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This analysis aims to adapt the Heun’s numerical method integrated with a dual-Wiener 

process framework to solve fuzzy stochastic differential equations (FSDEs) by 

processing challenges faced by randomness and uncertainty. FSDEs incorporate 

stochastic processes with fuzzy parameters, such as triangular and trapezoidal fuzzy 

numbers, to model uncertainties arising from incomplete or imprecise data. The 

modified Heun’s method is a predictor-corrector scheme designed to enhance accuracy 

and computational stability, outperforming traditional methods like Euler-Maruyama. 

The main contributions include the combining of fuzzy arithmetic into stochastic 

models and the use of dual-Wiener processes to account for complex uncertainties. The 

study demonstrates theoretical convergence under fuzzy and stochastic conditions and 

validates its findings through numerical simulations. Results confirm the method’s 

strong and weak convergence, as well as its robustness in tackling FSDEs across 

applications in finance, engineering, and environmental modeling. Comparative 

analysis highlights significant error reduction, particularly in cases with larger sample 

sizes, underscoring the method’s efficacy. Our study bridges openings in numerical 

solutions for FSDEs by presenting an applicable and efficient approach for solving 

problems in systems with random and fuzzy parameters. Future work may focus on 

extending the methodology to higher-dimensional systems and integrating machine 

learning techniques to enhance performance further. 
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1. INTRODUCTION

In 1905, Einstein first introduced the concept of stochastic 

differential equations (SDEs), providing a mathematical 

description of Brownian motion by demonstrating the 

connection between the random behavior of small particles 

and the diffusion equation on a larger scale. Since then, these 

equations have become an indispensable tool in various fields 

such as physics, chemistry, biology and microelectronics, as 

well as in economics and finance. Traditionally, solutions of 

these equations have relied heavily on the Ito integration 

technique to achieve accuracy when dealing with stochastic 

phenomena. However, the exact methods face some 

challenges in solving non-trivial problems, which led to the 

resort to approximation methods as an alternative to overcome 

these difficulties, as discussed in study [1]. 

In many practical applications, data on parameters may be 

incomplete or distorted by measurement errors or 

mathematical approximations. These uncertainties lead to 

ambiguities in the differential equations used, which require 

more sophisticated methods for estimating the solutions. 

These uncertainties can be expressed using probabilistic or 

fuzzy for the simulation of complex natural phenomena [2-4]. 

Heun’s method, or Heun’s consistency method, is a 

numerical procedure for solving ordinary differential 

equations (ODEs) and is ideal for the order initial value 

problem. Compared to the simple Euler method, it is superior 

because of basic prediction and correct step strategies, where 

an interval with basic gradient is used and another interval is 

used to adjust constant gradients of that respective interval. 

Here, the constructive solution and a method that fits well are 

Heun’s method because of the lack of constructive solutions 

to fuzzy stochastic ordinary differential equations (FSODEs). 

In order to manage the existing uncertainty due to fuzzy 

parameters, the Heun’s method is integrated into the dual 

Wiener process within the course of the study. This makes it 

possible as an efficient numerical solution can be achieved, 

which could be utilized in several practical area of random 

occurrences and vagueness. Instead of that, this approach 

enhances the effectiveness of the solutions as well as the 

applicability of the numerical, as well as ansatz, methods in 

complex modeling situations [5-14]. 
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In the past years, the combining of fuzziness with stochastic 

problems modeled by differential equations has earned 

attention in several fields of science, engineering, and finance. 

The fuzzy differential equations (FDEs) process the 

uncertainty that is found in real-world problems and can't be 

sufficiently represented by classical probabilistic models. 

Such models merge the flexibility of fuzzy theory and the 

randomness in the stochastic models. 

The solutions key of FSDEs pass essentially through 

numerical methods that are used to derive approximate 

solutions. Among these methods, we focus our attention on the 

Heun's method, one of the second order Runge-Kutta schemes, 

which shows effectiveness in tackling generalized FSDEs. 

With low cost and high accuracy, this method is considered as 

an improvement of the Euler method. As well, the Heun's 

method assists in approximating the evolution of fuzzy 

quantities over time. 

A critical component of stochastic models is the dual 

Wiener process, which expands the classical Brownian 

motion. In the study of complex systems, the dual Wiener 

process is an appropriate in modeling systems when multiple 

uncertainties need to be hold. In this analysis, we aim to 

examine the applicability of the Heun's method to FDEs 

obtained by dual Wiener processes.  
 

 

2. LITERATURE REVIEW  
 

The study of SFDEs has appeared in a wide range of 

research. In what follows, we mention the most recent studies 

regarding our contribution. 

Jafari and Malinowski [15] focused on developing 

symmetric FSDEs driven by fractional Brownian motion to 

generalize models that incorporate both stochasticity and 

fuzziness in hybrid systems. They explored the existence of 

unique solutions under certain conditions and used a semi-

martingale approximation method to show convergence of 

approximate solutions to the exact ones. The study also 

included an example on population dynamics, opening 

avenues for applications in fields like biology, finance, and 

mechanics. 

The weak convergence of numerical schemes for SDEs with 

super-linear coefficients, which can cause moment blowup has 

been proved by Zhao et al. [16]. A systematic approach to 

analyze the weak error and convergence orders of explicit 

schemes, comparing truncation and balanced schemes through 

numerical experiments, has also been presented. The study 

aimed to improve the understanding of these methods, 

especially in cases where traditional approaches may struggle 

due to the challenges posed by super-linear coefficients. Iqbal 

et al. [17] have investigated fuzzy random differential 

equations, and also proved a random fixed-point theorem in 

fuzzy metric spaces. For more expansions and improvements, 

see the bibliography included therein.  

The literature highlights significant advancements in the 

FSDEs as they also reveal the inadequacy of existing 

numerical solutions to handle stochastic and other 

complexities in actual applications. In response to these 

considerations, this research’s methodological approach 

combines Heun’s method with a dual Wiener process model. 

This enhances it applicability in fields like financial and 

environmental modeling will improve numerical stability and 

reliability and parameters are represented as fuzzy numbers. 

Our method provides clear solutions to the challenges 

presented by fuzzy SODEs; it avoids some of the shortcomings 

of previous work by focusing on these considerations. 

 

2.1 Limitations in the fuzzy SODEs 

 

Certain limitations can be pointed out at the article devoted 

to the numerical solution of FSODEs based on the Heun’s 

method. It is also important to note that this work is mostly 

developed for triangular and trapezoidal fuzzy numbers, 

meaning that other kinds of uncertainty may be treated with 

more difficulty by the proposed method, such as fuzzy 

intervals or fuzzy sets of higher order. Some textbooks define 

the stability of the numerical schemes only in terms of the 

growth or monotonicity with respect to the step size, without 

regards for the stability of the numbers in the chaotic or noisy 

environments; the accuracy of the numerical method relies on 

the precise definition of the initial conditions. This is 

compounded by the fact that it also lacks a rigorous validation 

of the method through examples to support the concept 

advanced by the authors of the study. While Heun’s method is 

superior due to this reason, there may be issues with 

computation involving the implementation of the integration 

method especially in high dimension or usage cases for real 

time processing. Furthermore, the defined Wiener processes 

may not possess independence which is wholly appropriate for 

all practical applications. And because there have been no 

prior comparison studies with other numerical methods, it is 

challenging to assess the pros and cons of Heun’s method. 

Thus, the purpose of this article is to present the findings along 

with an understanding of these study limitations so that anyone 

delivering, receiving, or interpreting these results will fully 

understand what exactly these results mean and for what kinds 

of purposes the results are useful. In turn, more research in the 

future will be useful to refine this method and expand the 

sphere where it can be applied. 

In this paper, a sound approach for the approximate solution 

of stochastic differential equation problems in the fuzzy 

environment through Heun’s method for two Wiener process 

within the context of Ito’s Fuzzy Stochastic Integral model 

will be established with a provision of an exact solution. Fuzzy 

arithmetic for triangular fuzzy numbers is also performed, and 

the approximate solutions are shown to converge to the exact 

fuzzy solution through checking the conditions of the 

existence and uniqueness theorem of the problem stated. 

 

 

3. MATHEMATICAL ANALYSIS 

 

3.1 Fuzzy sets and numbers 

 

The fuzzy set  �̌�  contains pairs of elements and their 

associated membership functions. The membership function 

𝜇𝐴 is defined as follows: 

 

𝜇𝐴: 𝑋 → [0,1] (1) 

 

where, 𝑋 is the universal set. A fuzzy number is defined as a 

convex natural set and is given as follows: The fuzzy number 

z in parametric form is a pair of values  [𝑘, 𝑘] of functions 

𝑘(𝛼), 𝑘(𝛼) , where 𝛼 ∈ [0,1] , which meets the following 

conditions [1]: 

1.  𝑘(𝛼)  it is a left-continuous, non-decreasing function 

bounded in the interval (0,1], and right continuous at 0. 

2.  𝑘(𝛼)  it is a left-continuous, non-increasing function 
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bounded in the interval (0,1], and right continuous at 0. 

3. 𝑘(𝛼) ≤ 𝑘(𝛼), 0 ≤ 𝛼 ≤ 1.  

A fuzzy number �̌� = [𝑎, 𝑏, 𝑐] is said to be triangular when 

its membership function is given by: 
 

𝜇𝐴(𝑥) =

{
 
 

 
 
      0           if 𝑥 ≤ 𝑎            
𝑥 − 𝑎

𝑏 − 𝑎
      if 𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
     if 𝑏 < 𝑥 < 𝑐  

1          if     𝑥 ≥ 𝑐   

 (2) 

 

Consider the two fuzzy numbers �̃� = [𝐿(𝛼), 𝐿(𝛼)] and �̃� =

[𝐷(𝛼), 𝐷(𝛼)] and a scalar 𝑑 then: 

1. �̃� = �̃� if and only if  𝐿(𝛼) = 𝐷(𝛼) and 𝐿(𝛼) =  𝐷(𝛼). 

2. �̃� + �̃� = [𝐿(𝛼) + 𝐷(𝛼), 𝐿(𝛼) + 𝐷(𝛼)]. 

3. �̃� − �̃� = [𝐿(𝛼) − 𝐷(𝛼), 𝐿(𝛼) − 𝐷(𝛼)]. 

4. 𝑑�̃� = {
[𝑑 𝐿(𝛼), 𝑑 𝐿(𝛼)], if d ≥ 0

[𝑑 𝐷(𝛼), 𝑑 𝐷(𝛼)], if 𝑑 < 0
 

 

3.2 SDEs 
 

Let's review a classical SDE [1]: 
 

𝑑𝑥𝑡 = 𝑎𝑑𝑡 + 𝑏𝑑𝑤1 + 𝑘𝑑𝑤2 (3) 
 

where, Eq. (3) is expressed in differential form: 

 

𝑥(𝑡2)− 𝑥(𝑡1) = ∫ 𝑎(𝑡, 𝑥)𝑑𝑠 +
𝑡2
𝑡1

∫ 𝑏(𝑡, 𝑥)𝑑𝑤1(𝑠) +
𝑡2
𝑡1

∫ 𝑘(𝑡, 𝑥)𝑑𝑤2(𝑠)
𝑡2
𝑡1

  
(4) 

 

The last term on the right-hand side of Eq. (2) is known as 

the Ito integral. We will now take 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ <
𝑡𝑛 = 𝑇 , be a grid of points on an interval [0, 𝑇] , the Ito 

integrals are determined for each component separately, 

depending on the different components on the right-hand side 

of Eq. (4) is being: 
 

∫ 𝑏(𝑡, 𝑥)𝑑𝑤(𝑠) = ∫ 𝑏𝑖,𝑗(𝑠, 𝑥𝑠) ∆𝑤𝑖

𝑡

𝑡0

𝑡2

𝑡1

 (5) 

 

where, ∆𝑤𝑖 = 𝑤𝑡𝑖 − 𝑤𝑡𝑖−1 , transition in Brownian motion 

over a time interval. 

Let us consider Eq. (5), which is first solved analytically 

using Ito's formula. According to this formula, if 𝑋𝑡 represents 

the Ito process, then: 
 

𝑑(𝑡)= 𝑎𝑑𝑡 + 𝑏𝑑𝑤(𝑡) (6) 
 

and let 𝑓(𝑥, 𝑡) the function is continuous in (𝑥, 𝑡) ∈× [∞, 0), 
along with its partial derivatives 𝑓𝑥, 𝑓𝑥𝑥,  𝑓𝑡. Then the process 

𝑓((𝑡), 𝑡). It is characterized by a random differential defined 

as follows: 
 

𝑑𝑓((𝑡), 𝑡)= [𝑓𝑡((𝑡), 𝑡) + 𝑓𝑥((𝑡), 𝑡)𝑎(𝑡, 𝑥)

+
1

2
𝑓𝑥𝑥((𝑡), 𝑡)𝑏2(𝑡, 𝑥)] 𝑑𝑡

+ 𝑓𝑥((𝑡), 𝑡)𝑏(𝑡, 𝑥)𝑑𝑤(𝑡) 

(7) 

 

3.3 Computational techniques for SDEs 

 

To calculate the numerical solution of a SDEs, we define a 

grid of points, 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝑇 , and 

approximate 𝑥  values 𝑤0 < 𝑤1 < 𝑤2 < ⋯ < 𝑤𝑛 , it is 

determined at specific values of 𝑡. Consider the initial value 

problem of a SDE [1]: 

 

{
𝑑𝑋𝑡 = 𝑎(𝑡, 𝑥𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑥𝑡)𝑑𝑤1 + 𝑘(𝑡, 𝑥𝑡)𝑑𝑤2

𝑋(0) = 𝑋0
 (8) 

 

where, 𝑎(𝑡, 𝑥𝑡), 𝑏(𝑡, 𝑥𝑡)  and 𝑘(𝑡 , 𝑥𝑡) are all continuous 

functions which are defined on interval [𝑡0, 𝑇] . Where 

𝑑𝑤1, 𝑑𝑤2 are wiener process with components 

𝑤𝑡
1, 𝑤𝑡

2, … , 𝑤𝑡
𝑚 . Then Eq. (8) is solved numerically as 

follows. 

 

3.4 Adaptation of Heun’s method for fuzzy parameters and 

dual-Wiener processes 

 

The uncertainties associated with real-word applications of 

Heun’s method are handled by modifications to the method for 

fuzzy parameters and dual-Wiener processes. Heun’s method 

is a powerful predictor-corrector technique for solving 

numerical ODEs; the approach developed in this paper makes 

use of fuzzy numbers to describe uncertain parameters. This 

shift moves the original deterministic model to stochastic 

fuzzy environment and initial conditions and parameters are 

presented as triangular or trapezoidal fuzzy numbers [16-20]. 

Another improvement to the method is the addition of a 

combined dual-Wiener process approach that models 

stochastic system action using two separates but interacting 

Wiener processes. The predictor step of Heun’s method is 

modified to find solutions according to the fuzzy parameters 

and the corrector step amortize the solution by considering the 

stochasticity out of the dual-Wiener processes. 

This combined adaptation enhances numerical precision 

and guarantees that the solutions captured consider uncertainty 

as well as stochastic nature making it advantageous in specific 

applications such as financial models, engineering failure 

analysis or environmental impact assessments. 

Let us consider using a discrete-time approximation to 

estimate the Ito process in solving SDEs. Let us apply a 

discrete-time approximation to Eq. (8) to estimate the Ito 

process in solving SDEs.  
 

𝑥(𝑥1) = 𝑥(𝑥0) + ∫ 𝑎(𝑠, 𝑥𝑠)𝑑𝑠

𝑥1

𝑥0

+∫ 𝑏(𝑠, 𝑥𝑠1)𝑑𝑤𝑠1

𝑡

𝑡0

+∫ 𝑘(𝑠, 𝑥𝑠2)𝑑𝑤𝑠2

𝑡

𝑡0

 

(9) 

 

Also let 

 

𝐼1=∫ 𝑎(𝑠, 𝑥𝑠)𝑑𝑠
𝑡=𝑥1
𝑡0=𝑥0

= ∫ 𝑓(𝑥) 𝑑𝑥
𝑡=𝑥1
𝑡0=𝑥0

 (10) 

 

where, trapezoidal rule, 𝑥0 = 𝑡0, 𝑥1 = 𝑡, h=𝑥0 − 𝑥1 = 𝑡0 − 𝑡, 
and 
 

𝑓(𝑥) = 𝑃𝑛(𝑥) + 
𝑓𝑛+1(𝛿)

(𝑛 + 1)!
∏(𝑥 − 𝑥𝑖)

𝑛

𝑖=0

 (11) 

 

Provided that 
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𝑃𝑛(𝑥) = ∑𝑓(𝑥𝑖)

𝑛

𝑖=0
𝑖≠𝑘

∗ 𝐿𝑖(𝑥) (12) 

 

where, the Lagrange equation is 𝐿𝑖(𝑥)= 
𝑋−𝑋𝑖

𝑋𝑘−𝑋𝑖
. And, also if 

𝑛 = 1. Then: 

 

𝑃1(𝑥) =∑𝑓(𝑥𝑖)

1

𝑖=0
𝑖≠𝑘

∗
𝑋 − 𝑋𝑖
𝑋𝑘 − 𝑋𝑖

 

=
𝑋 − 𝑋1
𝑋0 − 𝑋1

∗ 𝑓(𝑥0) +
𝑋 − 𝑋0
𝑋1 − 𝑋0

∗ 𝑓(𝑥1) 

(13) 

 

Hence:  
 

𝑓(𝑥) =
𝑋 − 𝑋1
𝑋0 − 𝑋1

∗ 𝑓(𝑥0) +
𝑋 − 𝑋0
𝑋1 − 𝑋0

∗ 𝑓(𝑥1) 

+
𝑓(𝑛+1)(𝜀)

(𝑛+1)!
∏ (𝑥 −𝑛
𝑖=0 𝑥𝑖)  

(14) 

 

By substituting Eq. (14) into Eq. (10), we obtain: 
 

𝐼1=∫ (
𝑋− 𝑋1

𝑋0−𝑋1
∗ 𝑓(𝑥0) +

𝑋− 𝑋0

𝑋1−𝑋0
∗ 𝑓(𝑥1))𝑑𝑥

𝑡=𝑥1
𝑡0=𝑥0

 

+∫
𝑓(𝑛+1)(𝜀)

(𝑛+1)!
∏ (𝑥 −𝑛
𝑖=0 𝑥𝑖)𝑑𝑥

𝑡=𝑥1
𝑡0=𝑥0

  

(15) 

 

Simplifying Eq. (14), we will get:  
 

𝐼1 = ∫ 𝑓(𝑥) 𝑑𝑥
𝑡=𝑥1

𝑡0=𝑥0

 

= ∫ {
(𝑥−𝑥1)

2

2(𝑥0−𝑥1)
∗ 𝑓(𝑥0) +

(𝑥−𝑥0)
2

2(𝑥1−𝑥0)
∗ 𝑓(𝑥1)} 𝑑𝑥

𝑡=𝑥1
𝑡0=𝑥0

  

=
𝑥1−𝑥0

2
[𝑓(𝑥0) + 𝑓(𝑥1)] =

ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)]   

(16) 

 

and 
 

𝐼2 = ∫ 𝑏(𝑥𝑠1)𝑑𝑤𝑠1

𝑡

𝑡0

= ∫ 𝑏(𝑠, 𝑥𝑠1)𝑑𝑤𝑠1

𝑡=𝑥1

𝑡0=𝑥0

 

= ∫ 𝑏(𝑥)𝑑𝑤𝑠1

𝑡=𝑥1

𝑡0=𝑥0

=
𝑥1 − 𝑥0
2

[𝑏(𝑥0) + 𝑏(𝑥1)] 

(17) 

 

Additionally, 
 

𝐼3 = ∫ 𝑘(𝑥𝑠2)𝑑𝑤𝑠2

𝑡

𝑡0

= ∫ 𝑘(𝑠, 𝑥𝑠1)𝑑𝑤𝑠2

𝑡=𝑥1

𝑡0=𝑥0

 

= ∫ 𝑘(𝑥)𝑑𝑤𝑠2
𝑡=𝑥1
𝑡0=𝑥0

=
𝑋1−𝑋0

2
[𝑘(𝑥0) + 𝑘(𝑥1)]  

(18) 

 

The Heun’s approx. is defined as cont. Time stochastic 

process. 𝑦 = {𝑦(𝑇); 𝑡0 ≤ 𝑡 < 𝑇}  satisfying the iterative 

scheme: 𝑋0 = 𝑥0: 
 

𝑥𝑛+1 = 𝑥𝑛 +
ℎ

2
[𝑓(𝑥𝑛) + 𝑓(𝑥𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛)]∆𝑛 

+
ℎ

2
[𝑏(𝑥𝑛) + 𝑏(𝑥𝑛 + 𝑎∆𝑛 + 𝑏∆𝑤𝑛)𝑏(𝑥𝑛) +

𝑏(𝑥𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛)]∆𝑤𝑛1 + 
ℎ

2
[𝑘(𝑥𝑛) +

𝑘(𝑥𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛)]∆𝑤𝑛2 

(19) 

 

where,  

∆𝑡𝑖+1 = 𝑡𝑖+1 − 𝑡𝑖, 

∆𝑊𝑖+1 = W(𝑡𝑖+1) −𝑊(𝑡𝑖)~√𝑡𝑖+1 − 𝑡𝑖 𝑁(0, 1) 

 

where, 𝑁(0, 1)  represents a standard normally distributed 

random variable with mean zero and variance one. The 

function 𝑟𝑎𝑛𝑑𝑛 (1, 𝑁), 𝑁 random variables will be generated 

according to the standard normal distribution. To obtain a 

random variable with a given variance  ∆𝑡𝑖+1 , random 

variables with standard normal distribution are generated by a 

custom MATLAB function. 𝑟𝑎𝑛𝑑𝑛 (1, 𝑁) . These variables 

are then multiplied by the result to obtain random increments 

in ∆𝑊𝑖+1. 

 

3.5 Computational solutions for FSDEs  

 

Suppose there are fuzzy parameters in a SDE; then Eq. (3) 

can be rewritten as: 

 

𝑑[𝑋(𝛼), 𝑋(𝛼)] = [𝑎(𝛼), 𝑎(𝛼)]𝑑𝑡 

+[𝑏(𝛼), 𝑏(𝛼)]𝑑𝑤1 + [𝑘(𝛼), 𝑘(𝛼)]𝑑𝑤2 
(20) 

 

Eq. (10) is now solved using analytical and numerical 

methods respectively. By applying limit method, FSDE Eq. 

(10) can be reformulated explicitly and modified as follows 

[20]: 

 

𝑑[lim
𝑠→∞

𝑋(𝛼) , lim
𝑠→1

𝑋(𝛼)

= [lim
𝑠→∞

𝑎(𝛼) , lim
𝑠→1

𝑎(𝛼)]𝑑𝑡

+ [lim
𝑠→∞

𝑏(𝛼) , lim
𝑠→1

𝑏(𝛼)]𝑑𝑤1

+ [lim
𝑠→∞

𝑘(𝛼) , lim
𝑠→1

𝑘(𝛼)]𝑑𝑤2 

(21) 

 

where, 

 

𝑋(𝛼) = 𝑋(𝛼) +
𝑋(𝛼) − 𝑋(𝛼)

𝑠
, 

 𝑎(𝛼) = 𝑎(𝛼) +
𝑎(𝛼)− 𝑎(𝛼)

𝑠
 and 𝑏(𝛼) = 𝑏(𝛼) +

𝑏(𝛼)− 𝑏(𝛼)

𝑠
 

 

First, for the precise case, we use explicit representations of  

𝑋(𝛼), 𝑎(𝛼) and 𝑏(𝛼), use Ito's integral to solve the problem. 

This version is more concise and clearly conveys the use of 

crisp representations and the Ito integral for solving the 

problem. If we apply the fuzzy concept we discussed earlier to 

the Heun’s method, Eq. (9) can be reformulated as follows. 

 

�̃�(𝑥1) = �̃�(𝑥0) + ∫ 𝑎(𝑠, �̃�𝑠)𝑑𝑠

𝑥1

𝑥0

+∫ 𝑏(𝑠, �̃�𝑠1)𝑑𝑤𝑠1

𝑡

𝑡0

+∫ 𝑘(𝑠, �̃�𝑠2)𝑑𝑤𝑠2

𝑡

𝑡0

 

(22) 

 

The Heun’s approximation is defined as a continuous-time 

stochastic process, 𝑦 = {𝑦(𝑇); 𝑡0 ≤ 𝑡 < 𝑇}, that satisfies an 

iterative scheme. When applied to SDEs, the Heun's method is 

adapted to handle fuzzy parameters by incorporating triangular 

and trapezoidal fuzzy numbers. This approach enables the 

approximation of solutions to fuzzy SDEs, ensuring that the 

process accommodates the inherent uncertainty in the system. 

The resulting fuzzy Heun's method is essential for obtaining 

accurate solutions in systems where both randomness and 

fuzziness are presented: 
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𝑋0(𝛼) = 𝑤0(𝛼) 

𝑤𝑖+1(𝛼) = 𝑤𝑖(𝛼) +
ℎ

2
[𝑓(𝑤𝑖)

+ 𝑓(𝑤𝑖 + 𝑎(𝑡𝑖, 𝑤𝑖 , 𝛼) ∆𝑡𝑖+1)
+ 𝑏(𝑡𝑖 , 𝑤𝑖 , 𝛼)∆𝑤𝑖)] ∆𝑡𝑖+1 

+
ℎ

2
 [𝑏(𝑤𝑖) + 𝑏(𝑤𝑖 + 𝑎(𝑡𝑖, 𝑤𝑖 , 𝛼)∆𝑡𝑖+1)

+ 𝑏(𝑡𝑖 , 𝑤𝑖 , 𝛼)∆𝑤𝑛)] ∆𝑤𝑖1  

+ 
ℎ

2
[𝑘(𝑤𝑖) + 𝑘(𝑤𝑖 + 𝑎(𝑡𝑖 , 𝑤𝑖 , 𝛼) ∆𝑡𝑖+1)

+ 𝑏(𝑡𝑖 , 𝑤𝑖 , 𝛼)∆𝑤𝑖)]∆𝑤𝑖2  

(23) 

 

where, 

 

𝑋0(𝛼) = 𝑋0(𝛼) +
𝑋0(𝛼) − 𝑋0(𝛼)

𝑠
, 

𝑤0(𝛼) = 𝑤0(𝛼) +
𝑤0(𝛼) − 𝑤0(𝛼)

𝑠
, 

𝑤𝑖+1(𝛼) = 𝑤𝑖+1(𝛼) +
𝑤𝑖+1(𝛼) − 𝑤𝑖+1(𝛼)

𝑠
, 

a(𝑡𝑖 , 𝑤𝑖 , α) = a(𝑡𝑖, 𝑤𝑖 , α) +
a(𝑡𝑖 , 𝑤𝑖 , α) −  a(𝑡𝑖, 𝑤𝑖 , α)

𝑠
, 

b(𝑡𝑖, 𝑤𝑖 , α) + 
b(𝑡𝑖 , 𝑤𝑖 , α) −  b(𝑡𝑖, 𝑤𝑖 , α)

𝑠
 

k(𝑡𝑖 , 𝑤𝑖 , α) +
k(𝑡𝑖 , 𝑤𝑖 , α) − k(𝑡𝑖, 𝑤𝑖 , α)

𝑠
. 

 

Applying lim
𝑠→∞

 and lim
𝑠→1

 when we solve an equation, we get a 

left and a right term. We can also extract a number of different 

solutions by using different values of the membership function 

when 𝛼 ∈ [0,1].  Sometimes these solutions can be weak, 

leading to an overlap or intersection between the left and right 

terms due to the random nature of the system. This overlap can 

be clearly seen in the problems in the following examples. 

 

3.6 Numerical stability analysis for Heun’s methods in 

fuzzy SODEs 

 

We will discuss the two most common measures of stability: 

mean square and asymptotic [18-20]. Assuming that 𝑋0 ≠ 0 

with probability 1, solutions of FSDE is: 

 

𝑑�̃�𝑡 = 𝑎(𝑡, �̃�𝑡)𝑑𝑡 + 𝑏(𝑡, �̃�𝑡)𝑑𝑤1 + 𝑘(𝑡, �̃�𝑡)𝑑𝑤2 (24) 

 

Meeting the requirements of: 

 

lim
𝑡→∞

 𝐸𝑋2(𝑡) = 0 ↔  𝑅{𝜆} +
1

2
 |𝜇|2 < 0 (25) 

 

lim
𝑡→∞

 |𝑋(𝑡)| = 0 ↔  𝑅 {𝜆− 
1

2
 𝜇2} < 0 (26) 

 

The left side of Eq. (25) defines the concept of mean-square 

stability, while the right side of Eq. (25) describes this property 

in detail using the FSDE function. Similarly, Eq. (26) defines 

and describes asymptotic stability. 
 

 

4. NUMERICAL SIMULATION 
 

Two examples of SODEs which were originally formulated 

as crisp problems are discussed in this section in order to 

illustrate the concepts already introduced. All the parameters, 

which are to be determined in their CRT form, are later 

fuzzified using triangular and trapezoidal fuzzy numbers. 

Initially, the problem is analyzed for both crisp parameter 

values analytically and numerically and then for fuzzy 

parameter values. It is argued here that the selected examples 

satisfy the conditions in the existence and uniqueness of 

solutions to the fuzzy SODEs in studies [21-24]. Figure 1 

shows Brownian paths at the unit interval [0,1] with sample 

sizes 100 and 1000 at the top and bottom respectively.  
 

 

 
 

Figure 1. Discretized Brownian path 

 

Example 1 

 

Consider problem of solving the fuzzy SODE [1]. 

 

𝑑�̃�(𝑡) = �̃�(𝑤𝑡)𝑑𝑡 + �̃�(𝑤𝑡)𝑑𝑤1(𝑡) + 𝑘𝑑𝑤2(𝑡) (27) 

 

with initial condition given as a triangular fuzzy number 

�̃�0(𝛼) = �̃�0(𝛼) . And 𝑘  is positive constants. The exact 

solution of the crisp problem is given for comparison purpose 

as follows: 

 

𝑥(𝑡) =
𝑥0
12
𝑒(
𝑡
2
+𝑤𝑡) (28) 

 

Now, the Heun’s scheme for Eq. (25) is as follows: 

 

𝑋0 = 𝑤0 

𝑤𝑖+1 = 𝑤𝑖 +
ℎ

2
�̃�𝑤𝑖∆𝑡𝑖+1 +

ℎ

2
�̃�∆𝑤𝑖1 +

𝑘ℎ

2
∆𝑤𝑖2  

(29) 
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Table 1. Explicit and fuzzy parameter values used in the 

study 

 
Parameters Crisp Time (t) Fuzzy Value 

k 0.2 

0 [1,2,3] 

0.1 [1.1,2.1,3.1] 

0.2 [1.2,2.2,3.2] 

0.3 [1.3,2.3,3.3] 

0.4 [1.4,2.4,3.4] 

1.0 [1.5,2.5,3.5] 

 

Table 2. Error introduced by Huynh's method and 

comparison with Euler-Marauyam 

 

r N 
Mean Squared Error (MSE) 

Heun’s Scheme Euler-Maruyama Scheme [25] 

1 

50 0.1074 0.45512 

100 0.0716 0.39665 

1000 0.0186* 0.20838 

2 

50 1.2074 1.6168 

100 1.0716 1.5149 

1000 1.1186 1.4093 

 

 
(a) 

 
(b) 

 

Figure 2. Numerical solutions of FSDEs: comparison across 

Brownian motion sample sizes 

 

Figure 2 shows the numerical behavior of the model, 

demonstrating its effectiveness in capturing the trends 

observed in the dataset. 

 

 
 

Figure 3. Absolute error analysis of the fuzzy Heun’s 

method compared to the exact solution for n=1000, r=1 

 

 
(a) Strong convergence 

 
(b) Weak convergence 

 

Figure 4. Fuzzy Heun’s strong and weak convergences 

 

The values of the parameters used in Eq. (21) are specified 

in Table 1. 

Absolute errors in the final time intervals for various sample 

sizes, where 𝛥𝑡 = 𝛿𝑡 and 𝑟= 1, are presented in Table 2 and 

Figure 3. In these results, the discretization steps of the 

Brownian motion align with the time steps used in the Heun 

768



 

scheme, compared to the Euler-Maruyama scheme. It is 

observed that increasing the sample size N leads to a reduction 

in absolute errors across different time steps. This indicates 

that larger sample sizes improve the accuracy of the numerical 

solution when 𝛥𝑡 = 𝛿𝑡. 
From the Table 2, we observe that as the value of n increases 

from the smallest to the largest, the error value at the final 

point decreases. 

Figure 4 illustrates how the strong and weak error varies 

with 𝛥𝑡  on a log-log scale. For comparison, a dashed red 

reference line with a slope of one is provided. Power law of 

least squares analysis gives suitable results, 𝑞1=0.5194, with a 

residual of 0.0355. 

Figure 5 shows the sample mean 𝐸(�̃�2) against t. In this 

Figure, the curves for 𝑘 = 0.8  and 𝑘 = 0.2 increase with t, 

while the curve for 𝑘 = 1 decays toward zero. 

 

 
 

Figure 5. Mean-square and asymptotic stability analysis of 

FSDEs 

 

Example 2 

 

The fuzzy SDE of Langevin equation is [24] 

 

𝑑�̃�(𝑡) = −𝜇�̃�(𝑡)𝑑𝑡 + 𝜎𝑑𝑤1(𝑡) + 𝑘𝑑𝑤2(𝑡) (30) 

 

with initial condition given as a triangular fuzzy number 

�̃�0(𝛼) = �̃�0(𝛼). And 𝜇 ,𝜎  and 𝑘 are positive constants. The 

exact solution of the crisp problem is given for comparison 

purpose as follows: 

 

𝑥(𝑡) = 𝑥0𝑒
𝜎𝑤1(𝑡) + 𝑘𝑤2(𝑡)+(𝜇− 

𝜎2+ 𝑘2

2
)𝑡

 (31) 

 

Now, the Heun’s scheme for Eq. (30) is as follows: 

 

𝑋0 = 𝑤0 

𝑤𝑖+1 = 𝑤𝑖 −
𝜇ℎ

2
�̃�𝑤𝑖∆𝑡𝑖+1 +

𝜎ℎ

2
∆𝑤𝑖1 +

𝑘ℎ

2
∆𝑤𝑖2  

(32) 

 

Figure 6 illustrates the numerical solutions of the fuzzy 

Langevin equation for different Brownian motion sample 

sizes, demonstrating the impact of sample size on the accuracy 

of the method. The values of the parameters used in Eq. (30) 

are specified in the following Table 3. 

 
(a) 

 
(b) 

 

Figure 6. Numerical solutions of the fuzzy Langevin 

equation: analysis across Brownian motion sample sizes 

 

Table 3. Explicit and fuzzy parameter values used in the 

study 

 
Parameters Crisp TFN 

𝝁 1.5 [1.4,1.5,1.6] 

𝝈 0.25 [0.85,0.25,0.75] 

𝒌 0.1 [0.7,0.1,0.5] 

 

Table 4. Error introduced by Huynh's method and 

comparison with Euler-Marauyam 

 

r N 
MSE 

Heun’s Scheme Euler-Maruyama Scheme [25] 

1 

50 0.1074 0.45512 

100 0.0716 0.39665 

1000 0.0186* 0.20838 

2 

50 1.2074 1.6168 

100 1.0716 1.5149 

1000 1.1186 1.4093 

 

Absolute error in the final time period for various sample 

sizes, as shown in 𝑡=𝑡;  𝑟=1 is presented in Table 4 and 

Figure 7. In these results, the discretization step for Brownian 

motion matches the time step used in the Heun’s scheme 

comparative with the Euler-Maruyama scheme. As observed, 

increasing the number of samples N leads to a reduction in 
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absolute error across various time steps, demonstrating that a 

larger sample size improves the accuracy of the numerical 

solution when 𝑡=𝛿𝑡.  
From the Table 4, we observe that as the value of n increases 

from the smallest to the largest, the error value at the final 

point decreases, see Figure 7. 

 

 
 

Figure 7. Absolute error evaluation of the fuzzy Heun’s 

method against the exact solution for n=1000, r=1 

 

 
(a) Strong convergence 

 
(b) Weak convergence 

 

Figure 8. Analysis of strong and weak convergence of the 

fuzzy Heun’s method applied to the fuzzy Langevin equation 

 
 

Figure 9. Mean-square stability and long-term asymptotic 

properties of FSDEs 

 

Figure 8 shows how the strong error changes with Δt on a 

log-log scale. A red dashed reference line with a slope of one 

is included for comparison purposes, which is obtained using 

the law of least squares, 𝑞2 = 0.2936, with residual 0.6243. 

Figure 9 plots the sample average of 𝐸(�̃�2) against t. In this 

figure, the curves for 𝑘 = 0.2  and 𝑘 = 0.1  increase with t, 

while the curve for 𝑘 = 1.1 decays toward zero. 

 

4.1 Discussion of results and anomalies 

 

This section provides an in-depth analysis of the numerical 

results presented in Tables 2 and 4 and Figures 3 and 7. The 

analysis focuses on understanding the performance of the 

Fuzzy Heun’s method integrated with dual Wiener processes 

in solving FSODEs, highlighting the convergence behavior 

and the observed anomalies. 

 

• Effect of sample size on convergence and stability 

Table 2 depicts the following findings; the MSE reduces as 

the sample size N is increased. Furthermore, the graph also 

reveals, when comparing the MSE’s for the two simulations, 

that the MSE for N=1000 is noticeably higher than the MSE 

for N=50, which corroborates our previous observations, that 

is, larger sample sizes yield more accurate numerical 

solutions. This is in line with random theoretical assumptions 

where the variability of the approximate in stochastic 

simulations is normally reduced by enhancing the number of 

samples leading to smaller variations and improved stability. 

Therefore, it possible to conclude that the time step (𝛥𝑡) is also 

an important factor that may influence the method’s accuracy. 

Whilst a bigger step size is easier to incorporate the differential 

equation into the iterative process, smaller step size would 

enable the achievement of better estimate for the solution 

hence decreasing the error. On the other hand, it would be 

expected that larger time steps generate higher errors because 

of the discrete nature of the approximation applied in Heun’s 

method. The choice of sample size and time step affects the 

sample’s computational cost and accuracy and has to be 

optimized for best performance. 

• Unexpected anomalies and possible causes 

One unexpected anomaly arises when comparing the results 

in Table 4, where the MSE for 𝑁=1000 in example 2 (the fuzzy 

Langevin equation) is not consistently smaller than for 𝑁 =
100 . This counterintuitive result may arise from several 
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factors: 

(a) Non-linearity in the stochastic system 

FSODEs often involve non-linarites that can lead to higher 

errors at larger sample sizes. As the dimensionality of the 

system increases, especially with non-linear drift and diffusion 

terms, the method might struggle to maintain accuracy. Non-

linear systems are particularly challenging for numerical 

methods as they amplify errors, especially when the system 

exhibits sensitive dependence on initial conditions. 

(b) Stochastic fluctuations 

Another reason for this effect may be random 

randomization that is inevitable for stochastic processes, for 

example, Wiener’s ones. For the large groups, the random 

error is more pronounced, and in some cases, this will cause 

more error. This is particularly true in those situations where 

the system under analysis is unnaturally sensitive to the initial 

conditions in other words where it exhibits a chaotic behavior 

in this respect even seemingly marginal changes to the 

common sample size or initial conditions may lead to 

disproportionately large changes in the results. 

(c) Numerical instabilities 

Some issues remain to be solved even if Heun’s method 

gives good stability on average; growing numerical 

instabilities in higher-dimensional space and higher-order 

fuzzy parameters may cause anomalies. Such instabilities can 

arise in the form random swings in the error at large sample 

sizes. 

(d) Convergence analysis 

This section presents a detailed analysis of the convergence 

properties of the adapted fuzzy Heun’s method for solving 

stochastic differential equations. Both theoretical and 

experimental approaches are discussed to validate the 

method’s robustness. 
 

4.2 Theoretical convergence analysis 
 

The convergence of the numerical method is assessed based 

on the strong and weak convergence criteria for SDEs. 

a. Strong convergence: Convergence of this numerical 

method is called strong convergence with order 𝑝 if there 

is a positive multiplier C [25]: 

 

𝐸[|𝑌𝑇 − 𝑌𝑒𝑥𝑎𝑐𝑡(𝑇)|
2]
1
2 ≤ 𝐶∆𝑡𝑝 (33) 

 

where,  𝑌𝑇  is the numerical solution, 𝑌𝑒𝑥𝑎𝑐𝑡(𝑇)  is the exact 

solution, and ∆𝑡 is the time step. 

 

b. Weak convergence: Weak convergence is based on the 

performance of test functions 𝑄(𝑥) to expect the result of 

numerical and exact solutions. The method has weak 

order 𝑞 if [26]:  

 

|𝐸[𝑄(𝑌𝑇)] − 𝐸[𝑄(𝑌𝑒𝑥𝑎𝑐𝑡(𝑇))]| ≤ 𝐶∆𝑡𝑝 (34) 

 

where, 𝑄(𝑥) is a smooth test function. 

 

c. Conditions for convergence: 

• The coefficients of the drift and diffusion terms of the 

SDE must satisfy Lipschitz condition as well as linear 

growth. 

• When dealing with the fuzzified parameters, the 

membership functions must be bound over the 

domain. 

 

4.3 Experimental convergence tests 

 

To verify convergence experimentally, we evaluate the 

method’s performance on test problems under varying 

discretization step sizes (𝛥𝑡) and sample sizes (𝑁). 
• Two example problems are considered (e.g., Riccati and 

Langevin equations) with both crisp and fuzzy 

parameters. 

• The results are compared to the exact solutions for the 

crisp case and to a benchmark fuzzy solution. 

• MSE: 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑇

(𝑖) − 𝑌𝑒𝑥𝑎𝑐𝑡
(𝑖))2

𝑁

𝑖=1

 (35) 

 

• Strong and weak error rates are plotted on log-log scales. 

 

4.4 Results and discussion 

 

• Strong convergence: As is illustrated in the two following 

figures, the dependency of strong error on 𝛥𝑡 is presented 

in Figure 4(a) and Figure 8(a). The slope of the log-log plot 

yields convergence rate of 𝑞1 =  0.5194 and 𝑞2 = 0.2936 

this indicate that the method is stable and reliable. 

• Weak convergence: Figure 4(b) and Figure 8(b) illustrate 

weak convergence, confirming the method’s ability to 

approximate the statistical properties of the solution. 

• Comparison to theoretical rates: The observed 

convergence rates align with theoretical expectations, 

verifying the method’s consistency under fuzziness and 

stochastic effects. 

 

4.5 Implications 

 

The results validate the adapted Fuzzy Heun’s method as a 

robust tool for solving stochastic differential equations with 

fuzzy parameters, achieving acceptable convergence in both 

strong and weak senses. 

 

 

5. CONCLUSIONS 

 

In this study, a new numerical technique is developed for 

approximation of FSODEs with an integration of Heun’s 

method and dual Wiener processes. The major contributions 

include: Using triangular and trapezoidal fuzzy numbers to 

inject fuzziness, solving SODEs that cannot be solved to any 

productivity level using other approach. The method enhances 

both accuracy of solutions as well as the computational results 

and the potential has been established by convergence analysis 

and empirical evidence and it has been shown to be useful 

when solving more realistic problems such as fuzzy Langevin 

equations. This work fills voids that exist in earlier literature 

by presenting a feasible approach to model uncertainty in 

complicated stochastic structures, and has implications for 

practice in areas such as finance, engineering, and physics. 

For possible future works, the method should be applied to 

higher-dimensional systems. Several nonlinearities including 

rational, periodic, and logarithmic nonlinearities should be 

included. In addition, such works may be considered to tackle 

complex nonlinear systems and integrating fuzzy logic with 

machine learning techniques, potentially artificial neural 

networks, to enhance solution accuracy. 
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