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Groundwater quality plays a crucial role in daily life and public health, particularly in 

regions that rely on groundwater resources for domestic, agricultural, and industrial 

needs. Predictive modeling of groundwater quality is essential for managing and 

protecting water resources sustainably. This study proposes a hybrid approach 

combining deep neural networks (DNNs) and ordinary logistic regression (OLR) to 

enhance the accuracy of groundwater quality predictions. This hybrid approach 

leverages the capability of DNNs to capture complex non-linear patterns, while OLR is 

utilized for simpler and more structured coefficient interpretation of factors influencing 

water quality. The data used in the study includes various environmental and 

hydrogeological variables affecting groundwater quality, such as pH, heavy metal 

content, and other minerals. The results indicate that the hybrid DNN-OLR model 

achieves higher predictive accuracy, at 92.23%, compared to using DNN or OLR 

individually, which yield accuracies of 58.80%. The integration of these two methods 

also offers advantages in result interpretation, with OLR providing more transparent 

insights into the influence of independent variables, while DNN delivers stronger 

predictive capabilities through non-linear data processing. Therefore, this hybrid model 

has the potential to be applied for real-time groundwater quality monitoring and as a 

decision-support tool in water resource management. 
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1. INTRODUCTION

In reality, groundwater is responsible for the necessary 

clean water sustaining most human life, especially in rural 

areas without access to large networks of water distribution 

systems. Groundwater is of utmost importance, and this topic 

is key in providing water security in the case of low 

infrastructure regions. For example, groundwater is a vital 

source of water for over 60% of the rural population in South 

Asia for daily requirements ranging from household 

consumption to agricultural irrigation [1]. Groundwater is the 

lifeblood of Sub-Saharan Africa, where surface water 

distribution systems rarely penetrate isolated rural areas. 

Groundwater plays a pivotal role in the sustenance of human 

life, as the United Nations World Water Development Report 

indicates that about 50% of the global population as well as 

70% of the water requirements of the agricultural sector are 

dependent on groundwater. 

Unfortunately, groundwater quality is severely threatened 

by human activities, climate change, and local geology [2]. 

This degradation of freshwater resources in the region has 

been aggravated by the phenomenon of saltwater intrusion due 

to the over-extraction of groundwater in the Middle East, 

compromising irrigation and drinking water quality and 

potentially questioning the sustainability of water sources in 

this region. Increased mining activity, especially in South 

America, has led to pollution, including heavy metals such as 

arsenic and mercury in groundwater from the Andes, with 

serious health consequences [3]. Another example can be 

found in Southeast Asia and Kalimantan, where mining 

activities have resulted in extremely high levels of heavy 

metals in groundwater that negatively impact both local 

communities and ecosystems [4]. These challenges suggest 

that sustainable groundwater management is not only a 

regional issue but a global imperative. 

OLR is the most commonly used predictive method for 

groundwater quality (distribution). One reason OLR is 

commonly employed is its relative simplicity, as it allows for 

the modeling of linear relationships between independent and 

dependent variables. OLR has already been successfully used, 

for example, in the assessment of the impact of water quality 

on public health [5] and in environmental risk assessments [6]. 

The most important benefit of this approach is easy 

interpretation, which makes it comprehensible for 

policymakers and other stakeholders. As a result, this is a very 

limited method. When relationships are non-linear or involve 

complex interactions, OLR struggles to explain relationships, 

as shown in interactions between heavy metals, organic 

materials, and hydrogeological parameters [7]. 

Recently, DNN arises as a better option to create and 
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optimize models that deal with complex datasets that are 

associated with variables [8]. DNN works best in identifying 

complex linear relationships in multi-dimensional data, such 

as the association between pH, heavy metals, and organic 

substances in the quality of groundwater [9]. On the other 

hand, DNN is one of the most accurate predictive models, 

justifying its efficiency but making the interpretability of its 

results an increasingly challenging task. In the environmental 

domain, the results should be clear and actionable for 

stakeholders like environmental regulators and policymakers, 

who need to know what can be done [10]. It is thus necessary 

to combine the advantages of DNN with existing methods such 

as OLR to close the trade-off between predictive validity and 

interpretability/clarity. 

DNN has been widely used in many areas with great 

potential in existing studies. For instance, employed DNN-

based STR for victim identification in mass casualty incidents, 

illustrating the versatility of DNN in dealing with complex 

data [11]. Similarly, Convolutional Neural Networks (CNNs) 

for fault diagnosis in three-phase induction motors, where 

technical data was very complex as well [12]. The 

demonstrated the satisfying ability of DNN to tackle 

difficulties with interacting variables by utilizing Spike Neural 

Networks to classify IoT device traffic [13]. Although these 

studies demonstrate the potential of DNN to solve complex 

problems, it has rarely been applied in groundwater quality 

contexts [14]. 

Combining DNN and OLR is motivated by their 

complementarity. DNN shines in finding complex non-linear 

relations, but OLR is interpretable. This has already been 

applied in other fields, e.g., MEDeep is a news-based deep 

learning-based model developed for emotion analysis [15]. 

The concept demonstrated in this study that integrating DNN 

with other methods can produce data analysis that is more 

resilient and applicable, providing inspiration for the use of 

DNN in groundwater quality management. 

Additionally, the developed a tree-structured deep learning 

model with self-adaptation and self-learning capabilities to 

enhance data classification [16]. Their hybrid-based approach 

shows that integrating deep learning with traditional 

techniques can improve model accuracy while maintaining 

flexibility and scalability. In the context of groundwater 

quality, such an approach is highly relevant to address the 

challenges of modeling complex patterns. 

However, although there have been efforts to combine deep 

learning methods with traditional approaches in other fields, 

very few studies have explicitly applied this approach to 

groundwater quality management. For example, demonstrated 

the successful application of DNN for analyzing technical 

data, but the context remains distant from environmental 

issues [17]. Therefore, this research bridges the gap by 

developing a DNN-OLR hybrid model specifically for 

groundwater quality. 

The novelty of this research lies in developing a hybrid 

model that combines the strengths of OLR and DNN. This 

state-of-the-art approach integrates two different 

methodologies: OLR provides easily interpretable results, 

while DNN handles data complexity and non-linear patterns 

[18]. The hybrid model aims to enhance prediction accuracy 

without sacrificing interpretability. An innovative aspect of 

this model is its use of DNN to extract complex non-linear 

features, which are then simplified by OLR to produce more 

understandable interpretations. Technically, this integration 

involves feeding the output of the DNN’s final hidden layer as 

input to the OLR model. This process allows DNN to capture 

complex data patterns, while OLR models the linear 

relationships of enriched features. This method not only 

improves prediction accuracy but also facilitates deeper 

analysis of significant variables. This hybrid approach 

addresses the limitations of traditional models that struggle to 

effectively capture non-linear relationships while delivering 

results directly relevant to decision-making. Although this 

combination has been applied in fields like economics and 

healthcare, its specific application in groundwater quality 

prediction remains rare, offering a significant contribution to 

the literature [19]. 

In conclusion, the integration of DNN and OLR offers a 

unique opportunity to enhance predictive accuracy without 

compromising the interpretability of results. By leveraging 

DNN’s capability to detect complex patterns and OLR’s 

flexibility in providing simple interpretations, this approach 

has the potential to be a transformational solution to 

groundwater quality management challenges. This study 

makes a significant contribution to the development of 

innovative, applicable, and data-driven solutions in the 

environmental sector. In the future, this approach can be 

expanded to include additional environmental variables or 

applied to other resource management issues, such as water 

distribution systems in urban areas under pressure from rapid 

urbanization. Visualizations, such as flowcharts, can also help 

improve understanding of this hybrid model concept. 

 

 

2. METHODS 

 

2.1 Data 

 

This research focuses on the analysis of groundwater quality 

in Yogyakarta City. The data used in this study were collected 

from groundwater samples taken from various locations across 

Yogyakarta City. Each sample was then associated with its 

geographical location using accurate GPS coordinates. The 

objective of this research is to develop a detailed mapping of 

groundwater quality in the Yogyakarta area, covering various 

chemical and physical parameters. 

 

Table 1. Summary of research variables 

 

Variables Variable Name 
Measurement 

Scale 
Information 

Y 
Groundwater 

Quality Index 

Nominal 

(Ordinal) 
Response 

X1 pH ratio Predictor 

X2 
Turbidity 

(NTU) 
ratio Predictor 

X3 

Total Dissolved 

Solid (TDS) 

(mg/L) 

ratio Predictor 

X4 
Nitrate (NO3) - 

N (mg/L) 
ratio Predictor 

X5 
Nitrite (NO2) - 

N (mg/L) 
ratio Predictor 

X6 Iron (mg/L) ratio Predictor 

X7 
Manganese 

(mg/L) 
ratio Predictor 

X8 Cyanide (mg/L) ratio Predictor 

X9 Fluoride (mg/L) ratio Predictor 

X10 
Total coliform 

(CFU/100 ml) 
ratio Predictor 
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The variables observed in this study as shown in Table 1 

include the chemical quality of groundwater, such as pH, 

heavy metal content, such as lead and cadmium, nitrates, 

phosphates, and organic matter. Additionally, physical 

properties of groundwater, such as turbidity, color, and odor, 

were also considered. This research also includes 

microbiological quality, including the presence of coliform 

bacteria and other pathogens. Sampling was systematically 

conducted at various locations to obtain a broad representation 

of groundwater conditions in Yogyakarta City. Each 

groundwater sample was labeled with accurate GPS 

coordinates, allowing for the use of geographical approaches 

in its analysis. 

 

2.2 OLR 

 

Binary logistic regression is extended by OLR [20]. OLR is 

a statistical technique for analyzing data in which the predictor 

variables are factors (if using nominal or ordinal scales) or 

covariates (if using interval or ratio scales) and the response 

variable is ordinal, with three or more categories [21]. 

The logit model, more especially the cumulative logit 

model, is the model most frequently employed for OLR [22]. 

Cumulative probabilities in this model represent the response 

Y ordinal nature. The cumulative logit model compares the 

cumulative probability, that is, the probability of being less 

than or equal to the G-th response category, 𝑃(𝑌 ≤ 𝑔|𝒙𝒊) , 

with the probability of being greater than the g-th response 

category, 𝑃(𝑌 > 𝑔|𝐱𝒊) , based on 𝑝  predictor variables 

represented as a vector x [20]. 

Use a cumulative logit model to represent OLR. Cumulative 

probabilities are used in this logit model to describe the 

response Y ordinal nature [23]. 𝑃(𝑌 = 1|𝐱) can be expressed 

as 𝜋(𝐱), which is represented as follows, to create logistic 

regression: 

 

𝜋𝑔(𝐱𝑖) =
exp(𝛼𝑔 + 𝑿𝑖

𝑇 𝜷)

1 − 𝑒𝑥𝑝(𝛼𝑔 + 𝑿𝑖
𝑇  𝜷)

 (1) 

 

where, 𝑿𝑖
𝑇 : The independent variables, with (i=1, 2, …, n), 

where n represents the total number of samples; π(x): The 

probability of a successful event; αg: The constant (intercept); 

βk: The value of the k-th parameter (k=1, 2, …, n); g: The 

response categories, with g=1, 2, ..., G-1. 

Logistic regression is a part of generalized linear models. 

For OLR, the model used is the cumulative logit model. 

Suppose the response variable Y has G ordinal categories, and 

xi represents the predictor variable vector for the i-th 

observation, expressed as: 
 

𝒙𝑖 =

[
 
 
 
𝑥𝑖1

𝑥𝑖2

⋮
𝑥𝑖𝑝

]

𝑇

 

 

where, i=1, 2, 3, …, n, then the OLR model can be written as 

[24]:  
 

Logit[𝑃(𝑌𝑖 ≤ 𝑔|𝐱𝑖)] = ln [
𝑃(𝑌𝑖 ≤ g|𝐱𝑖)

1 − 𝑃(𝑌𝑖 ≤  g|𝐱𝑖)
] =∝𝑔+ 𝐱𝑖

𝑇𝜷 

 

where, P(Yi=g|xi) represents the probability that the response 

variable in the i-th observation falls within category g. 

Suppose πg(xi)=[P(Yi=g|xi)], then:  

𝑃(𝑌𝑖 ≤ 𝑔|𝐱𝑖) = 𝑃(𝑌𝑖 = 1|𝐱𝑖) + 𝑃(𝑌𝑖 = 2|𝐱𝑖) + ⋯
+ 𝑃(𝑌𝑖 = 𝑔|𝐱𝑖)
= 𝜋1(𝐱𝑖) + 𝜋2(𝐱𝑖) + ⋯ + 𝜋𝑔(𝐱𝑖) 

(2) 

 

Thus, the probability for each response category can be 

expressed as: 

 

𝜋𝑔(𝐱𝑖) = 𝑃(𝑌𝑖 = 𝑔|𝐱𝑖) = 𝑃(𝑌𝑖 ≤ 𝑔|𝐱𝑖) − 𝑃(𝑌𝑖 ≤ 𝑔 − 1|𝐱𝑖) 

 

If the response variable has four categories (G=4), then the 

OLR model follows the formulation [24]: 

 

logit [𝑃(𝑌𝑖 ≤ 1|𝐱𝑖)] = ln [
𝑃 (𝑌𝑖 ≤ 1|𝐱𝑖)

1− 𝑃 (𝑌𝑖 ≤ 1|𝐱𝑖)
] = 𝛼1 + 𝐱𝑖

𝑇𝜷 

logit [𝑃(𝑌𝑖 ≤ 2|𝐱𝑖)] = ln [
𝑃 (𝑌𝑖 ≤ 2|𝐱𝑖)

1− 𝑃 (𝑌𝑖 ≤ 2|𝐱𝑖)
] = 𝛼2 + 𝐱𝑖

𝑇𝜷 

logit [𝑃(𝑌𝑖 ≤ 3|𝐱𝑖)] = ln [
𝑃 (𝑌𝑖 ≤ 3|𝐱𝑖)

1− 𝑃 (𝑌𝑖 ≤ 3|𝐱𝑖)
] = 𝛼3 + 𝐱𝑖

𝑇𝜷 

logit [𝑃(𝑌𝑖 ≤ 4|𝐱𝑖)] = ln [
𝑃 (𝑌𝑖 ≤ 4|𝐱𝑖)

1− 𝑃 (𝑌𝑖 ≤ 4|𝐱𝑖)
] = 𝛼4 + 𝐱𝑖

𝑇𝜷 

 

where:  

 

𝑃(𝑌𝑖 ≤ 1|𝐱𝑖) =
exp(𝛼1 + 𝑿𝑖

𝑇  𝜷)

1 + exp(𝛼1 + 𝑿𝑖
𝑇   𝜷)

 (3) 

 

𝑃(𝑌𝑖 ≤ 2|𝐱𝑖) =
exp(𝛼2 + 𝑿𝑖

𝑇   𝜷)

1 + exp(𝛼2 + 𝑿𝑖
𝑇   𝜷)

 (4) 

 

𝑃(𝑌𝑖 ≤ 3|𝐱𝑖) =
exp(𝛼3 + 𝑿𝑖

𝑇   𝜷)

1 + exp(𝛼3 + 𝑿𝑖
𝑇   𝜷)

 (5) 

 

2.3 DNN 

 

A DNN consists of multiple layers of interconnected nodes 

(neurons). The basic unit of a DNN is the neuron, which 

performs a weighted summation of the inputs and passes it 

through an activation function. Mathematically, a neuron can 

be represented as [25]: 

 

𝑧 = 𝑾𝑇𝑿 + 𝒃 (6) 

 

where, X is the input vector, W is the weight, and b is the bias. 

The result is then passed through the activation function 𝜎 to 

produce the output: 

 

𝛼 = 𝜎(𝑧) (7) 

 

2.4 Hyperparameters in DNN 

 

Hyperparameters are settings that are set before the model 

is trained and don't change while it is being trained. The 

performance of the model and its capacity to generalize to new 

data are greatly impacted by hyperparameters in the context of 

DNN [26]. Hyperparameters need to be manually adjusted or 

optimized, in contrast to model parameters like weights and 

biases, which are modified during training using optimization 

procedures. 

Hyperparameters in DNN encompass various aspects, 

including network architecture, training strategies, and 

regularization techniques. Key hyperparameters include: 

(1) Layer 

The number of layers in a DNN determines the complexity 

of patterns that the model can learn. Additional hidden layers 
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enable the network to capture non-linear patterns in data, 

which is often essential for complex tasks. However, an 

excessive number of layers increases the risk of overfitting, 

where the model becomes overly specialized to the training 

data and performs poorly on unseen data. Techniques such as 

regularization (e.g., L1 and L2) and early stopping can 

mitigate this risk by halting training when validation 

performance starts to decline [27]. 

(2) Units 

Each hidden layer consists of multiple units (neurons), 

which define the representational capacity of the network. A 

higher number of units allows the model to capture more 

intricate patterns, but it also demands greater computational 

resources and raises the risk of overfitting. Experimental 

approaches, such as grid search and random search, are 

commonly employed to determine the optimal number of 

units. Through these methods, an appropriate configuration 

can be identified based on the nature of the data and the 

complexity of the task [28]. 

(3) Activation function 

The activation function enables the model to learn non-

linear relationships. Functions such as Rectified Linear Unit 

(ReLU) are widely used due to their efficiency and ability to 

mitigate the vanishing gradient problem. In contrast, the 

sigmoid function is suitable for probability-based tasks but 

often suffers from saturation, while the tanh function is 

beneficial for data centered around zero. The selection of an 

appropriate activation function depends on the specific 

problem at hand, as each function has its own advantages and 

limitations [29]. 

(4) Epoch 

The number of epochs defines how many times the model 

iterates over the entire dataset during training. A higher 

number of epochs allows the model to learn more complex 

patterns, but it also increases the risk of overfitting, where the 

model memorizes the training data rather than generalizing to 

new data. To mitigate this risk, early stopping is highly 

recommended, as it halts training when validation 

performance ceases to improve, ensuring better generalization 

on unseen data [30]. 

 

2.5 Basic DNN architecture 

 

Many neurons make up the network that is the biological 

nervous system. Similarly, the fundamental processing units 

of artificial neural networks are neurons. As seen in Figure 1 

[31], the operating premise is that a number of input values are 

mathematically transformed to produce an output value.  

 

 
 

Figure 1. Illustration of a DNN 

 

The mathematical transformation relationship between the 

input signals and the output value is as follows: 

 

𝑓(𝑏 + ∑(𝑥𝑖 × 𝑤𝑖))

𝑛

𝑖=1

 (8) 

 

where, f(.) represents the activation function, and there are 

many types of activation functions, such as ReLU, Sigmoid, 

Tanh, among others. 

In a DNN, a neuron receives input 𝒙 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛], 
which is a vector from the neurons in the previous layer. Each 

input is multiplied by its corresponding weight 𝑾 =
[𝑤1, 𝑤2, … , 𝑤𝑛], where, W is the weight matrix that determines 

the strength of the connections between neurons. A bias (b) is 

added to adjust the output and increase the model's flexibility 

[32]. 

 

𝑧 = 𝑾. 𝑥 + 𝒃 (9) 

 

here, z is the result of the linear combination of inputs. To 

introduce non-linearity, the activation function ϕ(z) is applied 

to the result of this linear combination [33]: 

 

𝑦 = 𝜙(𝑧) (10) 

 

In the hidden layers of a DNN, this operation is repeated at 

each layer, with the output y from the previous layer becoming 

the input x for the next layer [34]. Mathematically, for the l-th 

layer in a DNN, the output of a neuron in that layer can be 

expressed as: 

 

𝑦𝑙 = 𝜙(𝑾𝑙𝑦𝑙−1 + 𝒃𝑙) (11) 

 

Activation functions 

Activation functions are a critical component in DNNs as 

they introduce non-linearity into the network. Without 

activation functions, a DNN would simply be a series of linear 

operations, limiting its ability to learn non-linear relationships 

in the data. Below are some commonly used activation 

functions: 

1) Sigmoid 

The sigmoid activation function converts the input into a 

value within the range of 0 to 1, which is highly useful in the 

context of probabilities. The sigmoid function is often used in 

the output layer for binary classification tasks. 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (12) 

 

This function transforms the input into values within a 

categorical range [35]. 

2) ReLU 

ReLU is one of the most popular activation functions in 

modern neural networks. It activates neurons only if the input 

is positive, and the output is equal to the input; if the input is 

negative, the output is zero. 

 

𝑓(𝑥) = max(0, 𝑥) (13) 

 

This function activates units only when the input is positive, 

making it simple and fast to compute. The main advantages of 

ReLU are its simplicity, computational efficiency, and its 

ability to mitigate the vanishing gradient problem often seen 

with sigmoid and tanh functions [36]. 
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2.6 DNN ordinary logistic regression 

The hybrid DNN-OLR model leverages the strengths of 

both approaches. DNN is utilized to capture complex patterns 

and features from the data through its hidden layers. This is 

especially useful in situations where the data contains many 

interacting non-linear features [37]. Meanwhile, OLR is 

applied in the output layer to provide well-interpreted 

probabilities for binary outcomes. In this way, the hybrid 

DNN-OLR model delivers results that are both more accurate 

and easier to interpret. 

To create a hybrid model, the output from logistic 

regression can be combined with a DNN. A common approach 

is to use DNN to learn complex features from the input data 

and then feed these features into a logistic regression model 

for the final prediction. 

In a hybrid model that integrates DNN and logistic 

regression, the feature extraction process plays a crucial role. 

Before the model makes a final classification decision, it first 

learns and extracts meaningful patterns from the input data 

using a DNN. The extracted features are then used as input for 

logistic regression to perform classification. The primary goal 

of feature extraction is to transform raw data into a more 

representative and informative form, thereby improving 

accuracy and efficiency in the classification process. 

1) Feature extraction process using DNN

A DNN consists of multiple hidden layers, each designed to

gradually transform and filter the input data. Instead of directly 

using raw data for classification, DNN allows the model to 

capture complex relationships and hidden structures within the 

data [38]. Each layer in the DNN performs a mathematical 

transformation on the input data, producing an output that is 

then passed to the next layer. 

Mathematically, the transformation performed by each 

hidden layer can be represented as: 

𝐻𝑖 = 𝜎(𝑾𝑖
𝑇𝑯𝑖−1 + 𝒃𝑖) (14) 

where, 𝑯𝑖  is the output of the ith hidden layer, representing the

learned features at that stage; 𝑾𝑖 is the weight matrix, which

is optimized during the training process; 𝒃𝒊 is the bias for the

ith layer; 𝜎  is the activation function, such as ReLU or 

Sigmoid. 

2) Stages in the feature extraction process

Feature extraction is one of the crucial stages in the machine

learning process, especially in the context of a hybrid model 

that combines DNN and logistic regression. The DNN 

functions as a tool to construct richer and more meaningful 

feature representations by transforming raw data into a more 

informative form [39]. This process occurs through a series of 

layers that gradually abstract information from the initial data. 

The initial stage of feature transformation begins with the 

input layer, which receives data in the form of a feature vector. 

Mathematically, the input data can be represented as: 

𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

where, each component xi represents a specific feature 

obtained from the original dataset. This feature can be either 

raw data or the result of a pre-processing step, such as 

normalization, statistical attribute extraction, or domain-

specific transformations. 

After passing through the input layer, the data is then 

processed by the first hidden layer in the DNN. This process 

involves a linear operation, consisting of matrix multiplication 

between the network weights and the input vector, added with 

bias, and then passed through a non-linear activation function. 

This transformation can be expressed as: 

𝐻1 = 𝜎(𝑾1
𝑇𝑿 + 𝒃𝟏) (15) 

where, 𝑯1 is the transformed output at the first hidden layer,

representing learned features at this stage; 𝑾𝑖 represents the

weights connecting the input layer to the first hidden layer. 

The result of this transformation process is a new feature 

vector, which is more meaningful compared to the original raw 

input data. The first hidden layer acts as an initial filter, 

extracting fundamental patterns from the data. However, to 

capture more complex and abstract patterns, the data needs to 

be forwarded to the next hidden layers. 

Deeper feature extraction is performed gradually through a 

stacked series of hidden layers. The transformation of features 

at the kth layer is formulated as: 

𝐻2 = 𝜎(𝑾2
𝑇𝑯1 + 𝒃𝟐) (16) 

𝐻3 = 𝜎(𝑾3
𝑇𝑯2 + 𝒃𝟑) (17) 

⋮ 

𝐻𝑘 = 𝜎(𝑾4
𝑇𝑯𝑘−1 + 𝒃𝒌) (18) 

Each hidden layer in the DNN functions as a filter, 

combining and forming new abstract features compared to the 

previous layers. The deeper the network, the more complex 

patterns it can capture. Thus, the number of hidden layers and 

the size of each layer significantly affect the DNN’s ability to 

extract features. 

At the final transformation stage, the last hidden layer Hk 

contains a set of optimally extracted features, representing the 

best data representation for classification. These features 

provide richer and more informative data than the original 

input. These extracted features are then used as input for 

logistic regression, which acts as a classifier to generate the 

final prediction. 

The model follows this structure: 

𝐻𝑘 = 𝜎𝑘(𝑾𝑘
𝑇(𝜎𝑘−1(𝑾𝑘−1

𝑇 (… 𝜎1(𝑾𝑘
𝑇𝑋 + 𝑏1)… )

+ 𝑏𝑘−1) + 𝑏𝑘))
(19) 

With this feature extraction process, the model can reduce 

the dimensionality of less relevant features while retaining and 

highlighting the most important information for the 

classification task. The combination of DNN’s capability to 

capture non-linear patterns and the interpretability of Logistic 

Regression makes this approach highly effective in various 

machine learning applications, including binary classification, 

predictive analytics, and pattern recognition. 

3) The role of the activation function in feature extraction

The activation function plays a critical role in feature

extraction within a DNN by introducing non-linearity into the 

model. This non-linearity enables the network to capture and 

represent complex relationships in data, which cannot be 

captured by purely linear models. 

Without an activation function, neural networks would only 

perform linear operations, making them incapable of 

recognizing more abstract patterns or handling non-linear 

feature relationships. 
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In this study, the activation function used is sigmoid, which 

is commonly applied in binary classification tasks. The 

sigmoid function is mathematically defined as: 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (20) 

 

The sigmoid function is used in logistic regression, which 

serves as the final classification component in this hybrid 

model. Using sigmoid in the last DNN layer ensures 

consistency between the DNN output and the final 

classification model, making the transition seamless. 

4) Utilizing extracted features in logistic regression 

After the DNN processes the input and generates the final 

feature representation in the last layer, these features Hk are 

used as input for logistic regression to make the final 

classification decision. 

The probability of a class y given the extracted features Hk 

is computed as: 

 

𝑃(𝑦 = 1|𝑯𝒌) =
1

1 + 𝑒−(𝛽0+𝛽1𝐻𝑘1+𝛽2𝐻𝑘2+⋯+𝛽𝑚𝐻𝑘𝑚)
 (21) 

 

where, 𝑯𝑘 = (𝐻𝑘1, 𝐻𝑘2, … , 𝐻𝑘𝑚)  are the features from the 

final DNN layer; 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑚) are the coefficients of 

the logistic regression. 

The feature extraction process in this hybrid model utilizes 

DNN to construct more representative features from the raw 

data. The layers in the DNN progressively transform the input 

data into more abstract and meaningful features, which are 

then used by logistic regression for the final prediction. With 

this approach, we leverage the DNN’s ability to capture 

complex patterns while benefiting from the speed and 

interpretability of logistic regression. 

The hybrid approach, which combines DNN with logistic 

regression, offers several key advantages in the classification 

process. These benefits primarily stem from the DNN’s ability 

to extract richer and more complex features before being fed 

into logistic regression for final decision-making. 

One of the major advantages is the DNN’s ability to extract 

more informative features compared to the raw features from 

the initial data. With multiple hidden layers, the DNN 

performs gradual transformations on the data, resulting in 

more meaningful and structured feature representations for 

classification tasks. 

Additionally, DNN has the capability to capture non-linear 

relationships in the data, which are difficult for purely linear 

models like logistic regression to handle. Through activation 

functions such as ReLU, Sigmoid, or Tanh, DNN can model 

more complex patterns, allowing the model to perform more 

effectively in scenarios where relationships between features 

are non-linear. 

Another advantage is DNN’s ability to automatically reduce 

data dimensionality. By passing through multiple 

transformation layers, the DNN efficiently selects the most 

relevant features for final classification. This helps improve 

model accuracy while reducing noise from less informative 

features, ultimately making logistic regression more efficient 

in processing the enriched data. 

 

2.7 Evaluation criteria for hybrid model performance 

 

To comprehensively assess the performance of the deep 

neural network with optimized logistic regression (DNNOLR) 

hybrid model compared to standalone models, multiple 

evaluation metrics are employed. While accuracy serves as a 

fundamental metric, it alone does not provide sufficient insight 

into the model’s effectiveness, particularly in imbalanced 

datasets. Therefore, additional metrics, such as Accuracy, 

precision, recall, and F1-score, are considered to offer a more 

holistic evaluation [40]. 

1) Accuracy 

Accuracy represents the ratio of correct predictions to the 

overall number of predictions made. The accuracy metric 

offers a general performance evaluation but becomes 

unreliable when class imbalance exists because a model can 

reach high accuracy by predominantly predicting the majority 

class. 

2) Precision 

The positive predictive value, or precision, quantifies the 

fraction of true positive results within all positive 

classifications. Applications that require minimizing false 

positives rely heavily on precision particularly in fields like 

fraud detection and medical diagnosis. The precision measure 

reflects the number of false positives which means higher 

precision values lead to more trustworthy positive predictions. 

 

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
 (22) 

 

3) Recall 

Recall, also referred to as sensitivity or the true positive rate, 

measures the proportion of actual positive instances that are 

correctly identified by the model [41]. It is a critical metric in 

scenarios where false negatives need to be minimized, such as 

in disease detection, where missing a positive case can have 

serious consequences. 

 

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
 (23) 

 

4) F1-score 

The F1-score represents the harmonic mean of precision and 

recall, providing a single metric that balances the trade-off 

between the two. It is particularly useful when both false 

positives and false negatives are costly, ensuring an optimal 

balance between the two errors. 

 

Precision = 2 ×
Precision × Recall

Precision + Recall
 (24) 

 

2.8 Illustration diagram of the hybrid DNN-OLR model 

 

In this study, a hybrid model combining DNN and OLR was 

developed to enhance accuracy and interpretability in 

predictions. This hybrid model leverages the ability of DNN 

to capture complex patterns in data while utilizing the 

advantage of logistic regression in providing more transparent 

and interpretable results. With this approach, the model is 

expected to generate more optimal predictions compared to 

single-method approaches. The following diagram illustrates 

the workflow of the hybrid DNN-OLR model, from data 

preprocessing to the evaluation of the optimized model. 

Figure 2 illustrates the key stages in building the hybrid 

DNN-OLR model. The process begins with inputting raw data, 

which then undergoes preprocessing and feature selection 

before being used to train the DNN model. After applying the 

activation function, the performance of the DNN model is 
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evaluated. If the model performs satisfactorily, features are 

extracted from the DNN and used to train the logistic 

regression model. The predictions from both models are then 

combined to generate the final prediction before the model is 

evaluated. However, if the DNN performance is 

unsatisfactory, hyperparameter tuning and retraining of the 

DNN model are conducted. This process continues until an 

optimized hybrid model is obtained as the final output. 

 

2.9 Justification for combining DNN and OLR 

 

The choice of methods in data analysis and prediction 

highly depends on the complexity of the data and the 

relationships between variables. Logistic regression 

(Ordinary, Multinomial, and Independent Models) is often 

used for analyzing data with linear relationships, while DNN 

and other deep learning-based methods excel in handling 

complex and nonlinear relationships. 

Table 2 presents several studies that utilize various 

methods, datasets, and the accuracy levels achieved. The 

purpose of this analysis is to highlight the strengths and 

weaknesses of each approach, providing a basis for combining 

DNN and OLR. 
 

 

Figure 2. Hybrid DNNOLR flow diagram 

 

Table 2. Justification for combining DNN and OLR 

 
Study Method Dataset Accuracy Weaknesses 

Venkataraman and 

Uddameri [42] 

Logistic regression 

(Ordinary, multinomial, and 

independent models) + 

geographic information 

system (GIS) 

Water quality data from Texas Water 

Development Board (TWDB), Soil data 

from SSURGO (1980s-2010) 

74% 
Cannot handle nonlinear 

relationships 

Müller et al. [43] 
Recurrent neural network 

(RNN), CNN 

Groundwater level data from Butte 

County, California, USA (2010-2018) 
79% Requires extensive training 

Alabdulkreem et al. 

[44] 

Stacked LSTM with DNN 

(SLSTM-DNN), compared 

with DNN, and LSTM 

Water NSW dataset for groundwater 

monitoring and prediction, incorporating 

climate and hydrological data 

82% 

High computation, complex 

tuning, data dependency, 

and real-time challenges 

Nhu et al. [45] DNN + GIS 

Groundwater spring data from Kon Tum 

province, Vietnam, including 733 

groundwater spring locations and 12 

influencing factors processed using 

ArcGIS Pro 

74% 

High data reliance, costly 

computation, and limited 

generalizability 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 DNN 

 

In this study, we implemented a DNN model consisting of 

multiple hidden layers, with input from 10 variables (X1-X10) 

combined to predict the target variable (Y). Each layer in this 

DNN is fully connected, meaning every neuron in a given 

layer is connected to all neurons in the next layer through 

weights that are optimized during the training process. 

Figure 3 illustrates the DNN architecture consisting of 10 

inputs, 2 hidden layers, and a single output. Each hidden layer 

functions to capture complex non-linear patterns from the data, 

where each layer acts as a transformation of the input features 

toward better prediction in the output layer. The weights 

connecting the neurons in each layer are adjusted through the 

backpropagation algorithm with the goal of minimizing 

prediction errors. 

The results from applying DNN in this study indicate that 

networks with deeper architectures are capable of learning 

more complex patterns and improving predictive performance. 

However, the selection of the number of layers and neurons is 

crucial, as an overly deep architecture can increase 

computation time and the risk of overfitting. Therefore, 

finding an optimal balance between model complexity and 

generalization is necessary. 

 

 
 

Figure 3. Basic architecture of the DNN for research data 
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In model validation, the DNN is evaluated based on two key 

metrics: loss and accuracy. Loss reflects how well the model 

predicts the expected target, while accuracy indicates the 

model's success rate in making correct predictions during the 

training and validation process. By plotting loss and accuracy 

against the number of epochs, we can analyze the model’s 

learning process, identify any patterns of overfitting, and 

evaluate the stability of the model’s performance. 

 

 
 

Figure 4. Validation graph of DNNs model 

 

In Figure 4, the first graph shows the training loss and 

validation loss (val_loss) of the DNN model over 50 epochs. 

At the beginning of the training, the loss values for both 

training and validation are relatively high, with an initial loss 

around 6.5. As the number of epochs increases, the loss 

decreases significantly, especially up to the 25th epoch. 

However, from epoch 25 to epoch 50, fluctuations in the 

validation loss can be observed, which may indicate potential 

overfitting. Meanwhile, the training loss remains more stable, 

suggesting that the model is learning the training data better 

than the validation data. 

In the second graph of Figure 4, the movement of accuracy 

and validation accuracy (val_accuracy) is shown, ranging 

from 0 to 0.1. The very low accuracy values indicate that the 

model has not yet achieved adequate predictive performance, 

although there is slight improvement in some epochs. The low 

accuracy values and the small difference between training and 

validation accuracy suggest that the model may be struggling 

to capture more complex data patterns, leading to underfitting. 

The model validation results are presented in Table 3. 

 

Table 3. Validation values of the DNN model 

 
Final Epoch Values 

Loss 1.4880 

Accuracy 56.52% 

Val_Loss 0.5989 

Val Accuracy 62.86% 

Total Accuracy 57.80% 

 

Based on Table 3, the final result of the DNN training 

yielded a total accuracy of 57.80%, indicating that the model 

was able to make correct predictions for 57.8% of the entire 

dataset. Although this value is not yet optimal, it demonstrates 

that the model successfully captured a significant portion of 

relevant patterns from the data. However, there is still room 

for performance improvement. 

Furthermore, the validation accuracy of 62.86% suggests 

that the model performed better on unseen data during the 

training process, indicating a reasonably good potential for 

generalization. Given these results, further steps should be 

taken to extend the model into a hybrid approach with an OLR 

model. 

 

3.2 Feature extraction 

 

Feature extraction is the process of extracting specific 

information or characteristics from raw data to produce a more 

meaningful and useful representation for further analysis or 

machine learning models. This process aims to identify 

important patterns in the data that can assist in solving 

problems or making predictions. 

 

 
 

Figure 5. Validation graph of the DNNs model 

 

Figure 5 illustrates the trend of values for ten features 

represented by labels H1 to H10 on the vertical axis (Value) 

against the data index on the horizontal axis (Index). The graph 

shows the fluctuation of values for each feature within a 

certain range of indices. The primary purpose of this 

visualization is to understand the patterns or anomalies 

occurring in the data for each feature, providing insights into 

significant interactions or changes within the observed dataset. 

Figure 4 shows that most features exhibit relatively stable 

values across the majority of indices, although there are some 

extreme peaks, particularly around index 50 and a few other 

points. Feature H2 appears to have higher values compared to 

other features on several occasions, indicating a potential 

imbalance or uniqueness in the data for that feature. Feature 

extraction was performed to isolate 10 distinct features (H1 to 

H10) from the dataset, each demonstrating value dynamics 

across specific indices. 

 

3.3 Hybrid DNNs ordinary logistic regression 

 

This study introduces a hybrid DNN and OLR approach 

designed to enhance performance in ordinal classification. 

This hybrid method combines the strengths of DNN in 

extracting complex non-linear features with the power of OLR 

in modeling linear relationships between variables, which 

aligns with the nature of ordinal data. 

In this approach, the DNN model serves as a feature 

extraction tool, where the hidden layers are used to filter and 

produce deeper feature representations from the input data. 

The features extracted by the DNN are then used as inputs for 

OLR, which subsequently predicts classification outcomes 

based on the linear structure of the data, now represented more 

informatively by the DNN. This process allows the OLR 
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model to work with data enriched by the DNN, thereby 

improving the overall prediction accuracy. This discussion 

outlines the significant contribution of DNN-extracted 

features to the performance of the OLR model and compares 

the effectiveness of this hybrid approach with standalone DNN 

and OLR approaches. The results show that the hybrid 

approach maximizes the model's ability to handle complex 

relationships, providing better classification accuracy on data 

with ordinal structure. The results of the hybrid model are 

presented in Table 4: 

 

Table 4. Results of the hybrid DNNs and ordinary logistic 

regression model 

 
Parameter Estimate Std. Error z-value p-value 

α1 4.641 4.331 1.072 - 

α2 5.597 4.346 1.518 - 

α3 7.607 4.358 1.746 - 

H1 0.0348 0.073 0.473 0.6361 

H2 0.446 0.577 0.773 0.4397 

H3 0.401 0.116 0.354 0.7233 

H4 -0.013 0.010 -0.133 0.1826 

H5 0.004 0.001 2.309 0.0209* 

H6 -0.064 0.047 -1.362 0.0173* 

H7 9.410 6.174 1.524 0.1275 

H8 -2.369 15.278 -0.155 0.8767 

H9 2.115 3.099 0.682 0.4951 

H10 -0.040 0.087 -0.460 0.5452 

 

Based on the analysis results in Table 4, the p-value 

indicates that the parameters nitrate and nitrite, specifically H₅ 

(Nitrate, P=0.0209) and H₆ (Nitrite, P=0.0173), are 

statistically significant at the 5% significance level, suggesting 

that these two parameters contribute significantly to the model. 

This means that the variables associated with these parameters 

have a meaningful impact on the prediction outcomes. 

Conversely, other parameters such as H₁, H₂, H₃, H₄, H₇, H₈, 

H₉, and H₁₀ have p-values greater than 0.05, indicating they are 

not statistically significant and do not have enough influence 

on the model in the context of this analysis. 

The analysis of groundwater quality in Yogyakarta City 

shows that the nitrate and nitrite parameters contribute 

significantly to the model used in the study. This is evident 

from the p-values of 0.0209 for nitrate (H₅) and 0.0173 for 

nitrite (H₆), both of which are below the 5% significance 

threshold. Therefore, these two parameters are statistically 

proven to affect groundwater quality in the region, indicating 

a strong correlation between nitrate and nitrite concentrations 

and the measured level of groundwater quality. 

The significance of nitrate and nitrite on groundwater 

quality in Yogyakarta City carries important implications for 

public health. High levels of nitrate and nitrite in groundwater 

are often associated with contamination from nitrogen-based 

agricultural fertilizers or from suboptimal waste management 

systems. Elevated levels of these substances can pose serious 

health risks, such as methemoglobinemia (blue baby 

syndrome) in infants and potential cancer risks in adults. 

Therefore, effective management of pollution sources that 

increase nitrate and nitrite concentrations should be a key 

priority for stakeholders in Yogyakarta. 

On the other hand, the analysis results show that other 

parameters, such as H₁, H₂, H₃, H₄, H₇, H₈, H₉, and H₁₀, do not 

have a significant impact on the groundwater quality 

prediction model. With p-values above 0.05, these parameters 

are considered to have insufficient influence in this analysis. 

However, this does not imply that these factors are 

unimportant; rather, the current focus for maintaining 

groundwater quality in Yogyakarta City should be more 

directed towards controlling nitrate and nitrite levels. 

To evaluate the performance of the DNNOLR model in 

classifying data, several evaluation metrics are used to assess 

how well the model distinguishes between positive and 

negative classes as shown in Table 5. These metrics include 

accuracy, precision, recall (sensitivity), specificity, and F1-

score, each providing a deeper insight into the model's 

effectiveness in making predictions. Below are the evaluation 

results of the model based on these metrics: 

 
Table 5. Classification performance metrics DNNOLR 

 
Metric Value 

Accuracy 92.23% 

Precision 86.90% 

Recall (Sensitivity) 87.64% 

Specificity 82.34% 

F1-score 88.12% 

 
The DNNOLR model demonstrates outstanding 

performance in classification tasks, as reflected in various 

evaluation metrics. With an accuracy rate of 92.23%, the 

model is capable of correctly classifying the majority of the 

data, indicating a relatively low error rate in overall 

predictions. Furthermore, the precision score of 86.90% 

signifies that a high proportion of positive predictions are 

indeed correct. This metric is particularly crucial in scenarios 

where minimizing false positive errors is essential, such as in 

fraud detection or sensitive medical diagnoses. Additionally, 

the F1-score of 88.12% reflects a well-balanced trade-off 

between precision and recall, ensuring that the model not only 

effectively detects positive cases but also maintains a low error 

rate. This suggests that the DNNOLR model exhibits a solid 

and balanced performance in classification tasks. 

 
3.4 Research findings 
 

In this study, the DNN model was implemented to predict 

the target variable based on ten input variables. The model was 

designed with two hidden layers, which serve to capture 

complex non-linear patterns in the data. Each neuron in the 

hidden layers is fully connected to the neurons in the 

subsequent layer through weights optimized during training 

using the backpropagation algorithm. The study results 

indicate that a deeper DNN architecture allows the model to 

learn more complex patterns. However, it also increases the 

risk of overfitting if not properly configured. Therefore, 

balancing model complexity and generalization ability is a 

crucial factor in developing an optimal model. 

During the validation phase, the model's performance was 

evaluated using loss and accuracy metrics. The validation 

graph shows a significant decrease in loss up to the 25th epoch, 

but after that, fluctuations in validation loss were observed. 

This phenomenon indicates potential overfitting, where the 

model learns very well on the training data but is less effective 

in generalizing to new data. Additionally, the low accuracy 

values, with a total accuracy of 57.80% and validation 

accuracy of 62.86%, suggest that the model is still 

experiencing underfitting. This means the model has not fully 

captured the complex patterns in the data, leading to 

suboptimal prediction results. 

Furthermore, this study proposes a hybrid DNNOLR 

approach to improve ordinal classification performance. This 
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approach combines the advantages of DNN in extracting non-

linear features with the strength of OLR in modeling linear 

relationships between variables. DNN is used as a feature 

extraction tool, where the hidden layers generate richer feature 

representations. These extracted features are then used as input 

for the OLR model, which performs classification based on the 

linear structure within the data. Through this approach, the 

hybrid model can capture complex patterns while leveraging 

linear relationships present in the dataset, thereby improving 

overall prediction accuracy. 

The analysis results of the hybrid model indicate that only 

two parameters significantly influence the model: H5 (nitrate) 

with a p-value of 0.0209 and H6 (nitrite) with a p-value of 

0.0173. These two parameters were statistically proven to have 

a substantial contribution to groundwater quality. In contrast, 

other parameters, such as H₁, H₂, H₃, H₄, H₇, H₈, H₉, and H₁₀, 

had p-values greater than 0.05, indicating that these variables 

did not have a statistically significant impact on the predictive 

model in this study. 

The advantage of this hybrid approach lies in its ability to 

capture complex patterns that were not well-identified in pure 

regression methods. The analysis results show that the feature 

transformation performed by DNN allows for better separation 

between groundwater quality categories. DNN extracts non-

linear relationships from the data, which are then processed by 

OLR to obtain clearer statistical interpretations. This 

combination enables the identification of more complex 

patterns in the distribution of nitrate and nitrite levels, as well 

as their interactions with other factors, thereby improving 

prediction accuracy. 

A deeper analysis of feature interactions reveals that nitrate 

and nitrite levels not only have individual influences but also 

exhibit synergistic patterns when combined with other 

environmental factors. The feature extraction results from 

DNN uncovered previously unseen patterns, such as the 

relationship between high nitrate levels and specific soil 

conditions that contribute to groundwater quality degradation. 

The model also identified that, in certain cases, nitrite levels 

could increase significantly under specific conditions that 

were not detected in simple linear models. Therefore, this 

approach allows for the identification of more specific risk 

factors that can be used for more effective groundwater 

management policies. 

The findings of this study also provide critical insights into 

groundwater quality in Yogyakarta City. The high levels of 

nitrate and nitrite in groundwater can be associated with the 

use of nitrogen-based agricultural fertilizers and suboptimal 

waste management systems. The increase in these substances 

poses serious health risks, such as methemoglobinemia (blue 

baby syndrome) in infants and cancer risks in adults due to 

contaminated water consumption. Therefore, the study 

underscores that controlling pollution sources, particularly 

those contributing to elevated nitrate and nitrite levels in 

groundwater, should be a top priority for stakeholders in 

Yogyakarta City. 

Despite its predictive accuracy advantages, the hybrid 

approach has several limitations that need to be considered. 

One of the main challenges is the higher computational 

resource requirement compared to simple regression methods. 

Training a DNN requires significant time and computational 

power, especially as the dataset size increases. If the dataset is 

limited, the model may struggle to produce stable and accurate 

predictions. Thus, the success of this approach highly depends 

on having a sufficiently large dataset to capture more 

representative patterns. 

Additionally, this model still carries the risk of overfitting 

if not properly controlled. Although DNN has the capability to 

capture complex relationships, if the dataset is insufficient or 

has an imbalanced distribution, the model may generate overly 

specific predictions for the training data, reducing its 

effectiveness on new data. Therefore, strategies such as 

regularization, dropout, or cross-validation should be 

implemented to ensure that the model retains good 

generalization capabilities. 

Although some parameters were not significant in the 

predictive model, this does not mean that these factors have no 

role in influencing groundwater quality. However, in the 

context of this study, the primary focus in groundwater quality 

preservation and management efforts should be directed 

toward controlling nitrate and nitrite levels. Preventive 

measures such as regular groundwater quality monitoring, 

regulating nitrogen-based fertilizer use, and improving waste 

treatment systems are strategic efforts that need to be 

implemented to mitigate negative health impacts on the 

community. 

Considering the advantages and limitations of this hybrid 

approach, future research directions could include exploring 

optimization methods to improve computational efficiency, 

applying regularization techniques to reduce overfitting risks, 

and collecting larger datasets to enhance model generalization. 

 

3.5 Model evaluation 

 

To improve prediction accuracy in classification models, 

this study proposes a hybrid DNNOLR approach. This 

approach leverages the capability of DNN to extract complex 

non-linear features from the input data, which are then used as 

inputs for the OLR model. The results from applying this 

hybrid model were compared to a traditional DNN model, 

showing a significant improvement in accuracy. This accuracy 

improvement reflects the hybrid model's ability to combine the 

strength of DNN in capturing complex patterns with more 

stable predictions through OLR. The model evaluation results 

are presented in Table 6. 

 

Table 6. Model comparison 

 
Model Accuracy 

DNN 57.80% 

DNNOLR 92.23% 

 

Table 6 shows the accuracy comparison between the DNN 

model and the hybrid DNNOLR model. The DNN model 

achieved an accuracy of 57.80%, indicating that it was able to 

correctly predict outcomes for approximately 57.80% of the 

test data. On the other hand, the hybrid DNNOLR model 

showed a significant accuracy improvement, achieving 

92.23%. This indicates that the hybrid approach, which 

combines the feature extraction capabilities of DNN with 

logistic regression-based predictions, provides a substantial 

performance boost compared to the standalone DNN model. 

 

3.6 Generalization of models and adaptation to different 

conditions 

 

For a model to be widely applicable across various 

conditions, it is crucial to consider data characteristics, such as 

numerical or categorical scales, variable distributions (which 
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may be normal or skewed), and dataset patterns, including 

seasonal trends in financial data or feature correlations in 

medical data. Training a model with data that reflects 

environmental variations enhances its ability to recognize 

complex patterns and mitigates the risk of overfitting. 

Transfer learning serves as an effective strategy to improve 

model adaptability. For instance, in the medical field, a deep 

learning model pre-trained on radiology image datasets can be 

repurposed to detect new disease types by fine-tuning with 

additional data. Similarly, in the financial industry, a model 

trained to detect suspicious transactions in one country can be 

adapted to another country's transaction patterns with minimal 

adjustments to local data. Using a pre-trained model as a 

foundation allows for targeted modifications on specific 

datasets from different conditions. This approach accelerates 

adaptation, reduces the need for training from scratch, and 

enhances model performance across various scenarios. 

Evaluating model performance on diverse datasets is 

essential to assess its reliability. Commonly used metrics 

include accuracy, precision, recall, and F1-score for 

classification tasks, as well as mean squared error (MSE) and 

root mean squared error (RMSE) for regression tasks. 

Additionally, the area under the curve (AUC) metric provides 

a comprehensive assessment of the model's ability to 

distinguish between positive and negative classes. The hybrid 

DNNOLR model, which integrates the feature extraction 

capabilities of DNN with the predictive stability of OLR, 

offers advantages over traditional models. 

A major challenge in deploying models across different 

regions is the variation in data distribution and feature 

characteristics. For example, in the healthcare sector, urban 

patient data may reflect disease patterns associated with air 

pollution, while rural data may be more related to limited 

access to medical care. Similarly, in the financial sector, 

digital transaction habits are more prevalent in urban areas, 

whereas remote regions may still rely on cash-based 

transactions. The hybrid DNNOLR model can adjust feature 

weights based on regional differences to improve prediction 

accuracy by accounting for these variations. For instance, in 

healthcare, disease patterns are influenced by environmental 

factors such as pollution and healthcare accessibility, while in 

finance, transaction behaviors vary by region. The hybrid 

DNNOLR model optimizes feature weights according to 

regional characteristics to enhance prediction accuracy. 

To improve generalization, additional training with more 

diverse datasets is necessary, as data variations help models 

recognize broader patterns and reduce bias toward specific 

datasets. By exposing the model to a wide range of training 

scenarios, it becomes more adaptive to real-world conditions 

and generates more accurate predictions on previously unseen 

data. Techniques such as transfer learning, data augmentation, 

ensemble learning, and hyperparameter tuning can aid in 

model adaptation to different conditions. With this approach, 

the hybrid DNNOLR model emerges as an adaptive solution 

capable of delivering accurate predictions across multiple 

industry sectors. 

Model parameter adjustments also play a crucial role in 

ensuring optimal performance when applied to datasets with 

different characteristics. In certain cases, parameters in both 

DNN and OLR may require modification to better align with 

new data distributions. Hyperparameter tuning techniques can 

help identify the most suitable parameter configurations for 

varying environmental conditions. In this study, methods such 

as Grid Search and Random Search are applied to optimize 

parameters, including the number of hidden layers, the number 

of neurons, and the learning rate in DNN, as well as 

regularization values in OLR. The impact of these 

optimizations on model generalization is evident in improved 

accuracy when tested on datasets with different characteristics, 

reducing the risk of overfitting and enhancing predictive 

performance in diverse environmental conditions beyond the 

initial training data. By integrating these strategies, the 

DNNOLR model demonstrates significant potential for 

application across different conditions while maintaining high 

prediction accuracy. 

 

 

4. CONCLUSIONS 

 

Based on the research findings, the DNN model 

successfully captures non-linear patterns in the data; however, 

it still faces challenges in significantly improving accuracy. 

Therefore, the hybrid DNN-OLR approach is implemented to 

address these limitations. The Hybrid DNN-OLR approach 

demonstrates that the features extracted by DNN can enhance 

the performance of OLR in ordinal classification. The analysis 

results indicate that the nitrate (H₅) and nitrite (H₆) parameters 

have a significant influence on the model, with p-values below 

0.05. This finding suggests that these two parameters play a 

crucial role in determining groundwater quality in Yogyakarta 

City. 

The study results show that the hybrid model significantly 

improves predictive accuracy compared to using either the 

standalone DNN or OLR models. The integration of DNN, 

which excels at capturing non-linear patterns, with OLR, 

which is reliable in probabilistic interpretation, produces a 

more comprehensive model for mapping factors affecting 

groundwater quality. Moreover, this model can be adapted for 

application in various other environmental quality prediction 

cases. These findings provide a significant contribution to 

efforts in groundwater quality mitigation and management 

amid increasing environmental pressures. 

Furthermore, this study offers deeper insights into how 

machine learning models can be integrated with conventional 

statistical techniques to enhance prediction accuracy in 

environmental issues. Through this hybrid approach, 

governments and stakeholders can better understand the key 

factors influencing groundwater quality and design more 

effective mitigation strategies. Future studies may focus on 

exploring additional features or improving model architecture 

to further enhance predictive performance and expand the 

application of this model to other regions with different 

environmental characteristics. 

For future research, integrating spatial aspects into 

predictive models could be a promising direction, considering 

the geographical distribution of environmental parameters and 

other spatial factors such as land use patterns and pollution 

sources in various areas. The use of GIS could facilitate 

visualization and further analysis of groundwater quality 

distribution, enabling policymakers to take more targeted 

actions based on specific locations affected by contamination. 

Additionally, this hybrid approach can be applied in other 

predictive contexts, such as air pollution monitoring or 

assessing the impact of climate change on water resources. 

Optimizing model architecture through techniques such as 

hyperparameter fine-tuning and advanced regularization 

methods could further enhance accuracy and reduce the risk of 

overfitting. 
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