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This paper introduces a new metaheuristic called fast slow optimization (FSO). It is 

enhanced with an adaptive technique. It behaves more exploitatively after facing 

improvement while becoming more explorative after facing stagnation. It contains two 

sequential stages in every iteration where the fast movement is conducted in the first 

stage and slow movement is conducted in the second stage. There are two options in 

every stage where the first option represents exploitative action, and the second option 

represents explorative action. In this paper, FSO is confronted with five other 

metaheuristics: hiking optimization (HO), golden search optimization (GSO), tailor 

optimization algorithm (TOA), osprey optimization algorithm (OOA), and orangutan 

optimization algorithm (OOA) to solve two use cases: 23 standard functions and four 

engineering design problems. The result shows supremacy of FSO in solving 23 

functions as it is better than HO, GSO, TOA, OOA, and OOA in 23, 22, 15, 12, and 12 

functions. Meanwhile, FSO is competitive in handling the four engineering design 

problems. 
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1. INTRODUCTION

Optimization problems are commonly found in engineering 

fields. Some optimization problems in power systems are 

economic load dispatch (ELD) problem [1], economic 

emission dispatch (EED) problem [2], unit commitment (UC) 

problem [3], power stability problem [4], and so on. Some 

optimization problems in manufacturing systems are flow 

shop scheduling problem [5], job shop scheduling problem [6], 

batch scheduling problem [7], and so on. Vehicle routing 

problem is a popular optimization problem with various 

derivatives, such as multi depot vehicle routing problem [8], 

capacitated vehicle routing problem [9], and pickup and 

delivery problem [10]. 

Objective functions are common in optimization problems. 

Some problems have a single objective while other problems 

have multiple objectives. ELD is an example of a single 

objective problem where its objective is minimizing the 

operational or fuel cost [1]. Meanwhile, EED is a multi-

objective problem where its objective is minimizing the fuel 

cost and emission cost [2]. 

Constraint is a common aspect in optimization problems. 

Constraint limits the possible or available solutions that can be 

picked during the optimization process. Some constraints are 

equality constraints while some others are inequality 

constraints. The example of equality constraint in ELD 

problem is that the total power output should be equal to the 

power demand [1]. Meanwhile, the example of inequality 

constraint in capacitated vehicle routing problem is that the 

quantity of the load may not exceed the vehicle capacity [9], 

or the travel time of each vehicle may not exceed certain time 

[10]. In some cases, a penalty is applied when the constraint is 

violated. 

There are a lot of new metaheuristics were introduced in 

recent years. Many of them are metaphor-inspired 

metaheuristics. On the other hand, a few of them are metaphor-

free metaheuristics. Some of these metaphor-inspired 

metaheuristics are HO [11], TOA [12], orangutan optimization 

algorithm (OOA) [13], osprey optimization algorithm (OOA) 

[14], giant armadillo optimization (GAO) [15], fennec fox 

optimization (FFO) [16], crayfish optimization algorithm 

(COA) [17], prairie dog optimization (PDO) [18], Komodo 

mlipir algorithm (KMA) [19], marine predator algorithm 

(MPA) [20], swarm magnetic optimizer (SMO) [21], horse 

herd optimization (HHO) [22], and so on. Meanwhile, the 

example of metaphor-free metaheuristics is quad tournament 

optimization (QTO) [23], GSO [24], fully informed search 

algorithm (FISA) [25], subtraction average based optimization 

(SABO) [26], average subtraction-based optimization (ASBO) 

[27], and so on. 

Despite the massive development of metaheuristics and the 

implementation of metaheuristics in vast and various 

engineering optimization problems, the challenges and 

unresolved problems remain exist. The existence of non-free-

lunch (NFL) theory states that there is not any absolute 

supreme technique that can handle all problems superiorly. 

Meanwhile, the adaptive approach is less considered in many 

techniques as they focus on exploration and exploitation. 

Whereas an adaptive approach is important so that the 

technique can take more appropriate action when it faces 
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improvement and stagnation. Metaphors are also criticized in 

the development of metaheuristics. The existence of 

metaphors is often blamed as the hiding mechanism of mere 

or trivial novelty. 

Based on these unresolved problems and challenges, this 

work is aimed at introducing a new technique called FSO. FSO 

is constructed based on swarm intelligence so that it contains 

a certain number of autonomous agents that are active in 

improving the solution autonomously in every iteration. FSO 

also employs an adaptive approach so that it behaves 

differently when it faces improvement and stagnation. The 

terms fast and slow means FSO conducts both fast movement 

(long step size) and slow movement (short step size). 

Based on its explanation, below are the scientific 

contributions of FSO. 

 

• This paper introduces a new metaphor-free called 

FSO. 

• A new adaptive approach is employed in FSO. 

• FSO employs both fast movement and slow 

movement in every iteration. 

• The performance of FSO is assessed to challenge it 

to solve 23 standard functions representing the 

unconstrained problems and four engineering design 

problems representing the constrained problems. 

 

 

2. RELATED WORKS 

 

Exploration and exploitation are two standard actions in 

metaheuristic techniques. There are some definitions 

regarding exploitation and exploration. Exploitation can be 

defined as searching near the recent solution or location [14]. 

On the other hand, exploration means searching for a broader 

area within the solution space [14]. The objective of 

exploitation is to enhance the quality of the recent solution. On 

the other hand, the objective of exploration is avoiding from 

being entrapped in the recent solution. 

Both actions and activities are important for any technique 

as they employ stochastic optimization. It means there is not 

any guarantee that the optimization process will end with 

finding the actual optimal solution. Moreover, it is not 

guaranteed that the current search will provide improvement. 

For this reason, it makes sense that searching near the current 

location may provide better opportunities for improvement 

rather than searching randomly within space without any 

clues. It also makes sense that moving toward the location or 

solution whose quality is better will provide better opportunity 

for improvement. This activity can be called exploitation. 

Based on the previous statement, a better opportunity for 

improvement is not equal to a guarantee for improvement. On 

the other hand, this activity may push the optimization process 

into the area known as the local optimal [14]. This 

circumstance makes exploration become rational as the 

optimization process tries to find other solutions within space 

that is far from the current solution or against the trend. 

Exploration becomes more important especially when the 

optimization process fails to improve for certain trials. 

The genetic algorithm (GA) is an example of classic or old 

technique that employs both exploitation and exploration in a 

clear separation. The exploitation is conducted through 

crossover while exploration is conducted through mutation 

[28]. During crossover, some individuals exchange their 

solutions to create new solutions called offsprings. It means 

that the value of the offsprings is not far from their parents. 

Meanwhile, certain rules are applied to determine which 

individuals are selected as parents. In many cases, individuals 

whose quality is high have a better chance of being selected as 

parents. But it does not guarantee that high quality individuals 

will be selected as parents. Low quality individuals still have 

this chance although the probability is low to give diversity. 

Meanwhile, through mutation, a fraction of the solution is 

randomized within space as exploration. 

Simulated annealing (SA) is an example of an old technique 

that focuses on exploitation. SA in a single entity 

metaheuristic that conducts neighborhood search. As is known 

in neighborhood search, this search is slow movement search 

to maintain accuracy. The consequence of this strategy is that 

high maximum iteration is needed especially when the 

solution space is vast. Exploration is accommodated by 

employing a conditional acceptance rule. A better solution is 

accepted immediately. On the other hand, a worse solution still 

can be accepted. But this opportunity decreases as the iteration 

goes on. 

KMA is an example of a new technique that is dominated 

by exploitation. As swarm-based metaheuristic, KMA consists 

of a population of agents. In every iteration, this swarm is split 

into three groups: high quality agents, moderate quality agents, 

and low-quality agents [19]. For the first group, an agent tends 

to move toward other agents (exploitation) but still can avoid 

them (exploration) so that it is called exploitation dominance. 

For the second group, there is a 50 percent probability that an 

agent performs crossover with the highest quality agent 

(exploitation) and 50 percent probability to perform full 

random search (exploration). It means that there is a balance 

between exploitation and exploration for the second group. For 

the third group, all agents move toward the resultant of high-

quality agents. It means that full exploitation is employed in 

the third group. 

Zebra optimization algorithm (ZOA) is an example of a new 

technique that performs balance exploration-exploitation. The 

directed search is conducted in the first stage [29]. There are 

two options that will be selected stochastically with equal 

opportunity. The first option is the movement toward the best 

agent as it represents exploitation. The second option is the 

movement relative to a randomly chosen agent where the 

direction is determined based on the relative quality between 

the agent and the randomly chosen agent. This second option 

represents exploration. The neighborhood search is conducted 

in the second stage [29]. But this neighborhood search cannot 

be called fully exploitative. In the early iteration, the local 

space is wide so that it can be seen as exploration. Then the 

local space size narrower as iteration goes on. It means that in 

the late iteration, it can be seen as exploitation. 

Coati optimization algorithm (COA) is also an example of 

a new technique that performs a balance exploration-

exploitation. It also consists of two stages in every iteration. 

Unlike ZOA, that employs stochastic decision-making 

mechanism in the first stage, COA employs this balancing 

strategy through swarm split. Half of the swarm performs the 

movement toward the best agent [30], and it represents 

exploitation. On the other hand, half of the swarm performs 

the movement relative to a target [30] that is generated within 

the space [30], and it represents exploration. 

One big problem in metaphor-inspired techniques is that 

they often hide their actual methods and promote the imitation 

of the behavior of their metaphors as a novel approach. For 

example, the splitting of population into three groups in KMA 
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[19] (big males, females, and small males) is splitting the 

population into three groups based on the quality of the 

individuals. Meanwhile, the motion toward the best agent has 

different terms in COA and ZOA. In COA, this motion is 

called the coati hunts the iguana that is still on the tree [30]. In 

ZOA, this motion is called the zebras follows the pioneer zebra 

during foraging [29]. It means that both iguana on the tree and 

pioneer zebra refer to the same entity which is the best agent. 

Meanwhile, the local search with reduced space during 

iteration has multiple names. In COA, it is called escaping 

from the predators [30]. In ZOA, it is called zebra escapes 

from the lion [29]. In OOA, it is called bringing the fish to the 

appropriate location [14]. 

Meanwhile, the metaphor-free technique faces difficulty in 

giving appropriate and easy listening terms for its mechanism. 

For example, GSO is constructed based on the directed search 

toward the local best and the global best [24]. This search is 

like the MPA [20]. But the step size calculation is different. 

While MPA employs levy movement and Brownian motion 

[20], GSO employs sinusoid distribution [24]. In MPA, the 

mechanism is called predator catching the prey. This 

mechanism is also found in COA [17]. In COA, the 

mechanism is called cave which is the middle between the 

local best and the global best. In this circumstance, the 

metaphor-inspired techniques seem better but on the other 

hand, the metaphor-free techniques provide fair and clear 

explanation. 

Based on this explanation, there are a lot of mechanisms to 

accommodate both exploitation and exploration. Some 

metaheuristics may be exploration dominant while some 

others are exploitation dominant. Some techniques may try to 

balance exploitation and exploration. These mechanisms are 

developed based on static setting, for example swarm split, 

iteration, or relative quality within the swarm. Unfortunately, 

many of these mechanisms do not consider the improvement 

status of the process. In other words, the metaheuristics that 

determine their action, exploration or exploitation, based on 

the improvement status is rare to find. This circumstance 

becomes the motivation of this work to construct a new 

technique that employs adaptive behavior where exploration 

or exploitation is determined based on the improvement status. 

 

 

3. MODEL 

 

FSO is constructed based on the combination of fast motion 

and slow motion. The fast motion is interpreted as the agent 

moves with long step size while the slow motion is interpreted 

as the agent moves with short step size. Fast motion is 

designed to move toward better solutions as fast as possible. 

On the other hand, slow motion is designed to take accurate 

motion. 

FSO is also designed as an adaptive technique. In other 

words, an adaptive approach is employed to FSO so that it 

takes different actions when it faces improvement or 

stagnation. Improvement means the agent can find a better 

solution in the previous movement. On the other hand, 

stagnation means the agent fails to find a better solution in the 

previous movement. When it faces improvement, agents tend 

to be more exploitative. On the other hand, agents tend to be 

more explorative when it faces stagnation. 

Each agent performs two stages in every iteration. The first 

stage is for fast motion while the second stage is for slow 

motion. Meanwhile, there are two options that can be chosen 

in every stage. The first option is the exploitative movement 

while the second option is the exploration movement. The 

action in the first stage is taken based on the improvement 

status in the second stage of the previous iteration. Meanwhile, 

the action in the second stage is taken based on the 

improvement status in the first stage of the same iteration. 

There are two options in the first stage. The first option is 

the combination of the motion toward the best agent and the 

motion toward a randomly chosen better agent. This first 

option represents the exploitative movement of the first stage. 

The second option is the combination of the motion toward 

two randomly chosen better agents. This second option 

represents the exploration of the first stage. 

There are two options in the second stage. The first option 

is motion toward the best agent. This first option represents the 

exploitative movement of the second stage. The second option 

is motion relative to a randomly chosen agent. This second 

option represents the explorative movement of the second 

stage. 

A stringent acceptance approach is applied in FSO. This 

approach is applied in both stages. It means that the candidate 

in every stage can replace the current value of the agent only 

if this candidate offers improvement. 

The formalization of FSO is provided in both algorithm and 

mathematical formulation. The algorithm is provided in 

pseudocode as it is presented in algorithm 1 to algorithm 4. 

Meanwhile, the mathematical formulation of FSO is presented 

in Eq. (1) to Eq. (13). The notations that are used in this paper 

are provided in nomenclature. 

There are four algorithms presented in this paper. Algorithm 

1 provides the general process of FSO. Algorithm 2 provides 

the process during initialization. Algorithm 3 provides the 

process during the first stage. Algorithm 4 provides the 

process during the second stage. 

FSO consists of two phases as shown in algorithm 1. The 

first phase is the initialization as presented in algorithm 1 from 

line 2 to line 4. The second phase is the iteration as presented 

in algorithm 1 from line 5 to line 10. The best agent becomes 

the final solution as presented in line 11. 

The process during initialization of each agent is formalized 

using algorithm 2. It consists of three processes. The first 

process is the construction of the initial value of an agent using 

Eq. (1) where this initial solution or location is distributed 

uniformly within space. Then. The updating of the best agent 

is conducted by comparing the best agent with the related 

agent as formulated using Eq. (2). The third process is setting 

the initial status of the agent to 1 using Eq. (3). 

 

𝑎𝑖,𝑗 = 𝑏𝑙𝑜,𝑗 + 𝑟1(𝑏ℎ𝑖,𝑗 − 𝑏𝑙𝑜,𝑗) (1) 

 

𝑎𝑏𝑒𝑠𝑡
′ = {

𝑎𝑖 , 𝑜(𝑎𝑖) < 𝑜(𝑎𝑏𝑒𝑠𝑡)
𝑎𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒

 (2) 

 

𝑠𝑖 = 1 (3) 

 

The process in the first stage is formalized using algorithm 

3. It consists of six processes. The first process is the 

construction of the set consisting of all better agents plus the 

best agent using Eq. (4). The second process is selecting a 

randomly chosen better agent using Eq. (5). The third process 

is generating the first candidate using Eq. (10). The fourth 

process is updating the status using Eq. (12). The fifth process 

is updating the agent based on stringent acceptance using Eq. 

(13). The sixth process is updating the best agent using Eq. (2). 
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𝐴𝑏𝑒𝑡,𝑖 = {∀𝑎𝑘 ∈ 𝐴, 𝑜(𝑎𝑘) < 𝑜(𝑎𝑖)} ∪ 𝑎𝑏𝑒𝑠𝑡 (4) 
 

𝑎𝑠1,𝑖 = 𝑟𝑝(𝐴𝑏𝑒𝑡) (5) 
 

𝑎𝑠2,𝑖 = 𝑟𝑝(𝐴) (6) 
 

𝑚1,𝑖,𝑗 = 𝑎𝑏𝑒𝑠𝑡,𝑗 − 𝑟2𝑎𝑖,𝑗 (7) 
 

𝑚2,𝑖,𝑗 = 𝑎𝑠1,𝑖,𝑗 − 𝑟2𝑎𝑖,𝑗 (8) 
 

𝑚3,𝑖,𝑗 = {
𝑎𝑠2,𝑖,𝑗 − 𝑟2𝑎𝑖,𝑗 , 𝑜(𝑎𝑠2,𝑖) < 𝑜(𝑎𝑖)

𝑎𝑖,𝑗 − 𝑎𝑠2,𝑖,𝑗 , 𝑒𝑙𝑠𝑒
 (9) 

 

𝑐1,𝑖,𝑗 = {
𝑎𝑖,𝑗 + 𝑟1𝑚1,𝑖,𝑗 + 𝑟1𝑚2,𝑖,𝑗 , 𝑠𝑖 = 1

𝑎𝑖,𝑗 + 𝑟1𝑚2,𝑖,𝑗 + 𝑟1𝑚2,𝑖,𝑗
′ , 𝑒𝑙𝑠𝑒

 (10) 

 

𝑐2,𝑖,𝑗 = {
𝑎𝑖,𝑗 + 𝑟1𝑚1,𝑖,𝑗 , 𝑠𝑖 = 1

𝑎𝑖,𝑗 + 𝑟1𝑚3,𝑖,𝑗 , 𝑒𝑙𝑠𝑒
 (11) 

 

𝑠𝑖 = {
1, 𝑜(𝑐𝑖) < 𝑜(𝑠𝑖)

0, 𝑒𝑙𝑠𝑒
 (12) 

 

𝑎𝑖
′ = {

𝑐𝑖 , 𝑜(𝑐𝑖) < 𝑜(𝑎𝑖)
𝑎𝑖 , 𝑒𝑙𝑠𝑒

 (13) 

 

The process in the second stage is formalized using 

algorithm 4. It consists of five processes. The first process is 

selecting a randomly chosen agent using Eq. (6). The second 

process is generating the second candidate using Eq. (11). The 

third process is updating the status using Eq. (12). The fourth 

process is updating the agent based on stringent acceptance 

using Eq. (13). The fifth process is updating the best agent 

using Eq. (2). 

Based on this explanation, the balancing between 

exploitation and exploration in FSO is conducted in several 

mechanisms. The first stage represents exploration as it 

conducts fast motion while the second stage represents 

exploitation as it conducted slow motion. The step size of the 

first stage tends to double than the second stage. Meanwhile, 

the first option in each stage represents exploitation while the 

second option represents exploration based on the target or 

reference. In this context, the difference between exploitation 

and exploration at the stage level is based on the step size. On 

the other hand, the difference between exploitation and 

exploration at the option level is based on the target. Balancing 

in the stage level is designed to handle the trade-off between 

speed and accuracy. On the other hand, balancing in the option 

level is designed to handle the trade-off between depth and 

broad regarding the circumstance, whether improvement or 

stagnation. This approach makes FSO different from other 

techniques. 

 

Algorithm 1: General process of FSO 

1 start 

2 for i=1 to n 

3 initialize ai (see algorithm 2) 

4 end for 

5 for t=1 to tmax 

6 for i=1 to n 

7 perform first stage (see algorithm 3) 

8 perform second stage (see algorithm 4) 

9 end for 

10 end for 

11 return abest 

12 stop 

Algorithm 2: Initialization of agent 

1 start 

2 set initial value of ai using Eq. (1) 

3 update abest using Eq. (2) 

4 set si using Eq. (3) 

5 stop 

 

Algorithm 3: First stage 

1 start 

2 construct Abet using Eq. (4) 

3 select as1 using Eq. (5) 

4 generate c1 using Eq. (10) 

5 update si using Eq. (12) 

6 update ai using Eq. (13) 

7 update abest using Eq. (2) 

8 stop 

 

Algorithm 4: Second stage 

1 start 

2 select as1 using Eq. (6) 

3 generate c1 using Eq. (11) 

4 update si using Eq. (12) 

5 update ai using Eq. (13) 

6 update abest using Eq. (2) 

7 stop 

 

 

4. EXPERIMENT AND RESULT 

 

This section presents an experiment that is conducted to 

assess the performance of FSO. There are two use cases in this 

paper. The first use case is the set of 23 functions. The first use 

case represents an unconstrained problem. The second use 

case is a set of four engineering design problems. This second 

use case represents the constrained problem. 

Five new metaheuristics are chosen as benchmarks. These 

five techniques include HO [11], GSO [24], TOA [12], OOA 

[14], and OOA [13]. The first two techniques represent 

metaheuristics that employ stringent acceptance rule. On the 

other hand, the last three techniques represent metaheuristics 

that do not employ stringent acceptance rule. In both cases, the 

setting for all metaheuristics including FSO and its 

benchmarks is the same. The swarm size is set to 5. The 

maximum iteration is set to 20. 

In this paper, all benchmarks are new techniques. 

Meanwhile, some popular classic techniques such as GA, 

PSO, grey wolf optimization (GWO), or SA are excluded from 

the benchmarks. There are two reasons due to this decision. 

First, many recent studies that introduce new techniques 

assessed the performance of their proposed technique with the 

new existing techniques to ensure the advancement. Second, 

in many studies, these old techniques have been beaten many 

times with significant gaps. 

The set of 23 functions is chosen due to its coverage and its 

popularity. It consists of 13 high dimension functions where 

the dimension of the problem can be only one or expanded to 

thousands. Among these high dimension functions, the first 

seven functions are unimodal where each function contains 

only one optimal solution, and the last six functions are 

multimodal where each function contains multiple optimal 

solutions. The first seven functions are designed to assess 

exploitation capability while the last six functions are designed 

to assess the exploration capability. This set also contains ten 

fixed dimension functions. All these ten functions are 
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multimodal but more ambiguous based on their terrain and 

steep slopes or holes. These functions are designed to assess 

the balancing capability between exploitation and exploration. 

The detailed description of this set of 23 functions can be 

found in references [24, 29]. 

The result of the assessment of the first use case is presented 

in Tables 1-4. Table 1 to Table 3 present the raw result that 

contains the average score, standard deviation, and the mean 

rank. Moreover, Table 4 provides the summary result 

representing the supremacy of FSO compared to its 

benchmarks. This summary is clustered based on the group of 

functions. The illustration of the average score is also 

presented in Figure 1. 

Table 1 shows the supremacy of FSO compared to its 

benchmarks in solving high dimension unimodal functions. 

FSO performs the best of all seven functions (F1 to F7). There 

are four techniques that achieve the best result in solving F2 

which are TOA [12], OOA [14], OOA [13], and FSO. All these 

techniques employ stringent acceptance. GSO becomes the 

worst technique while HO becomes the second worst 

technique. GSO [24] performs the worst result in six functions 

(F1 to F6) while HO [11] performs the second worst in these 

six functions. The disparity between the best result and the 

worst result is wide in all seven functions. 

Table 2 shows that FSO is still superior in solving high 

dimension multimodal functions. FSO provides the best result 

in solving five functions (F9 to F13). FSO provides the third-

best result in solving F8. GSO provides the worst result in four 

functions (F10 to F13). Meanwhile, HO provides the worst 

result in solving two functions (F8 and F9). The disparity 

between the best technique and worst technique is wide in five 

functions (F9 to F13). On the other hand, this disparity is 

narrow or not significant in solving F8. 

 

    

F1 F2 F3 F4 

    

F5 F6 F7 F8 

    

F9 F10 F11 F12 

    

F13 F14 F15 F16 
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F17 F18 F19 F20 

   

 

F21 F22 F23  
 

Figure 1. Visualization of average score on handling 23 functions 

 

Table 1. Result on handling the seven high dimension unimodal functions 
 

F Parameter HO [11] GSO [24] TOA [12] OOA [14] OOA [13] FSO 

1 

mean 6.7067×101 3.0956×104 2.2045 0.2264 0.3089 0.0000 

std. deviation 5.0243×101 7.4281×103 1.3525 0.2239 0.2672 0.0000 

mean rank 5 6 4 2 3 1 

2 

mean 3.1214×101 1.9480×1039 0.0000 0.0000 0.0000 0.0000 

std. deviation 1.3941×102 5.3946×1039 0.0000 0.0000 0.0000 0.0000 

mean rank 5 6 1 1 1 1 

3 

mean 2.1581×103 5.5785×104 2.2421×103 1.7030×103 4.2801×103 0.0317 

std. deviation 3.1886×103 1.9445×104 2.5574×103 1.8712×103 4.6606×103 0.0701 

mean rank 3 6 4 2 5 1 

4 

mean 3.2024 5.8114×101 1.2317 0.9497 0.7425 0.0003 

std. deviation 1.1170 7.9856 0.5935 0.4730 0.4874 0.0001 

mean rank 5 6 4 3 2 1 

5 

mean 7.1969×104 6.2250×107 5.7483×101 3.2537×101 3.3391×101 2.8958×101 

std. deviation 7.1311×104 2.9263×107 2.1245×101 4.8084 3.8406 0.0219 

mean rank 5 6 4 2 3 1 

6 

mean 1.0333×102 2.9838×104 9.3620 6.1358 6.4017 6.4269 

std. deviation 6.5143×101 7.0270×103 3.4739 0.5216 0.6620 0.4435 

mean rank 5 6 4 1 2 3 

7 

mean 2.3896×102 2.8586×101 0.0382 0.0341 0.0497 0.0139 

std. deviation 1.2022×102 1.3990×101 0.0177 0.0191 0.0387 0.0090 

mean rank 6 5 3 2 4 1 
 

Table 2. Result on handling the six high dimension multimodal functions 
 

F Parameter HO [11] GSO [24] TOA [12] OOA [14] OOA [13] FSO 

8 

mean -9.7116×101 -2.3663×103 -2.3485×103 -3.2548×103 -2.8741×103 -2.4280×103 

std. deviation 1.9157×101 6.2863×102 6.2800×102 5.0664×102 3.1792×102 5.0390×102 

mean rank 6 4 5 1 2 3 

9 

std. deviation 3.4396×102 2.9051×102 1.1579×102 6.2866 6.5429×101 3.2295×101 

range 3.8061×101 4.2971×101 6.4522×101 9.8475 8.4568×101 6.2440×101 

mean rank 6 5 4 1 3 2 

10 

mean 6.0209 1.8791×101 0.5285 0.1124 1.1740 0.0000 

std. deviation 0.9102 0.8264 0.2726 0.0419 4.2713 0.0000 

mean rank 5 6 3 2 4 1 

11 

mean 0.6340 2.5806×102 0.5397 0.1375 0.1657 0.0265 

std. deviation 0.2743 8.1853×101 0.2416 0.1880 0.1943 0.0524 

mean rank 5 6 4 2 3 1 

12 

mean 6.6508 7.3570×107 1.3137 1.0278 0.9762 1.1564 

std. deviation 2.6183 4.8881×107 0.2403 0.2589 0.2699 0.2484 

mean rank 5 6 4 2 1 3 

13 

mean 4.5890 2.2624×108 3.8484 3.3123 3.4053 3.1358 

std. deviation 2.7921 1.2377×108 0.3737 0.2001 0.2233 0.1360 

mean rank 5 6 4 2 3 1 
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Table 3. Result on handling the ten fixed dimension multimodal functions 

 
F Parameter HO [11] GSO [24] TOA [12] OOA [14] OOA [13] FSO 

14 

mean 2.5435×101 1.2547×101 7.9703 8.7213 1.0218×101 1.0583×101 

std. deviation 4.7701×101 7.5718 3.8744 4.4183 3.9105 3.6507 

mean rank 6 5 1 2 3 4 

15 

std. deviation 0.5175 0.0437 0.0074 0.0077 0.0052 0.0154 

range 0.8961 0.0307 0.0105 0.0157 0.0058 0.0311 

mean rank 6 5 2 3 1 4 

16 

mean 2.1009 0.0667 -1.0263 -1.0281 -1.0239 -1.0164 

std. deviation 3.4114 3.8215 0.0132 0.0054 0.0076 0.0185 

mean rank 6 5 2 1 3 4 

17 

mean 2.9546 1.5031 1.8591 0.4003 0.4052 1.8957 

std. deviation 2.6251 3.2795 3.7882 0.0029 0.0087 3.2231 

mean rank 6 3 4 1 2 5 

18 

mean 8.8197×102 4.6057×101 1.4926×101 1.2785×101 3.2036 2.5756×101 

std. deviation 9.5148×102 1.5648×102 2.0776×101 2.3371×101 0.2914 2.7426×101 

mean rank 6 5 3 2 1 4 

19 

mean -0.0356 -0.0116 -0.0495 -0.0495 -0.0495 -0.0495 

std. deviation 0.0178 0.0142 0.0000 0.0000 0.0000 0.0000 

mean rank 6 5 1 1 1 1 

20 

std. deviation -0.5893 -2.3039 -2.7243 -3.0198 -3.1278 -2.7834 

range 0.6830 0.6419 0.3777 0.1773 0.0863 1.1504 

mean rank 6 5 4 2 1 3 

21 

mean -0.7009 -1.9127 -2.9500 -2.8517 -4.3461 -2.7834 

std. deviation 0.4990 1.5459 1.5347 1.3631 1.0897 1.1504 

mean rank 6 5 2 3 1 4 

22 

mean -0.8014 -1.5237 -2.5544 -2.9293 -4.5219 -3.0006 

std. deviation 0.3902 0.7377 1.2049 1.2045 1.6423 1.4554 

mean rank 6 5 4 3 1 2 

23 

mean -0.9625 -1.6093 -2.6118 -3.3261 -3.8362 -3.0161 

std. deviation 0.5681 0.7129 1.4392 2.0399 1.4924 1.3360 

mean rank 6 5 4 2 1 3 

 

Table 4. Supremacy of FSO among its benchmarks 

 

Cluster 
HO 

[11] 

GSO 

[24] 

TOA 

[12] 

OOA 

[14] 

OOA 

[13] 

1 7 7 6 6 6 

2 6 6 6 5 5 

3 10 9 3 2 2 

Total 23 22 15 15 15 

 

Table 5. Number of constraints and dimension size 

 

Design Problem 
Number of 

Constraints 

Dimension 

Size 

pressure vessel 4 4 

speed reducer 11 7 

welded beam 7 4 

spring 4 3 

 

Table 3 shows that FSO is still competitive but not superior 

in solving ten fixed dimension multimodal functions. FSO is 

twice on the first rank (F16 and F19), once on the second rank 

(F18), twice on the third rank (F14 and F17), four times on the 

fourth rank (F14, F20, F22, and F23), and once on the fifth 

rank (F21). HO becomes the worst technique as it is on the 

sixth rank in all ten functions while GSO becomes the second 

worst technique as it is on the fifth rank also in eight functions. 

The disparity between the best and the worst techniques is 

narrow in eight functions (F14, F16, F17, F19 to F23) and 

moderate in two functions (F15 and F18). This result shows 

the tight competition among techniques in this group of 

functions. 

Table 4 shows the supremacy summary of FSO compared 

to its benchmarks. FSO is absolute superior to HO as it is better 

than HO in all 23 functions. Meanwhile, FSO is superior to 

GSO in 22 functions. It means that FSO performs better than 

HO and GSO in all three group of functions, both unimodal 

and multimodal ones. Meanwhile, FSO is superior to TOA 

[12], OOA [14], and OOA [13] in solving high dimension 

functions. FSO is better than TOA [12], OOA [14], and OOA 

[13] in 12, 11, and 11 high dimension functions. 

Unfortunately, FSO is inferior to TOA, OOA, and OOA in 

solving these fixed dimension functions although the disparity 

is narrow. 

The second use case is a set of four engineering design 

problems. These problems include pressure vessels, speed 

reducers, welded beam, and spring design problems. These 

four problems represent constrained optimization problems so 

that the solution can be put independently in space as the 

solution in certain dimensions depends on the solution in other 

dimensions. The number of constraints and dimensions of each 

design problem is provided in Table 5. Meanwhile, the 

detailed description of each problem including the objective 

function, space, and constraints can be found in many studies 

[29, 30]. 

The quadratic penalty function is provided to handle the 

constraint. The penalty is applied to the violation of the 

constraints. The value of the penalty increases quadratically to 

the linear increase of the constraint violation. It means the 

penalty will reduce the quality of the solution whenever the 

solution is created with constraint violation as collateral. 

Table 6 shows the result of solving the pressure vessel 

design problem. FSO becomes the second-best technique 

while OOA [13] becomes the best technique. HO becomes the 

worst technique. The disparity between the best and worst 

techniques is wide. The disparity between FSO and OOA [13] 

is narrow while the disparity between FSO and HO is wide.
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Table 6. Result in solving pressure vessel design problem 
 

Metaheuristic Mean Rank 

HO [11] 8.2960×1012 6 

GSO [24] 7.0617×105 5 

TOA [12] 2.5932×103 4 

OOA [14] 4.2352×102 3 

OOA [13] 9.6887 1 

FSO 9.7770 2 

 

Table 7. Result in solving speed reducer design problem 
 

Metaheuristic Mean Rank 

HO [11] 3.5955×103 3 

GSO [24] 3.7416×103 6 

TOA [12] 3.5573×103 2 

OOA [14] 3.6135×103 5 

OOA [13] 3.5410×103 1 

FSO 3.6086×103 4 

 

Table 8. Result in solving welded beam design problem 

 
Metaheuristic Mean Rank 

HO [11] 3.4528×1011 6 

GSO [24] 9.9702×109 5 

TOA [12] 1.9500×109 3 

OOA [14] 2.8511×109 4 

OOA [13] 1.2966×108 1 

FSO 5.6165×108 2 

 

Table 9. Result in solving tension/compression spring design 

problem 
 

Metaheuristic Mean Rank 

HO [11] 7.3642×102 6 

GSO [24] 6.7858×101 5 

TOA [12] 8.4084 3 

OOA [14] 3.9753 1 

OOA [13] 6.2541 2 

FSO 1.4016×101 4 

 

Table 7 shows the result of solving the speed reducer design 

problem. FSO becomes the fourth best while OOA [13] 

becomes the best technique. GSO becomes the worst 

technique. The disparity between OOA and GSO is narrow. It 

means the distance between FSO and OOA is narrow. 

Meanwhile the disparity between FSO and GSO is also 

narrow. This result also shows that the competition among 

techniques in solving the speed reducer design problem is 

tight. 

Table 8 shows the result of solving the welded beam design 

problem. FSO becomes the second best after OOA [13] as the 

best. Meanwhile, HO becomes the worst technique. The 

disparity between OOA and HO is wide. The disparity 

between FSO and OOA is wide. Last, the disparity between 

FSO and HO is also wide. It means that FSO is in the middle 

between the best and worst techniques. 

Table 9 shows the result of solving the spring design 

problem. FSO becomes the fourth best after OOA [14] as the 

best. HO becomes the worst technique. The disparity between 

OOA and HO is wide. The disparity among four 

metaheuristics (TOA [12], OOA [14], OOA [13], and FSO) is 

narrow. 
 

 

5. DISCUSSION 
 

Overall, the result shows that FSO is acceptable and 

competitive as a new metaheuristic. This competitiveness can 

be found in both cases, the set of 23 standard functions as the 

unconstrained problem and the set of 4 engineering design 

problems as the constrained problem. FSO can find the quasi-

optimal solution to all problems. 

The result in solving the 23 standard functions shows the 

accepted capability of FSO. FSO has superior exploitation 

capability due to its supremacy in the high dimension 

unimodal functions. FSO also has superior exploration 

capability due to its supremacy in the high dimension 

multimodal functions. Meanwhile, the capability of FSO in 

balancing the exploitation and exploration is competitive 

compared to TOA, OOA, and OOA; and superior to HO and 

GSO.  

The superiority of FSO compared to its benchmarks in 

handling high dimension functions comes from its nature that 

employs directed search twice in full step size in every 

iteration. GSO and HO employ the directed search once as it 

they are single search techniques. OOA [14] and OOA [13] 

employ directed search once in their first stage. Meanwhile, 

TOA employs directed search twice, but the second search is 

conducted with very slow motion in the later iteration. 

On the other hand, the less competitiveness of FSO 

compared to TOA [12], OOA [14], and OOA [13] in handling 

the fixed dimension functions comes from the step size during 

the iteration. In general, FSO performs full length step size in 

both searches, where the step size of the first stage is double 

than the second stage. On the other hand, TOA [12], OOA 

[14], and OOA [13] employes the declining step size during 

their second stage. It is shown that highly accurate motion is 

needed to overcome the fixed dimension functions. 

Fortunately, the disparity between FSO and these three 

techniques in overcoming the fixed dimension functions is 

narrow. 

The result in solving the engineering design problems 

shows the accepted capability of FSO in handling constrained 

problems. FSO is still competitive although not superior in 

these four problems while the supremacy in these problems 

belongs to OOA. Fortunately, the disparity between FSO and 

the best technique is narrow in three design problems out of 

four design problems. 

The result also reveals the no-free-lunch (NFL) theory. 

Despite its supremacy in handling high dimension functions, 

FSO is just competitive in handling the fixed dimension 

functions compared to TOA, OOA, and OOA. But it keeps its 

superiority compared to HO and GSO. OOA may be the best 

technique in handling the fixed dimension functions but only 

in seven functions. 

In general, the stringent acceptance approach is better than 

the loose acceptance approach. As mentioned previously, the 

stringent acceptance approach protects the agents from the 

worse circumstances although the consequence is that they 

may be stuck in a certain solution for a certain time. But this 

circumstance is proven better than falling into the worse 

solution. 

Still stated in the NFL theory, the performance of any 

techniques is affected not only by the construction of the 

technique but also the nature of the problems. As shown in the 

result, the high dimension functions are better handled with the 

multiple directed searches. On the other hand, the fixed 

dimension functions are better handled with techniques that 

are enhanced with the declining step size to very slow motion. 

The constrained problems make the disparity among 

techniques narrow as shown in many economic dispatch 
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studies [2]. The nature of the problems also affects the 

disparity among techniques. As the result shows, the disparity 

among techniques in the high dimension functions is generally 

wide while in the fixed dimension functions is generally 

narrow. 

Despite its positive result, there are limitations in this paper. 

The first limitation comes from the nature of the FSO. There 

are a lot of approaches that can be used to construct a new 

technique whether reference, step size, swarm split, and the 

decision mechanism. Unfortunately, it is impossible to 

accommodate all these options into a single technique. On the 

other hand, each option always has strength and weakness. 

This limitation makes the development of a new technique is 

still challenging. Moreover, the optimization problems also 

evolve due to dynamism in the engineering sector. Second, 

FSO is assessed using standard unconstrained and constrained 

problems in this paper. On the other hand, there are also many 

more standard functions such as CEC series and it is 

impossible to test a technique using all cases in a single paper. 

This limitation encourages the assessment of FSO using more 

various practical problems in future studies. 

The implementation of FSO to solve broader practical 

problems is also challenging. In the end, all techniques should 

be tested to solve the practical problems rather than only the 

standard problems. First, in general, the practical problems are 

constrained problems. For example, in the economic dispatch 

problem, the constraint is the matching between the demand 

and total power output. In the capacitated vehicle routing 

problem, the total capacity of the fleet limits the load or 

customers that can be handled. All these constraints arise 

because in the practical or real-world problems, optimization 

always faces resources that are limited. The next challenge is 

handling combinatorial problems, such as scheduling, 

allocation, or timetable problems. In these problems, the 

quantitative approach should be transformed into permutation. 
 
 

6. CONCLUSIONS 
 

This paper has presented the FSO as a new and adaptive 

metaheuristic. The presentation includes the concept, 

formalization, and assessment. The result shows that the 

performance of FSO is acceptable as it can find the quasi-

optimal solution for the use cases. Compared to the 

benchmarks, FSO is also competitive in handling both the set 

of standard functions and the four classic engineering design 

problems. FSO is better than HO, GSO, TOA, OOA, and OOA 

in handling 23, 22, 15, 15, and 15 functions out of 23 functions 

where, FSO is superior in handling the high dimension 

functions. Meanwhile, FSO is still dominant in the fixed 

dimension functions when it is compared to HO and GSO. 

Future studies can be performed in several ways due to this 

work. First, developing an adaptive approach to be embedded 

in any static metaheuristic techniques. The exploration of new 

adaptive approaches is still interesting and challenging. 

Second, implementing FSO to solve various practical 

optimization problems is also challenging, whether it is 

implemented in its basic form or the improved one. Third, 

implementing FSO as a metaheuristic to support the machine 

learning work to improve the quality of the net architecture is 

also important. 
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NOMENCLATURE 

 

a agent 

A swarm or population 

abest the best agent 

Abet set of the better agents 

as selected agent 

blo lower border 

bhi higher border 

c candidate 

i index of agent 

o objective function 

m movement 

n number of agents 

s status of agent 

r1 uniform random between 0 to 1 

r2 uniform random whether 1 or 2 

rp uniform random of population 

t iteration 

tmax maximum iteration 

 

1030




