
Fast Slow Optimization: An Adaptive Stochastic Optimization that Employs Both Short and

Long Step Size Searches

Purba Daru Kusuma

Department of Computer Engineering, Telkom University, Bandung 40258, Indonesia

Corresponding Author Email: purbodaru@telkomuniversity.ac.id

Copyright: ©2025 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120329 ABSTRACT

Received: 2 January 2025

Revised: 15 February 2025

Accepted: 20 February 2025

Available online: 31 March 2025

This paper introduces a new metaheuristic called fast slow optimization (FSO). It is

enhanced with an adaptive technique. It behaves more exploitatively after facing

improvement while becoming more explorative after facing stagnation. It contains two

sequential stages in every iteration where the fast movement is conducted in the first

stage and slow movement is conducted in the second stage. There are two options in

every stage where the first option represents exploitative action, and the second option

represents explorative action. In this paper, FSO is confronted with five other

metaheuristics: hiking optimization (HO), golden search optimization (GSO), tailor

optimization algorithm (TOA), osprey optimization algorithm (OOA), and orangutan

optimization algorithm (OOA) to solve two use cases: 23 standard functions and four

engineering design problems. The result shows supremacy of FSO in solving 23

functions as it is better than HO, GSO, TOA, OOA, and OOA in 23, 22, 15, 12, and 12

functions. Meanwhile, FSO is competitive in handling the four engineering design

problems.

Keywords:
optimization, metaheuristic, engineering

problem, stochastic, swarm intelligence,

adaptability

1. INTRODUCTION

Optimization problems are commonly found in engineering

fields. Some optimization problems in power systems are

economic load dispatch (ELD) problem [1], economic

emission dispatch (EED) problem [2], unit commitment (UC)

problem [3], power stability problem [4], and so on. Some

optimization problems in manufacturing systems are flow

shop scheduling problem [5], job shop scheduling problem [6],

batch scheduling problem [7], and so on. Vehicle routing

problem is a popular optimization problem with various

derivatives, such as multi depot vehicle routing problem [8],

capacitated vehicle routing problem [9], and pickup and

delivery problem [10].

Objective functions are common in optimization problems.

Some problems have a single objective while other problems

have multiple objectives. ELD is an example of a single

objective problem where its objective is minimizing the

operational or fuel cost [1]. Meanwhile, EED is a multi-

objective problem where its objective is minimizing the fuel

cost and emission cost [2].

Constraint is a common aspect in optimization problems.

Constraint limits the possible or available solutions that can be

picked during the optimization process. Some constraints are

equality constraints while some others are inequality

constraints. The example of equality constraint in ELD

problem is that the total power output should be equal to the

power demand [1]. Meanwhile, the example of inequality

constraint in capacitated vehicle routing problem is that the

quantity of the load may not exceed the vehicle capacity [9],

or the travel time of each vehicle may not exceed certain time

[10]. In some cases, a penalty is applied when the constraint is

violated.

There are a lot of new metaheuristics were introduced in

recent years. Many of them are metaphor-inspired

metaheuristics. On the other hand, a few of them are metaphor-

free metaheuristics. Some of these metaphor-inspired

metaheuristics are HO [11], TOA [12], orangutan optimization

algorithm (OOA) [13], osprey optimization algorithm (OOA)

[14], giant armadillo optimization (GAO) [15], fennec fox

optimization (FFO) [16], crayfish optimization algorithm

(COA) [17], prairie dog optimization (PDO) [18], Komodo

mlipir algorithm (KMA) [19], marine predator algorithm

(MPA) [20], swarm magnetic optimizer (SMO) [21], horse

herd optimization (HHO) [22], and so on. Meanwhile, the

example of metaphor-free metaheuristics is quad tournament

optimization (QTO) [23], GSO [24], fully informed search

algorithm (FISA) [25], subtraction average based optimization

(SABO) [26], average subtraction-based optimization (ASBO)

[27], and so on.

Despite the massive development of metaheuristics and the

implementation of metaheuristics in vast and various

engineering optimization problems, the challenges and

unresolved problems remain exist. The existence of non-free-

lunch (NFL) theory states that there is not any absolute

supreme technique that can handle all problems superiorly.

Meanwhile, the adaptive approach is less considered in many

techniques as they focus on exploration and exploitation.

Whereas an adaptive approach is important so that the

technique can take more appropriate action when it faces

Mathematical Modelling of Engineering Problems
Vol. 12, No. 3, March, 2025, pp. 1021-1030

Journal homepage: http://iieta.org/journals/mmep

1021

https://orcid.org/0000-0001-5973-5229
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120329&domain=pdf

improvement and stagnation. Metaphors are also criticized in

the development of metaheuristics. The existence of

metaphors is often blamed as the hiding mechanism of mere

or trivial novelty.

Based on these unresolved problems and challenges, this

work is aimed at introducing a new technique called FSO. FSO

is constructed based on swarm intelligence so that it contains

a certain number of autonomous agents that are active in

improving the solution autonomously in every iteration. FSO

also employs an adaptive approach so that it behaves

differently when it faces improvement and stagnation. The

terms fast and slow means FSO conducts both fast movement

(long step size) and slow movement (short step size).

Based on its explanation, below are the scientific

contributions of FSO.

• This paper introduces a new metaphor-free called

FSO.

• A new adaptive approach is employed in FSO.

• FSO employs both fast movement and slow

movement in every iteration.

• The performance of FSO is assessed to challenge it

to solve 23 standard functions representing the

unconstrained problems and four engineering design

problems representing the constrained problems.

2. RELATED WORKS

Exploration and exploitation are two standard actions in

metaheuristic techniques. There are some definitions

regarding exploitation and exploration. Exploitation can be

defined as searching near the recent solution or location [14].

On the other hand, exploration means searching for a broader

area within the solution space [14]. The objective of

exploitation is to enhance the quality of the recent solution. On

the other hand, the objective of exploration is avoiding from

being entrapped in the recent solution.

Both actions and activities are important for any technique

as they employ stochastic optimization. It means there is not

any guarantee that the optimization process will end with

finding the actual optimal solution. Moreover, it is not

guaranteed that the current search will provide improvement.

For this reason, it makes sense that searching near the current

location may provide better opportunities for improvement

rather than searching randomly within space without any

clues. It also makes sense that moving toward the location or

solution whose quality is better will provide better opportunity

for improvement. This activity can be called exploitation.

Based on the previous statement, a better opportunity for

improvement is not equal to a guarantee for improvement. On

the other hand, this activity may push the optimization process

into the area known as the local optimal [14]. This

circumstance makes exploration become rational as the

optimization process tries to find other solutions within space

that is far from the current solution or against the trend.

Exploration becomes more important especially when the

optimization process fails to improve for certain trials.

The genetic algorithm (GA) is an example of classic or old

technique that employs both exploitation and exploration in a

clear separation. The exploitation is conducted through

crossover while exploration is conducted through mutation

[28]. During crossover, some individuals exchange their

solutions to create new solutions called offsprings. It means

that the value of the offsprings is not far from their parents.

Meanwhile, certain rules are applied to determine which

individuals are selected as parents. In many cases, individuals

whose quality is high have a better chance of being selected as

parents. But it does not guarantee that high quality individuals

will be selected as parents. Low quality individuals still have

this chance although the probability is low to give diversity.

Meanwhile, through mutation, a fraction of the solution is

randomized within space as exploration.

Simulated annealing (SA) is an example of an old technique

that focuses on exploitation. SA in a single entity

metaheuristic that conducts neighborhood search. As is known

in neighborhood search, this search is slow movement search

to maintain accuracy. The consequence of this strategy is that

high maximum iteration is needed especially when the

solution space is vast. Exploration is accommodated by

employing a conditional acceptance rule. A better solution is

accepted immediately. On the other hand, a worse solution still

can be accepted. But this opportunity decreases as the iteration

goes on.

KMA is an example of a new technique that is dominated

by exploitation. As swarm-based metaheuristic, KMA consists

of a population of agents. In every iteration, this swarm is split

into three groups: high quality agents, moderate quality agents,

and low-quality agents [19]. For the first group, an agent tends

to move toward other agents (exploitation) but still can avoid

them (exploration) so that it is called exploitation dominance.

For the second group, there is a 50 percent probability that an

agent performs crossover with the highest quality agent

(exploitation) and 50 percent probability to perform full

random search (exploration). It means that there is a balance

between exploitation and exploration for the second group. For

the third group, all agents move toward the resultant of high-

quality agents. It means that full exploitation is employed in

the third group.

Zebra optimization algorithm (ZOA) is an example of a new

technique that performs balance exploration-exploitation. The

directed search is conducted in the first stage [29]. There are

two options that will be selected stochastically with equal

opportunity. The first option is the movement toward the best

agent as it represents exploitation. The second option is the

movement relative to a randomly chosen agent where the

direction is determined based on the relative quality between

the agent and the randomly chosen agent. This second option

represents exploration. The neighborhood search is conducted

in the second stage [29]. But this neighborhood search cannot

be called fully exploitative. In the early iteration, the local

space is wide so that it can be seen as exploration. Then the

local space size narrower as iteration goes on. It means that in

the late iteration, it can be seen as exploitation.

Coati optimization algorithm (COA) is also an example of

a new technique that performs a balance exploration-

exploitation. It also consists of two stages in every iteration.

Unlike ZOA, that employs stochastic decision-making

mechanism in the first stage, COA employs this balancing

strategy through swarm split. Half of the swarm performs the

movement toward the best agent [30], and it represents

exploitation. On the other hand, half of the swarm performs

the movement relative to a target [30] that is generated within

the space [30], and it represents exploration.

One big problem in metaphor-inspired techniques is that

they often hide their actual methods and promote the imitation

of the behavior of their metaphors as a novel approach. For

example, the splitting of population into three groups in KMA

1022

[19] (big males, females, and small males) is splitting the

population into three groups based on the quality of the

individuals. Meanwhile, the motion toward the best agent has

different terms in COA and ZOA. In COA, this motion is

called the coati hunts the iguana that is still on the tree [30]. In

ZOA, this motion is called the zebras follows the pioneer zebra

during foraging [29]. It means that both iguana on the tree and

pioneer zebra refer to the same entity which is the best agent.

Meanwhile, the local search with reduced space during

iteration has multiple names. In COA, it is called escaping

from the predators [30]. In ZOA, it is called zebra escapes

from the lion [29]. In OOA, it is called bringing the fish to the

appropriate location [14].

Meanwhile, the metaphor-free technique faces difficulty in

giving appropriate and easy listening terms for its mechanism.

For example, GSO is constructed based on the directed search

toward the local best and the global best [24]. This search is

like the MPA [20]. But the step size calculation is different.

While MPA employs levy movement and Brownian motion

[20], GSO employs sinusoid distribution [24]. In MPA, the

mechanism is called predator catching the prey. This

mechanism is also found in COA [17]. In COA, the

mechanism is called cave which is the middle between the

local best and the global best. In this circumstance, the

metaphor-inspired techniques seem better but on the other

hand, the metaphor-free techniques provide fair and clear

explanation.

Based on this explanation, there are a lot of mechanisms to

accommodate both exploitation and exploration. Some

metaheuristics may be exploration dominant while some

others are exploitation dominant. Some techniques may try to

balance exploitation and exploration. These mechanisms are

developed based on static setting, for example swarm split,

iteration, or relative quality within the swarm. Unfortunately,

many of these mechanisms do not consider the improvement

status of the process. In other words, the metaheuristics that

determine their action, exploration or exploitation, based on

the improvement status is rare to find. This circumstance

becomes the motivation of this work to construct a new

technique that employs adaptive behavior where exploration

or exploitation is determined based on the improvement status.

3. MODEL

FSO is constructed based on the combination of fast motion

and slow motion. The fast motion is interpreted as the agent

moves with long step size while the slow motion is interpreted

as the agent moves with short step size. Fast motion is

designed to move toward better solutions as fast as possible.

On the other hand, slow motion is designed to take accurate

motion.

FSO is also designed as an adaptive technique. In other

words, an adaptive approach is employed to FSO so that it

takes different actions when it faces improvement or

stagnation. Improvement means the agent can find a better

solution in the previous movement. On the other hand,

stagnation means the agent fails to find a better solution in the

previous movement. When it faces improvement, agents tend

to be more exploitative. On the other hand, agents tend to be

more explorative when it faces stagnation.

Each agent performs two stages in every iteration. The first

stage is for fast motion while the second stage is for slow

motion. Meanwhile, there are two options that can be chosen

in every stage. The first option is the exploitative movement

while the second option is the exploration movement. The

action in the first stage is taken based on the improvement

status in the second stage of the previous iteration. Meanwhile,

the action in the second stage is taken based on the

improvement status in the first stage of the same iteration.

There are two options in the first stage. The first option is

the combination of the motion toward the best agent and the

motion toward a randomly chosen better agent. This first

option represents the exploitative movement of the first stage.

The second option is the combination of the motion toward

two randomly chosen better agents. This second option

represents the exploration of the first stage.

There are two options in the second stage. The first option

is motion toward the best agent. This first option represents the

exploitative movement of the second stage. The second option

is motion relative to a randomly chosen agent. This second

option represents the explorative movement of the second

stage.

A stringent acceptance approach is applied in FSO. This

approach is applied in both stages. It means that the candidate

in every stage can replace the current value of the agent only

if this candidate offers improvement.

The formalization of FSO is provided in both algorithm and

mathematical formulation. The algorithm is provided in

pseudocode as it is presented in algorithm 1 to algorithm 4.

Meanwhile, the mathematical formulation of FSO is presented

in Eq. (1) to Eq. (13). The notations that are used in this paper

are provided in nomenclature.

There are four algorithms presented in this paper. Algorithm

1 provides the general process of FSO. Algorithm 2 provides

the process during initialization. Algorithm 3 provides the

process during the first stage. Algorithm 4 provides the

process during the second stage.

FSO consists of two phases as shown in algorithm 1. The

first phase is the initialization as presented in algorithm 1 from

line 2 to line 4. The second phase is the iteration as presented

in algorithm 1 from line 5 to line 10. The best agent becomes

the final solution as presented in line 11.

The process during initialization of each agent is formalized

using algorithm 2. It consists of three processes. The first

process is the construction of the initial value of an agent using

Eq. (1) where this initial solution or location is distributed

uniformly within space. Then. The updating of the best agent

is conducted by comparing the best agent with the related

agent as formulated using Eq. (2). The third process is setting

the initial status of the agent to 1 using Eq. (3).

𝑎𝑖,𝑗 = 𝑏𝑙𝑜,𝑗 + 𝑟1(𝑏ℎ𝑖,𝑗 − 𝑏𝑙𝑜,𝑗) (1)

𝑎𝑏𝑒𝑠𝑡
′ = {

𝑎𝑖 , 𝑜(𝑎𝑖) < 𝑜(𝑎𝑏𝑒𝑠𝑡)
𝑎𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒

 (2)

𝑠𝑖 = 1 (3)

The process in the first stage is formalized using algorithm

3. It consists of six processes. The first process is the

construction of the set consisting of all better agents plus the

best agent using Eq. (4). The second process is selecting a

randomly chosen better agent using Eq. (5). The third process

is generating the first candidate using Eq. (10). The fourth

process is updating the status using Eq. (12). The fifth process

is updating the agent based on stringent acceptance using Eq.

(13). The sixth process is updating the best agent using Eq. (2).

1023

𝐴𝑏𝑒𝑡,𝑖 = {∀𝑎𝑘 ∈ 𝐴, 𝑜(𝑎𝑘) < 𝑜(𝑎𝑖)} ∪ 𝑎𝑏𝑒𝑠𝑡 (4)

𝑎𝑠1,𝑖 = 𝑟𝑝(𝐴𝑏𝑒𝑡) (5)

𝑎𝑠2,𝑖 = 𝑟𝑝(𝐴) (6)

𝑚1,𝑖,𝑗 = 𝑎𝑏𝑒𝑠𝑡,𝑗 − 𝑟2𝑎𝑖,𝑗 (7)

𝑚2,𝑖,𝑗 = 𝑎𝑠1,𝑖,𝑗 − 𝑟2𝑎𝑖,𝑗 (8)

𝑚3,𝑖,𝑗 = {
𝑎𝑠2,𝑖,𝑗 − 𝑟2𝑎𝑖,𝑗 , 𝑜(𝑎𝑠2,𝑖) < 𝑜(𝑎𝑖)

𝑎𝑖,𝑗 − 𝑎𝑠2,𝑖,𝑗 , 𝑒𝑙𝑠𝑒
 (9)

𝑐1,𝑖,𝑗 = {
𝑎𝑖,𝑗 + 𝑟1𝑚1,𝑖,𝑗 + 𝑟1𝑚2,𝑖,𝑗 , 𝑠𝑖 = 1

𝑎𝑖,𝑗 + 𝑟1𝑚2,𝑖,𝑗 + 𝑟1𝑚2,𝑖,𝑗
′ , 𝑒𝑙𝑠𝑒

 (10)

𝑐2,𝑖,𝑗 = {
𝑎𝑖,𝑗 + 𝑟1𝑚1,𝑖,𝑗 , 𝑠𝑖 = 1

𝑎𝑖,𝑗 + 𝑟1𝑚3,𝑖,𝑗 , 𝑒𝑙𝑠𝑒
 (11)

𝑠𝑖 = {
1, 𝑜(𝑐𝑖) < 𝑜(𝑠𝑖)

0, 𝑒𝑙𝑠𝑒
 (12)

𝑎𝑖
′ = {

𝑐𝑖 , 𝑜(𝑐𝑖) < 𝑜(𝑎𝑖)
𝑎𝑖 , 𝑒𝑙𝑠𝑒

 (13)

The process in the second stage is formalized using

algorithm 4. It consists of five processes. The first process is

selecting a randomly chosen agent using Eq. (6). The second

process is generating the second candidate using Eq. (11). The

third process is updating the status using Eq. (12). The fourth

process is updating the agent based on stringent acceptance

using Eq. (13). The fifth process is updating the best agent

using Eq. (2).

Based on this explanation, the balancing between

exploitation and exploration in FSO is conducted in several

mechanisms. The first stage represents exploration as it

conducts fast motion while the second stage represents

exploitation as it conducted slow motion. The step size of the

first stage tends to double than the second stage. Meanwhile,

the first option in each stage represents exploitation while the

second option represents exploration based on the target or

reference. In this context, the difference between exploitation

and exploration at the stage level is based on the step size. On

the other hand, the difference between exploitation and

exploration at the option level is based on the target. Balancing

in the stage level is designed to handle the trade-off between

speed and accuracy. On the other hand, balancing in the option

level is designed to handle the trade-off between depth and

broad regarding the circumstance, whether improvement or

stagnation. This approach makes FSO different from other

techniques.

Algorithm 1: General process of FSO

1 start

2 for i=1 to n

3 initialize ai (see algorithm 2)

4 end for

5 for t=1 to tmax

6 for i=1 to n

7 perform first stage (see algorithm 3)

8 perform second stage (see algorithm 4)

9 end for

10 end for

11 return abest

12 stop

Algorithm 2: Initialization of agent

1 start

2 set initial value of ai using Eq. (1)

3 update abest using Eq. (2)

4 set si using Eq. (3)

5 stop

Algorithm 3: First stage

1 start

2 construct Abet using Eq. (4)

3 select as1 using Eq. (5)

4 generate c1 using Eq. (10)

5 update si using Eq. (12)

6 update ai using Eq. (13)

7 update abest using Eq. (2)

8 stop

Algorithm 4: Second stage

1 start

2 select as1 using Eq. (6)

3 generate c1 using Eq. (11)

4 update si using Eq. (12)

5 update ai using Eq. (13)

6 update abest using Eq. (2)

7 stop

4. EXPERIMENT AND RESULT

This section presents an experiment that is conducted to

assess the performance of FSO. There are two use cases in this

paper. The first use case is the set of 23 functions. The first use

case represents an unconstrained problem. The second use

case is a set of four engineering design problems. This second

use case represents the constrained problem.

Five new metaheuristics are chosen as benchmarks. These

five techniques include HO [11], GSO [24], TOA [12], OOA

[14], and OOA [13]. The first two techniques represent

metaheuristics that employ stringent acceptance rule. On the

other hand, the last three techniques represent metaheuristics

that do not employ stringent acceptance rule. In both cases, the

setting for all metaheuristics including FSO and its

benchmarks is the same. The swarm size is set to 5. The

maximum iteration is set to 20.

In this paper, all benchmarks are new techniques.

Meanwhile, some popular classic techniques such as GA,

PSO, grey wolf optimization (GWO), or SA are excluded from

the benchmarks. There are two reasons due to this decision.

First, many recent studies that introduce new techniques

assessed the performance of their proposed technique with the

new existing techniques to ensure the advancement. Second,

in many studies, these old techniques have been beaten many

times with significant gaps.

The set of 23 functions is chosen due to its coverage and its

popularity. It consists of 13 high dimension functions where

the dimension of the problem can be only one or expanded to

thousands. Among these high dimension functions, the first

seven functions are unimodal where each function contains

only one optimal solution, and the last six functions are

multimodal where each function contains multiple optimal

solutions. The first seven functions are designed to assess

exploitation capability while the last six functions are designed

to assess the exploration capability. This set also contains ten

fixed dimension functions. All these ten functions are

1024

multimodal but more ambiguous based on their terrain and

steep slopes or holes. These functions are designed to assess

the balancing capability between exploitation and exploration.

The detailed description of this set of 23 functions can be

found in references [24, 29].

The result of the assessment of the first use case is presented

in Tables 1-4. Table 1 to Table 3 present the raw result that

contains the average score, standard deviation, and the mean

rank. Moreover, Table 4 provides the summary result

representing the supremacy of FSO compared to its

benchmarks. This summary is clustered based on the group of

functions. The illustration of the average score is also

presented in Figure 1.

Table 1 shows the supremacy of FSO compared to its

benchmarks in solving high dimension unimodal functions.

FSO performs the best of all seven functions (F1 to F7). There

are four techniques that achieve the best result in solving F2

which are TOA [12], OOA [14], OOA [13], and FSO. All these

techniques employ stringent acceptance. GSO becomes the

worst technique while HO becomes the second worst

technique. GSO [24] performs the worst result in six functions

(F1 to F6) while HO [11] performs the second worst in these

six functions. The disparity between the best result and the

worst result is wide in all seven functions.

Table 2 shows that FSO is still superior in solving high

dimension multimodal functions. FSO provides the best result

in solving five functions (F9 to F13). FSO provides the third-

best result in solving F8. GSO provides the worst result in four

functions (F10 to F13). Meanwhile, HO provides the worst

result in solving two functions (F8 and F9). The disparity

between the best technique and worst technique is wide in five

functions (F9 to F13). On the other hand, this disparity is

narrow or not significant in solving F8.

F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

F13 F14 F15 F16

1025

F17 F18 F19 F20

F21 F22 F23

Figure 1. Visualization of average score on handling 23 functions

Table 1. Result on handling the seven high dimension unimodal functions

F Parameter HO [11] GSO [24] TOA [12] OOA [14] OOA [13] FSO

1

mean 6.7067×101 3.0956×104 2.2045 0.2264 0.3089 0.0000

std. deviation 5.0243×101 7.4281×103 1.3525 0.2239 0.2672 0.0000

mean rank 5 6 4 2 3 1

2

mean 3.1214×101 1.9480×1039 0.0000 0.0000 0.0000 0.0000

std. deviation 1.3941×102 5.3946×1039 0.0000 0.0000 0.0000 0.0000

mean rank 5 6 1 1 1 1

3

mean 2.1581×103 5.5785×104 2.2421×103 1.7030×103 4.2801×103 0.0317

std. deviation 3.1886×103 1.9445×104 2.5574×103 1.8712×103 4.6606×103 0.0701

mean rank 3 6 4 2 5 1

4

mean 3.2024 5.8114×101 1.2317 0.9497 0.7425 0.0003

std. deviation 1.1170 7.9856 0.5935 0.4730 0.4874 0.0001

mean rank 5 6 4 3 2 1

5

mean 7.1969×104 6.2250×107 5.7483×101 3.2537×101 3.3391×101 2.8958×101

std. deviation 7.1311×104 2.9263×107 2.1245×101 4.8084 3.8406 0.0219

mean rank 5 6 4 2 3 1

6

mean 1.0333×102 2.9838×104 9.3620 6.1358 6.4017 6.4269

std. deviation 6.5143×101 7.0270×103 3.4739 0.5216 0.6620 0.4435

mean rank 5 6 4 1 2 3

7

mean 2.3896×102 2.8586×101 0.0382 0.0341 0.0497 0.0139

std. deviation 1.2022×102 1.3990×101 0.0177 0.0191 0.0387 0.0090

mean rank 6 5 3 2 4 1

Table 2. Result on handling the six high dimension multimodal functions

F Parameter HO [11] GSO [24] TOA [12] OOA [14] OOA [13] FSO

8

mean -9.7116×101 -2.3663×103 -2.3485×103 -3.2548×103 -2.8741×103 -2.4280×103

std. deviation 1.9157×101 6.2863×102 6.2800×102 5.0664×102 3.1792×102 5.0390×102

mean rank 6 4 5 1 2 3

9

std. deviation 3.4396×102 2.9051×102 1.1579×102 6.2866 6.5429×101 3.2295×101

range 3.8061×101 4.2971×101 6.4522×101 9.8475 8.4568×101 6.2440×101

mean rank 6 5 4 1 3 2

10

mean 6.0209 1.8791×101 0.5285 0.1124 1.1740 0.0000

std. deviation 0.9102 0.8264 0.2726 0.0419 4.2713 0.0000

mean rank 5 6 3 2 4 1

11

mean 0.6340 2.5806×102 0.5397 0.1375 0.1657 0.0265

std. deviation 0.2743 8.1853×101 0.2416 0.1880 0.1943 0.0524

mean rank 5 6 4 2 3 1

12

mean 6.6508 7.3570×107 1.3137 1.0278 0.9762 1.1564

std. deviation 2.6183 4.8881×107 0.2403 0.2589 0.2699 0.2484

mean rank 5 6 4 2 1 3

13

mean 4.5890 2.2624×108 3.8484 3.3123 3.4053 3.1358

std. deviation 2.7921 1.2377×108 0.3737 0.2001 0.2233 0.1360

mean rank 5 6 4 2 3 1

1026

Table 3. Result on handling the ten fixed dimension multimodal functions

F Parameter HO [11] GSO [24] TOA [12] OOA [14] OOA [13] FSO

14

mean 2.5435×101 1.2547×101 7.9703 8.7213 1.0218×101 1.0583×101

std. deviation 4.7701×101 7.5718 3.8744 4.4183 3.9105 3.6507

mean rank 6 5 1 2 3 4

15

std. deviation 0.5175 0.0437 0.0074 0.0077 0.0052 0.0154

range 0.8961 0.0307 0.0105 0.0157 0.0058 0.0311

mean rank 6 5 2 3 1 4

16

mean 2.1009 0.0667 -1.0263 -1.0281 -1.0239 -1.0164

std. deviation 3.4114 3.8215 0.0132 0.0054 0.0076 0.0185

mean rank 6 5 2 1 3 4

17

mean 2.9546 1.5031 1.8591 0.4003 0.4052 1.8957

std. deviation 2.6251 3.2795 3.7882 0.0029 0.0087 3.2231

mean rank 6 3 4 1 2 5

18

mean 8.8197×102 4.6057×101 1.4926×101 1.2785×101 3.2036 2.5756×101

std. deviation 9.5148×102 1.5648×102 2.0776×101 2.3371×101 0.2914 2.7426×101

mean rank 6 5 3 2 1 4

19

mean -0.0356 -0.0116 -0.0495 -0.0495 -0.0495 -0.0495

std. deviation 0.0178 0.0142 0.0000 0.0000 0.0000 0.0000

mean rank 6 5 1 1 1 1

20

std. deviation -0.5893 -2.3039 -2.7243 -3.0198 -3.1278 -2.7834

range 0.6830 0.6419 0.3777 0.1773 0.0863 1.1504

mean rank 6 5 4 2 1 3

21

mean -0.7009 -1.9127 -2.9500 -2.8517 -4.3461 -2.7834

std. deviation 0.4990 1.5459 1.5347 1.3631 1.0897 1.1504

mean rank 6 5 2 3 1 4

22

mean -0.8014 -1.5237 -2.5544 -2.9293 -4.5219 -3.0006

std. deviation 0.3902 0.7377 1.2049 1.2045 1.6423 1.4554

mean rank 6 5 4 3 1 2

23

mean -0.9625 -1.6093 -2.6118 -3.3261 -3.8362 -3.0161

std. deviation 0.5681 0.7129 1.4392 2.0399 1.4924 1.3360

mean rank 6 5 4 2 1 3

Table 4. Supremacy of FSO among its benchmarks

Cluster
HO

[11]

GSO

[24]

TOA

[12]

OOA

[14]

OOA

[13]

1 7 7 6 6 6

2 6 6 6 5 5

3 10 9 3 2 2

Total 23 22 15 15 15

Table 5. Number of constraints and dimension size

Design Problem
Number of

Constraints

Dimension

Size

pressure vessel 4 4

speed reducer 11 7

welded beam 7 4

spring 4 3

Table 3 shows that FSO is still competitive but not superior

in solving ten fixed dimension multimodal functions. FSO is

twice on the first rank (F16 and F19), once on the second rank

(F18), twice on the third rank (F14 and F17), four times on the

fourth rank (F14, F20, F22, and F23), and once on the fifth

rank (F21). HO becomes the worst technique as it is on the

sixth rank in all ten functions while GSO becomes the second

worst technique as it is on the fifth rank also in eight functions.

The disparity between the best and the worst techniques is

narrow in eight functions (F14, F16, F17, F19 to F23) and

moderate in two functions (F15 and F18). This result shows

the tight competition among techniques in this group of

functions.

Table 4 shows the supremacy summary of FSO compared

to its benchmarks. FSO is absolute superior to HO as it is better

than HO in all 23 functions. Meanwhile, FSO is superior to

GSO in 22 functions. It means that FSO performs better than

HO and GSO in all three group of functions, both unimodal

and multimodal ones. Meanwhile, FSO is superior to TOA

[12], OOA [14], and OOA [13] in solving high dimension

functions. FSO is better than TOA [12], OOA [14], and OOA

[13] in 12, 11, and 11 high dimension functions.

Unfortunately, FSO is inferior to TOA, OOA, and OOA in

solving these fixed dimension functions although the disparity

is narrow.

The second use case is a set of four engineering design

problems. These problems include pressure vessels, speed

reducers, welded beam, and spring design problems. These

four problems represent constrained optimization problems so

that the solution can be put independently in space as the

solution in certain dimensions depends on the solution in other

dimensions. The number of constraints and dimensions of each

design problem is provided in Table 5. Meanwhile, the

detailed description of each problem including the objective

function, space, and constraints can be found in many studies

[29, 30].

The quadratic penalty function is provided to handle the

constraint. The penalty is applied to the violation of the

constraints. The value of the penalty increases quadratically to

the linear increase of the constraint violation. It means the

penalty will reduce the quality of the solution whenever the

solution is created with constraint violation as collateral.

Table 6 shows the result of solving the pressure vessel

design problem. FSO becomes the second-best technique

while OOA [13] becomes the best technique. HO becomes the

worst technique. The disparity between the best and worst

techniques is wide. The disparity between FSO and OOA [13]

is narrow while the disparity between FSO and HO is wide.

1027

Table 6. Result in solving pressure vessel design problem

Metaheuristic Mean Rank

HO [11] 8.2960×1012 6

GSO [24] 7.0617×105 5

TOA [12] 2.5932×103 4

OOA [14] 4.2352×102 3

OOA [13] 9.6887 1

FSO 9.7770 2

Table 7. Result in solving speed reducer design problem

Metaheuristic Mean Rank

HO [11] 3.5955×103 3

GSO [24] 3.7416×103 6

TOA [12] 3.5573×103 2

OOA [14] 3.6135×103 5

OOA [13] 3.5410×103 1

FSO 3.6086×103 4

Table 8. Result in solving welded beam design problem

Metaheuristic Mean Rank

HO [11] 3.4528×1011 6

GSO [24] 9.9702×109 5

TOA [12] 1.9500×109 3

OOA [14] 2.8511×109 4

OOA [13] 1.2966×108 1

FSO 5.6165×108 2

Table 9. Result in solving tension/compression spring design

problem

Metaheuristic Mean Rank

HO [11] 7.3642×102 6

GSO [24] 6.7858×101 5

TOA [12] 8.4084 3

OOA [14] 3.9753 1

OOA [13] 6.2541 2

FSO 1.4016×101 4

Table 7 shows the result of solving the speed reducer design

problem. FSO becomes the fourth best while OOA [13]

becomes the best technique. GSO becomes the worst

technique. The disparity between OOA and GSO is narrow. It

means the distance between FSO and OOA is narrow.

Meanwhile the disparity between FSO and GSO is also

narrow. This result also shows that the competition among

techniques in solving the speed reducer design problem is

tight.

Table 8 shows the result of solving the welded beam design

problem. FSO becomes the second best after OOA [13] as the

best. Meanwhile, HO becomes the worst technique. The

disparity between OOA and HO is wide. The disparity

between FSO and OOA is wide. Last, the disparity between

FSO and HO is also wide. It means that FSO is in the middle

between the best and worst techniques.

Table 9 shows the result of solving the spring design

problem. FSO becomes the fourth best after OOA [14] as the

best. HO becomes the worst technique. The disparity between

OOA and HO is wide. The disparity among four

metaheuristics (TOA [12], OOA [14], OOA [13], and FSO) is

narrow.

5. DISCUSSION

Overall, the result shows that FSO is acceptable and

competitive as a new metaheuristic. This competitiveness can

be found in both cases, the set of 23 standard functions as the

unconstrained problem and the set of 4 engineering design

problems as the constrained problem. FSO can find the quasi-

optimal solution to all problems.

The result in solving the 23 standard functions shows the

accepted capability of FSO. FSO has superior exploitation

capability due to its supremacy in the high dimension

unimodal functions. FSO also has superior exploration

capability due to its supremacy in the high dimension

multimodal functions. Meanwhile, the capability of FSO in

balancing the exploitation and exploration is competitive

compared to TOA, OOA, and OOA; and superior to HO and

GSO.

The superiority of FSO compared to its benchmarks in

handling high dimension functions comes from its nature that

employs directed search twice in full step size in every

iteration. GSO and HO employ the directed search once as it

they are single search techniques. OOA [14] and OOA [13]

employ directed search once in their first stage. Meanwhile,

TOA employs directed search twice, but the second search is

conducted with very slow motion in the later iteration.

On the other hand, the less competitiveness of FSO

compared to TOA [12], OOA [14], and OOA [13] in handling

the fixed dimension functions comes from the step size during

the iteration. In general, FSO performs full length step size in

both searches, where the step size of the first stage is double

than the second stage. On the other hand, TOA [12], OOA

[14], and OOA [13] employes the declining step size during

their second stage. It is shown that highly accurate motion is

needed to overcome the fixed dimension functions.

Fortunately, the disparity between FSO and these three

techniques in overcoming the fixed dimension functions is

narrow.

The result in solving the engineering design problems

shows the accepted capability of FSO in handling constrained

problems. FSO is still competitive although not superior in

these four problems while the supremacy in these problems

belongs to OOA. Fortunately, the disparity between FSO and

the best technique is narrow in three design problems out of

four design problems.

The result also reveals the no-free-lunch (NFL) theory.

Despite its supremacy in handling high dimension functions,

FSO is just competitive in handling the fixed dimension

functions compared to TOA, OOA, and OOA. But it keeps its

superiority compared to HO and GSO. OOA may be the best

technique in handling the fixed dimension functions but only

in seven functions.

In general, the stringent acceptance approach is better than

the loose acceptance approach. As mentioned previously, the

stringent acceptance approach protects the agents from the

worse circumstances although the consequence is that they

may be stuck in a certain solution for a certain time. But this

circumstance is proven better than falling into the worse

solution.

Still stated in the NFL theory, the performance of any

techniques is affected not only by the construction of the

technique but also the nature of the problems. As shown in the

result, the high dimension functions are better handled with the

multiple directed searches. On the other hand, the fixed

dimension functions are better handled with techniques that

are enhanced with the declining step size to very slow motion.

The constrained problems make the disparity among

techniques narrow as shown in many economic dispatch

1028

studies [2]. The nature of the problems also affects the

disparity among techniques. As the result shows, the disparity

among techniques in the high dimension functions is generally

wide while in the fixed dimension functions is generally

narrow.

Despite its positive result, there are limitations in this paper.

The first limitation comes from the nature of the FSO. There

are a lot of approaches that can be used to construct a new

technique whether reference, step size, swarm split, and the

decision mechanism. Unfortunately, it is impossible to

accommodate all these options into a single technique. On the

other hand, each option always has strength and weakness.

This limitation makes the development of a new technique is

still challenging. Moreover, the optimization problems also

evolve due to dynamism in the engineering sector. Second,

FSO is assessed using standard unconstrained and constrained

problems in this paper. On the other hand, there are also many

more standard functions such as CEC series and it is

impossible to test a technique using all cases in a single paper.

This limitation encourages the assessment of FSO using more

various practical problems in future studies.

The implementation of FSO to solve broader practical

problems is also challenging. In the end, all techniques should

be tested to solve the practical problems rather than only the

standard problems. First, in general, the practical problems are

constrained problems. For example, in the economic dispatch

problem, the constraint is the matching between the demand

and total power output. In the capacitated vehicle routing

problem, the total capacity of the fleet limits the load or

customers that can be handled. All these constraints arise

because in the practical or real-world problems, optimization

always faces resources that are limited. The next challenge is

handling combinatorial problems, such as scheduling,

allocation, or timetable problems. In these problems, the

quantitative approach should be transformed into permutation.

6. CONCLUSIONS

This paper has presented the FSO as a new and adaptive

metaheuristic. The presentation includes the concept,

formalization, and assessment. The result shows that the

performance of FSO is acceptable as it can find the quasi-

optimal solution for the use cases. Compared to the

benchmarks, FSO is also competitive in handling both the set

of standard functions and the four classic engineering design

problems. FSO is better than HO, GSO, TOA, OOA, and OOA

in handling 23, 22, 15, 15, and 15 functions out of 23 functions

where, FSO is superior in handling the high dimension

functions. Meanwhile, FSO is still dominant in the fixed

dimension functions when it is compared to HO and GSO.

Future studies can be performed in several ways due to this

work. First, developing an adaptive approach to be embedded

in any static metaheuristic techniques. The exploration of new

adaptive approaches is still interesting and challenging.

Second, implementing FSO to solve various practical

optimization problems is also challenging, whether it is

implemented in its basic form or the improved one. Third,

implementing FSO as a metaheuristic to support the machine

learning work to improve the quality of the net architecture is

also important.

ACKNOWLEDGMENT

The author thanks Telkom University for providing the

funding for the publication of this paper.

REFERENCES

[1] Zein, H., Raharjo, J., Mardiyanto, I.R. (2022). A method

for completing economic load dispatch using the

technique of narrowing down area. IEEE Access, 10:

30822-30831.

https://doi.org/10.1109/ACCESS.2022.3158928

[2] Puspitasari, K.M.D., Raharjo, J., Sastrosubroto, A.S.,

Rahmat, B. (2022). Generator scheduling optimization

involving emission to determine emission reduction

costs. International Journal of Engineering, 35(8): 1468-

1478. https://doi.org/10.5829/ije.2022.35.08b.02

[3] Abbas, A.I., Anwer, A. (2022). The optimal solution for

unit commitment problem using binary hybrid grey wolf

optimizer. International Journal of Electrical and

Computer Engineering, 12(1): 122-130.

https://doi.org/10.11591/ijece.v12i1.pp122-130

[4] Robandi, I., Syafarudin, Hasanah, R.N., Guntur, H.L.,

Lystianingrum, V., Djalal, M.R., Prakasa, M.A.,

Himawari, W. (2024). Stability improvement of

Sulbagsel electricity system integrated wind power plant

using SVC-PSS3C based on improved mayfly algorithm.

Results in Engineering, 24: 103407.

https://doi.org/10.1016/j.rineng.2024.103407

[5] Li, Y.Z., Gao, K., Meng, L.L., Jing, X.L., Zhang, B.

(2023). Heuristics and metaheuristics to minimize

makespan for flowshop with peak power consumption

constraints. International Journal of Industrial

Engineering Computations, 14(2): 221-238.

https://doi.org/10.5267/j.ijiec.2023.2.004

[6] Yuan, S., Zhu, X., Cai, W., Gao, J., Zhang, R. (2025).

Mathematical modeling and hybrid evolutionary

algorithm to schedule flexible job shop with discrete

operation sequence flexibility. Computers and

Operations Research, 176: 106952.

https://doi.org/10.1016/j.cor.2024.106952

[7] Chen, Y., Zhao, X., Mumtaz, J., Guangyuan, C., Wang,

C. (2025). Batch processing machine scheduling

problems using a self-adaptive approach based on

dynamic programming. Computers and Operations

Research, 176: 106933.

https://doi.org/10.1016/j.cor.2024.106933

[8] Wei, X., Niu, C., Zhao, L., Wang, Y. (2025).

Combination of ant colony and student psychology based

optimization for the multi-depot electric vehicle routing

problem with time windows. Cluster Computing, 28(2):

99. https://doi.org/10.1007/s10586-024-04821-9

[9] Hafedh, A.G., Hasan, H.M. (2025). Hybrid strategies for

CVRP initial solution: Leveraging weighted score

insertion with grid search and multiple insertion with

iterative tournament. International Journal of Intelligent

Engineering & Systems, 18(1): 733-753.

https://doi.org/10.22266/ijies2025.0229.52

[10] Yang, J., Li, Y. (2025). A multicommodity pickup and

delivery problem with time windows and handling time

in the omni‐channel last‐mile delivery. International

Transactions in Operational Research, 32(3): 1524-1565.

https://doi.org/10.1111/itor.13362

[11] Oladejo, S.O., Ekwe, S.O., Mirjalili, S. (2024). The

hiking optimization algorithm: A novel human-based

metaheuristic approach. Knowledge-Based Systems,

1029

296: 111880.

https://doi.org/10.1016/j.knosys.2024.111880

[12] Hamadneh, T., Batiha, B., Alsayyed, O., Montazeri, Z.,

Ashtiani, H.J., Jafarpour, M., Dehghani, M., Eguchi, K.

(2025). On the application of tailor optimization

algorithm for solving real-World optimization

application. International Journal of Intelligent

Engineering and Systems, 18(1): 1-12.

https://doi.org/10.22266/ijies2025.0229.01

[13] Hamadneh, T., Batiha, B., Gharib, G.M., Montazeri, Z.,

Werner, F., Dhiman, G., Dehghani, M., Jawad, R.K.,

Aram, E., Ibraheem, I.K., Eguchi, K. (2025). Orangutan

optimization algorithm: an innovative bio-Inspired

metaheuristic approach for solving engineering

optimization problems. International Journal of

Intelligent Engineering and Systems, 18(1): 47-58.

https://doi.org/10.22266/ijies2025.0229.07

[14] Dehghani, M., Trojovský, P. (2023). Osprey

optimization algorithm: A new bio-inspired

metaheuristic algorithm for solving engineering

optimization problems. Frontiers in Mechanical

Engineering, 8: 1126450.

https://doi.org/10.3389/fmech.2022.1126450

[15] Alsayyed, O., Hamadneh, T., Al-Tarawneh, H., Alqudah,

M., Gochhait, S., Leonova, I., Malik, O.P., Dehghani, M.

(2023). Giant armadillo optimization: A new bio-

inspired metaheuristic algorithm for solving optimization

problems. Biomimetics, 8(8): 619.

https://doi.org/10.3390/biomimetics8080619

[16] Trojovska, E., Dehghani, M., Trojovský, P. (2022).

Fennec fox optimization: A new nature-inspired

optimization algorithm. IEEE Access, 10: 84417-84443.

https://doi.org/10.1109/ACCESS.2022.3197745

[17] Jia, H., Rao, H., Wen, C., Mirjalili, S. (2023). Crayfish

optimization algorithm. Artificial Intelligence Review,

56(Suppl 2): 1919-1979. https://doi.org/10.1007/s10462-

023-10567-4

[18] Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili,

S., Gandomi, A.H. (2022). Prairie dog optimization

algorithm. Neural Computing and Applications, 34(22):

20017-20065. https://doi.org/10.1007/s00521-022-

07530-9

[19] Suyanto, S., Ariyanto, A.A., Ariyanto, A.F. (2022).

Komodo Mlipir Algorithm. Applied Soft Computing,

114: 108043.

https://doi.org/10.1016/j.asoc.2021.108043

[20] Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi,

A.H. (2020). Marine Predators Algorithm: A nature-

inspired metaheuristic. Expert Systems with

Applications, 152: 113377.

https://doi.org/10.1016/j.eswa.2020.113377

[21] Kusuma, P.D., Hasibuan, F.C. (2023). Swarm magnetic

optimizer: A new optimizer that adopts magnetic

behaviour. International Journal of Intelligent

Engineering and Systems, 16(4): 264-275.

https://doi.org/10.22266/ijies2023.0831.22

[22] Hasanah, R.N, Robandi, I., Syafaruddin, Guntur, H.L.,

Lystianingrum, V., Djalal, M.R., Prakasa, M.A.,

Himawari, W. (2024). A novel horse herd optimization

algorithm for optimal economic dispatch in sulbagsel

electricity system. International Journal of Intelligent

Engineering and Systems. 17(6): 1059-1069.

https://doi.org/10.22266/ijies2024.1231.78

[23] Kusuma, P.D., Kallista, M. (2023). Quad tournament

optimizer: A novel metaheuristic based on tournament

among four strategies. International Journal of Intelligent

Engineering and Systems, 16(2): 268-278.

https://doi.org/10.22266/ijies2023.0430.22

[24] Noroozi, M., Mohammadi, H., Efatinasab, E., Lashgari,

A., Eslami, M., Khan, B. (2022). Golden search

optimization algorithm. IEEE Access, 10: 37515-37532.

https://doi.org/10.1109/ACCESS.2022.3162853

[25] Ghasemi, M., Rahimnejad, A., Akbari, E., Rao, R.V.,

Trojovský, P., Trojovská, E., Gadsden, S.A. (2023). A

new metaphor-Less simple algorithm based on rao

algorithms: A Fully Informed Search Algorithm (FISA).

PeerJ Computer Science, 9: e1431.

https://doi.org/10.7717/peerj-cs.1431

[26] Trojovský, P., Dehghani, M. (2023). Subtraction-

Average-Based optimizer: A new swarm-inspired

metaheuristic algorithm for solving optimization

problems. Biomimetics, 8(2): 149.

https://doi.org/10.3390/biomimetics8020149

[27] Dehghani, M., Hubálovský, Š., Trojovský, P. (2022). A

new optimization algorithm based on average and

subtraction of the best and worst members of the

population for solving various optimization problems.

PeerJ Computer Science, 8: e910.

https://doi.org/10.7717/peerj-cs.910

[28] Katoch, S., Chauhan, S.S., Kumar, V. (2021). A review

on genetic algorithm: Past, present, and future.

Multimedia Tools and Applications, 80: 8091-8126.

https://doi.org/10.1007/s11042-020-10139-6

[29] Trojovska, E., Dehghani, M., Trojovsky, P. (2022).

Zebra optimization algorithm: A new bio-Inspired

optimization algorithm for solving optimization

algorithm. IEEE Access, 10: 49445-49473.

https://doi.org/10.1109/ACCESS.2022.3172789

[30] Dehghani, M., Montazeri, Z., Trojovská, E., Trojovský,

P. (2023). Coati optimization algorithm: A new bio-

inspired metaheuristic algorithm for solving optimization

problems. Knowledge-Based Systems, 259: 110011.

https://doi.org/10.1016/j.knosys.2022.110011

NOMENCLATURE

a agent

A swarm or population

abest the best agent

Abet set of the better agents

as selected agent

blo lower border

bhi higher border

c candidate

i index of agent

o objective function

m movement

n number of agents

s status of agent

r1 uniform random between 0 to 1

r2 uniform random whether 1 or 2

rp uniform random of population

t iteration

tmax maximum iteration

1030

