 
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The proposed controllers’ effectiveness can be deduced 

from Figure 6, which depicts that the sliding variables reach 

the sliding manifold after a small period of time. The voltage 

control efforts of the proposed controllers are smooth, without 

sharp spikes and within the acceptable range of ±5 V  as 

demonstrated in Figure 7. Finally, the phase plane between 𝑥1 

and 𝑥2 is shown in Figure 8. As illustrated in this figure, the 

proposed controllers have the ability to force the state to track 

the desired position (𝑥1 = 0.01 m and 𝑥2 = 0 m/sec). 

 

 
 

Figure 4. The ball position versus time in scenario I under 

disturbance 

 

 
 

Figure 5. The ball velocity versus time in scenario I under 

disturbance 

 

Table 3. The output responses of the controlled system for 

fixed ball position 

 

Controller 

Settling 

Time (𝑻𝒔) 

(sec) 

Steady-

State Error 

(𝑬𝒔.𝒔) (m) 

Max. Peak 

Overshoot Under 

Disturbance (m) 

MSMC 0.5 0 1×10-5 

BSSMC 0.2 0 3×10-6 

Ref. [14] 1 0 ±1×10-4 

 

 
 

Figure 6. The sliding variable versus time in scenario I under 

disturbance 

 
 

Figure 7. The control signal versus time in scenario I under 

disturbance 

 

 
 

Figure 8. The phase plane versus time in scenario I under 

disturbance 
 

4.2 Scenario II 
 

The steel ball’s desired position in this scenario is variable 

𝑥𝑑(𝑡) = 0.01 + 0.007𝑠𝑖𝑛(2𝜋𝑡) m. The external disturbance 

exposed to the system is assumed to be the same as in scenario 

I. The proposed controllers also have the ability to follow the 

reference variable position, as depicted in Figure 9. According 

to this figure, the tracking time of the controlled system using 

BSSMC required to hit and track the desired trajectory is also 

less than that of the controlled system using MSMC. 

Moreover, the steel ball robustly tracks the desired variable 

position, and the BSSMC is less affected by the perturbation 

than the MSMC. Figure 10 shows the velocity of the ball using 

the proposed controllers. This figure shows that the controlled 

system dynamic behaviour using the BSSMC is also faster 

than that using the MSMC. The proposed controllers’ dynamic 

behaviours for controlling the steel ball position of the Maglev 

model are illustrated in Table 4. 

By using the proposed controllers, the sliding variables 

converge to the sliding manifold after a small period of time, 

which demonstrating the effectiveness of these controllers, as 

depicted in Figure 11. The voltage control efforts produced 

using the proposed controllers are also smooth, without sharp 

spikes and within the acceptable range of ±5 V , as 

demonstrated in Figure 12. Finally, the phase plane between 

𝑥1and 𝑥2  is depicted in Figure 13. This figure indicates the 

proposed controllers’ effectiveness in driving the state of the 

system to trace the required sinusoidal position. 
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Figure 9. The position of the ball versus time in scenario II 

under disturbance 

 

 
 

Figure 10. The velocity of the ball versus time in scenario II 

under disturbance 

 

Table 4. The output responses of the controlled system for 

variable ball position 

 

Controller 

Tracking 

Time (𝑻𝒓) 

(𝐬𝐞𝐜) 

Steady-

State Error 

(𝑬𝒔.𝒔) (𝐦) 

Max. Peak 

Overshoot Under 

Disturbance (𝐦) 

MSMC 0.3 0.055 0 

BSSMC 0.2 0.018 0 

 

 
 

Figure 11. The sliding variable versus time in scenario II 

under disturbance 

 

 
 

Figure 12. The control signal versus time in scenario II under 

disturbance 

 
 

Figure 13. The phase plane versus time in scenario II under 

disturbance 

 

 

5. CONCLUSIONS 

 

This work proposes a backstepping sliding mode control 

strategy for controlling and stabilizing the ball of the Maglev 

system. The effectiveness of the BSSMC and the MSMC have 

been examined using computer simulation based on the 

MATLAB program. A comparative study has been conducted 

to assess the performance of the BSSMC and the MSMC in 

conjunction with other controllers. The simulation results 

show that the performance of the controlled system using the 

BSSMC is better than that using the MSMC and other 

controllers in minimizing the settling time for a desired ball 

position of 0.01 m when the system is exposed to external 

force disturbance. Moreover, the proposed controllers’ 

effectiveness is validated for sinusoidal input reference. In this 

case, the controlled system dynamic performance using the 

BSSMC is also better than that using the MSMC and other 

controllers in minimizing the tracking time and the steady-

state error in the presence of an external disturbance. 

For future work, this study can be extended by 

implementing the backstepping sliding mode control strategy 

in a real-time environment via LabVIEW programming 

software or embedded hardware design such as the FPGA [23-

25]. Furthermore, another extension of this study is to propose 

other control techniques for controlling and stabilizing the 

Maglev system's steel ball to demonstrate their effectiveness 

and performance in comparison to the proposed BSSMC [26-

30]. 
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NOMENCLATURE 

c1 dimensionless positive design constant 

c2 dimensionless positive design constant 

d the force disturbance, N 

f the magnetic force 
g acceleration due to gravity, m.s-2 

i the current flowing in the coil, A 
io equilibrium value of current, A 

K dimensionless scaler design constant 
k1 control voltage to coil current gain, A.V-1 

L the coil inductance, H 
Lo the increment in inductance due to ball, H 
m mass of the ball, kg 

R the coil resistor, Ω 

s dimensionless sliding surface 

s

at 
the saturation function 

u control input voltage level, V

ue

q
the equivalent control law 

us

w
the switching control law 

u1 the sliding mode control effort, V 

u2 the backstepping sliding mode control law, V 

ub The backstepping control law, V 

xd the desired position, m 
xo equilibrium value of position, m 

x1 the position of the steel ball, m 

x2 the velocity of the steel ball, m.s-1 

z1 
the error between the actual position of the ball and the 

desired position, m 

z2 
the error between the actual velocity of the ball and the 

virtual controller, m.s-1 

Greek symbols 

∆ dimensionless boundary layer thickness 

λ dimensionless scalar design parameter larger than zero 

α the virtual controller, m.s-1 
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