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Predictive Maintenance systems (PdMs) provide a modern approach for system 

operators to assess current conditions and predict future system performance, enabling 

timely maintenance actions. This model integrates quantization and encoding 

techniques to minimize complexity. Quantization refers to the process of reducing the 

number of bits used to represent data, while encoding transforms data into a suitable 

format for processing. The proposed system is applied to Wireless Sensor Networks 

(WSNs), focusing on predicting data transfer quality. The Feed Forward Neural 

Network (FFNN), a type of artificial neural network, forecasts the network's functioning 

status after M steps on basis of earlier Quality of Service (QoS) readings. Our findings 

indicate that increasing M raises prediction error and complexity, whereas a larger L 

reduces prediction error but increases complexity. In addition, quantization and 

encoding effectively lower the system complexity for real-time implementation. 
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1. INTRODUCTION

PdM system focuses on data collection and system 

operation estimation. It helps users access system conditions, 

identify faults, predict failures, and estimate the remaining 

system life. This paper presents a novel PdM model tailored 

for WSNs. The main contributions of this work include: The 

integration of FFNNs to predict network conditions based on 

multivariate time-series QoS data. The implementation of 

quantization (reducing the number of bits representing data) 

and encoding (transforming data into processable formats) 

techniques to minimize computational complexity. A detailed 

performance evaluation demonstrating the model's efficacy in 

real-time deployment scenarios. 

These contributions aim to enhance the reliability and 

efficiency of WSNs while addressing resource constraints. 

The PdM approach maximizes system lifespan, minimizes 

unplanned downtimes, and reduces maintenance costs, 

improving overall reliability and production quality. The 

WSNs and IoT technologies are essential for advancing and 

refining Predictive Maintenance. These technologies facilitate 

the collection of vast amounts of data from sensors installed in 

machinery, within factories, and at various monitoring 

locations. For PdM to work effectively, an active sensing 

system is required to gather measurements that accurately 

represent the condition of the systems being maintained. The 

selection, quantity, distribution, and reliability of these sensors 

are critical factors that determine the overall effectiveness and 

quality of the PdM. 

Most researchers and developers in area of PdM utilize 

WSNs and IoT as fundamental platform for their solutions. In 

hazardous and challenging industrial environments, the use of 

WSNs provides an automated method of performing 

measuring in lieu of manual measurements. Further, PdM 

systems are easily deployed and configured due to wireless 

communication through WSNs. However, these systems may 

be faced with problems including, energy shortages, force 

majeure threats, bandwidth issues and restricted computing 

abilities. Similar to this, PdM systems can be enhanced and 

optimized with the help of IoT, WSN, machine learning, and 

deep learning. Typically, ML/DL models, which are 

developed using neural networks, accept input in two or one-

dimensional forms and the outputs are categorical for 

classification models or a continuous value for regression 

models. 

To achieve high performance and fulfil PdM goals, it 

appears necessary to choose a design technique that best suits 

the needs of the system and offers accurate prediction and 

classification. Based on the ML algorithm, a suggested 

prediction model framework was created in this regard. It 

calculates the predictive likelihood distribution of the 

monitored system's operational status by removing redundant 

data and streamlining the information into a multivariate time 

series. It predicts the likelihood that the system will remain 
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fully functional in the upcoming M steps and guarantees that 

this functionality will be maintained with a specified level of 

dependability.  

The suggested model was created using an ML method 

based on the feed-forward neural network [1, 2]. Prior 

observations of the QoS parameters—packet loss, delay, 

throughput, and power consumption expressed as multivariate 

time series serve as the input for PdM. After M steps forward 

in time from the current time, the PdM forecasts the output as 

a vector that gives the WSN's status. In order to meet the 

criteria of WSNs, the complexity and memory consumption 

are further reduced through the use of quantization and 

encoding techniques [3]. 

The difficulty of applying PdM in WSNs, where energy and 

computational resource limitations impair the performance of 

real-time machine learning models, is addressed in this work. 

Specifically tailored to the resource constraints of WSNs, the 

objective is to create a low-complexity, high-accuracy PdM 

model that can forecast network performance and minimize 

system outages. 

The organization of the paper is as follows: The first section 

gives introduction to the domain followed by related work. 

The third section is proposed system model, fourth section 

presents the overall numerical results and performance of the 

proposed work in different scenarios, finally the proposed 

work is concluded. 

 

 

2. RELATED WORK  

 

In industrial WSNs, the applications are progressively 

recognizable taking into account the improved flexibility and 

the cheaper setup costs. But they also create new problems of 

energy optimization, and network management, among others, 

which industrial users struggle to solve. To address the 

challenges, therefore, new forms of optimized energy 

consumption for Industrial WSNs have been developed by 

applying Machine Learning techniques [4]. The model also 

allows for gaining information about possible compromises 

between power consumption and the speed of communication 

to achieve a more efficient energy solution. The EEOM 

achieved an estimated 64.72% transmission energy 

consumption, 35.28% transmission energy savings, 67.27 

percent received energy utilization and 32.73% received 

energy storage, 52.16% idle mode energy efficiency and 

478.4% idle mode energy efficiency, 66.31% sleep mode 

energy efficiency and 33.69% sleep mode energy storage. The 

prevalence threshold was 90.44%, 90.06% MCC, 93.93% 

Delta P, 90.33% CSI, and 90.17% FMI. These automated 

knowledge-based methods will improve Industrial WSNs' 

dependability, efficiency, and energy cost savings when 

combined with a manual intervention [5, 6]. 

IoT is a special case of Internet of Things that is 

implemented in production where IoT technologies that bring 

a wide range of sensors as well as a possibility to use various 

analytics on a machine data it produces are designed. The data 

obtained by the use of the machines normally contains date 

time information which is very important for the predictive 

models. This paper examines the application of ARIMA 

forecasting on the time series data that originates from the 

Slitting Machine sensors, in an endeavor to predict future 

failures and quality defects. Machine Learning thus establishes 

as a fundamental requirement in IoT owning applications in 

quality assurance and quality checking, reducing the cost of 

manufacturing and boosting the general productivity of 

production [7]. 

They say that the mere prediction of the weather has the 

potential to save the many lives in environmental disasters 

such as landslides, earthquake, flood, forest fire, tsunamis, and 

so on by disaster monitoring and people warning them to 

evacuate in the event of the occurrence of disaster. In this 

paper, we use Multiple Linear Regression (MLR) model for 

humidity prediction. Finally, the Multiple Linear Regression 

technique was used to predict the humidity after exploratory 

data analysis and outlier treatment was done. Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE) have been used as the 

performance criteria to assess the model. From this experiment 

the applied method produced results with minimum error of 

11% thus the model is significant and predictions more 

accurate than other methods [8]. 

The deployment of Deep Learning-based Predictive 

Maintenance (DL-PM) in Industrial Internet of Things (IIoT) 

enhances productive performance and minimizes the 

availability of idle time. This research work looks at the 

integration of deep learning with the Predictive Maintenance 

in the Industrial IoT domain. The research identifies the shift 

from orthodox maintenance to intelligent approaches such as 

deep learning made possible by IoT data capture in real time. 

In methodological terms, it presents data preprocessing, model 

selection and design for DL-PM. CNNs process data captured 

by sensors, RNNs forecast temporal patterns, and hybrid 

models incorporate transfer learning [9]. The research work 

presents the use of DL-PM across industries and industries 

using quantitative measurements and qualitative assessments 

that compare DL-PM to traditional methods. It covers issues 

such as data quality, model types explain ability, model 

scalability, model sensitivity, and accessibility to ethical 

issues. This research work increases appreciation of the 

transformative impact of DL-PM in IIoT. The ability of DL-

PM to change industrial process in the IoT era is highlighted. 

It outlines the approach to implementing DL-PM, the issues 

that may be faced and the opportunities for industries to 

develop effective approaches for operation that is not 

disrupted by frequent downtime periods [10]. 

Industry 4.0 has provided vital inputs for the propulsion of 

the automotive sector which engulfs various areas of economic 

and social development and the corporate models of smart 

production, smart manufacturing, and IoT, IoT were also 

propelled by Industry 4.0. This paper presents a basic 

assessment of trends on machine learning techniques that are 

more generally applicable to PdM in smart manufacturing in 

accordance with Industry 4.0. The study adopts the 

classification of research based on ML algorithms and deals 

with the future prediction of a temperature using time series 

and multivariate analysis methods. Through the presentation 

of the recent developments in ML and PdM of smart 

manufacturing, this paper seeks to advance the knowledge in 

improving the manufacturing processes for the advancement 

of competitiveness in the manufacturing sector [11, 12]. 

According to the previously described development, the 

PdM is a new technology that assists system operators in 

assessing the systems' existing condition as well as forecasting 

their future quality and maintenance action management. This 

study creates a work flow PdM model that employs a machine 

learning technique to ascertain the operational state of the 

system following M action steps from the L actions of a FFNN. 

In order to simplify the system, we employ quantization and 
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encoding techniques to cast the problem in the discrete time 

domain in order to foresee the system's condition in terms of 

data quality transmission, we use the suggested model in this 

study to build a PdM system within WSNs. By examining the 

prior L records of QoS measures from the WSN, the FFNN 

architecture enables the projection of the network's operational 

state after M consecutive future time steps. We have 

discovered that an increase in M leads to greater complexity 

and a higher prediction error, while a larger L is linked to 

increased complexity but a reduction in prediction error. 

Furthermore, we investigate how quantization and encoding 

techniques can aid in reducing complexity to achieve a real-

time PdM system [13]. 

Internet of things (IoT) is basically a platform which deals 

with management of daily life activities to create an interaction 

between things and people. Among them, an example of the 

application of a smart office that connects electrical appliances 

and sensors via the Internet using an automation system is 

described in this paper. The data collected from different 

sensors and appliances go to the cloud, and the data is available 

to the user through the smartphone no matter their location. In 

this paper a sensor fault prediction model using a machine 

learning algorithm is established where ‘k-nearest neighbors 

model’ outperforms other models with an accuracy of 99.63%, 

F1- score of 99.59% and recall of 99.67%. In an attempt to 

assess the performance of the above models, i.e. k-nearest 

neighbors and Naive Bayes, several performance parameters 

including precision, recall, F-measure, and accuracy were used. 

It is a safe, uninterrupted, and stable automated system that 

makes smart office employees and their work safe and 

efficient and saves resources [14]. Sudden failure of the 

important equipment affects the overall production line rate of 

the IIoT and to achieve a higher leading-edge business acumen, 

the PdM works on working data. Employers on the other hand 

are always under pressure to manually route suitably 

competent manpower resources wherever there is a machine 

breakdown.  

Moreover, for equipment, human error is found to have a 

ripple effect in terms of negative impact on total equipment 

availability time and the production timeline. Hence, in this 

paper, the complex resource management problem is cast into 

a resource optimization problem to know if a model-free deep 

reinforcement learning (DRL) based PdM framework can 

learn the optimal decision policy from the stochastic 

environment automatically. In contrast to the proposed PdM 

frameworks, our approach takes into account the information 

from health sensors of PdM and resources of physical 

equipment as well as human into account the optimization 

problem [15]. 

Global pressures to increase value addition and reduce costs 

make oil and gas refinery operations a complex task. 

Predictive Maintenance strategies have become the critical 

solution through this approach to carry out real-time 

abnormality detection, pressure variation forecast, and asset 

condition tracking. A good and informative case is a 

downstream asset established in Western Australia that 

skillfully exploits the potential of the IoT and AI/ML. 

Technical focuses include using wireless sensors for data 

capture, data transfer to a central control, and the application 

of machine learning to recognize equipment aberrations. 

Experts and decision makers receive these defects at the 

earliest and with contextual information they are in a position 

to make sound decisions quickly [16]. 

Maintenance which is performed or not done in correct 

manners affect that mean time between failure (MTBF) to 

worsen. Manual diagnostic procedures normally lead to an 

increase in the time taken to repair the system at the point of 

breakdown. Working component starts with attribute selection 

with a correlation ranking filter to determine the most critical 

attribute to system condition. In the subsequent step, ensemble 

learning procedures were specified to develop a PdM model. 

Wait using a numeric data experiment determined six of the 

wafer stick machine attributes affecting system condition and 

a working test on the proposed PdM model yielded 95.90% 

accuracy [17]. 

Due to a large number of devices integrated into smart grid 

infrastructure as part of the IoT, large amounts of sensor data 

can be produced. Such a wealth of data offers a signal that 

advanced data analysis approaches to PdM can be applied to 

smart grids. This paper also presents a discussion on the 

performance evaluation and model selection for anomaly 

detection in IoT sensor data and the integration and 

deployment possibilities and limitations and critique of the 

few selected empirical works. Interestingly, the study asks for 

the barriers that could occur in the course of executing and 

implementing Machine Learning Techniques particularly in 

Anomaly Detection in IoT Sensor Data. Further, the study 

makes a contribution to the features that might have possibly 

been left unnoticed in the preexisting literature [18]. 

The industry of marine transport is gradually moving 

towards the implementation of condition-based maintenance 

for the enhancement of dependability and efficiency of marine 

propulsion systems. This work presents an exploratory study 

on marine propulsion health monitoring using neural networks 

and IoT sensor fusion. It is gathered in real time by a complex 

array of sensors covering the essential parts of the propulsion 

systems. Combining sensor data via state-of-art IoT 

algorithms provides a holistic insight into the system’s 

condition. The technique proposed in the current work focuses 

on the Predictive Maintenance using neural networks. Neural 

networks and IoT sensor fusion provide prospects for early 

defect detection and real-time schedules for equipment 

maintenance [19]. 

The probability of incurring additional operative cost due to 

equipment failure in the course of its productive use might be 

reduced by regularly scheduling maintenance check on 

revenue generating assets to identify, prevent and rectify 

potential faults before they result in fatal breakdowns. In each 

of the equipment, raw sensor data are collected for a sensor 

device and analyzed for equipment health status to identify 

anomalous events. “As for the black-box regression models, 

the proposed algorithm learns an optimal maintenance policy 

and offers a recommendation for each equipment” [20].  

In relation to IoT, this paper describes possibilities to 

increase the security of WSNs. Notably it responds to the 

issues brought by non-homogenization of IoT. On the other 

hand, this paper also uses the machine learning and AI 

algorithms in the detection of the intrusion detection. WSNs, 

which play a significant role in acquiring data through multiple 

applications, will be vulnerable to threats such as wiretapping 

and DoS attack. This method is better at authentication 

efficiency as well as, better at improving the detection and 

segregation of multiple types of security threats for opening up 

more possibilities for innovation within the cyber security of 

IoT [21]. 

Scalability and real-time processing are issues for many 

models, though, because of computing limitations. Our 
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method, which combines quantization and encoding 

techniques with a FFNN, offers a unique balance between 

prediction accuracy and reduced model complexity for real-

time deployment in WSNs with restricted resources. By 

addressing resource efficiency and scalability, this 

methodology improves PdM efficacy in WSN settings. 
 

 

3. PROPOSED SYSTEM MODEL  
 

There are two basic parts to the proposed PdM approach:  

(i) Forecasting model for the forward probability 

distribution of the system's operating state under observation. 

Time-series data is used to display the system information, and 

the model forecasts how the system will operate over the 

following M steps to ensure dependable system operation with 

a specified reliability level parameter.  

(ii) To enhance the prediction model, an ML algorithm that 

has been employed represents the prediction model, that is, a 

FFNN. 

 

3.1 Estimating future probability distribution 

 

Assume that the system information is represented by time 

series w(t), which can be derived from direct measurement or 

processed data. The system status is evaluated as follows: 

• If w(t)≤D, then the system is considered faulty and urgent 

repairs are necessary. 

• If w(t)≤D, the system functions normally. 

The goal is to estimate likelihood that the system will 

remain operational over the next N time steps, given past 

observations w(t−1), w(t−2), …, w(t−L+1). This probability 

can be represented as: 

 

𝑃(𝑤(𝑡 + 𝑁) ≤ 𝐷, 𝑤(𝑡 + 𝑁 − 1) ≤ 𝐷, … , 𝑤(𝑡) ≤ 𝐷) 

(𝑤(𝑡 − 1) = 𝑢, … , 𝑤(𝑡 − 𝐿 + 1) = 𝑣) 
(1) 

 

More precisely, the objective is to determine whether the 

system's continued operability over the next N time steps is 

assured with a specified reliability level, determined by the 

parameter δ, as shown in: 

 

𝑃(𝑤(𝑡 + 𝑁) ≤ 𝐷, 𝑤(𝑡 + 𝑁 − 1) ≤ 𝐷, … , 𝑤(𝑡) ≤ 𝐷) 

 (𝑤(𝑡 − 1) = 𝑢, … , 𝑤(𝑡 − 𝐿 + 1) = 𝑣) ≥ 1 − 𝛿 
(2) 

 

Define the following notations for convenience: 

 

𝑌+(𝑡): = (𝑦(𝑡 + 𝑁), 𝑦(𝑡 + 𝑁– 1) … … . . , 𝑦(𝑡)) 

𝑦^ − (𝑡) ∶= (𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝐿 + 1)) 
(3) 

 

In this form, the probability can be expressed more 

compactly, where the set C is defined as: 

 

𝐶 ∶= { 𝑦𝑖 < 𝐷, … . , 𝑦{𝑁}  ≤ 𝐷 𝑓𝑜𝑟 1 ≤ 𝐼 ≤  𝑁 } 

 

Thus, the probability is given by: 

 

𝑃 ( 𝑦+(𝑡) ∈ 𝐶 ∣
∣ 𝑦−(𝑡) = (𝑢, … , 𝑣) ) ≥ 1 − 𝛿 (4) 

 

Define the following two vectors: 

 

𝑟(1) = ({𝑟}1
{(1)}

, {𝑟}2
{(1)}

) = (1, 0){ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 }𝑦+ ∈ 𝐶 

r(2)=({𝑟}1
{(2)}

, {𝑟}2
{(2)}

) = (0, 1){ 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 }𝑦+ ∉ 𝐶  
(5) 

This allows us to create a training set: 

 

𝜏(𝐾) = {(𝑦^(𝑡), 𝑟(𝑡)) ∣ 𝑡 = 1, … , 𝐾 },  
 𝑟(𝑡) ∈ {𝑟(1),\𝑟(2)}  

(6) 

 

3.2 FFNN algorithm 

 

The proposed task is implemented using the FNN machine 

learning technique. The basic architecture of FNNs, which 

consists of several hidden layers, input layers, and output 

layers, is what defines them. As the number of hidden layers 

increases, the data flows unidirectional from the input layer to 

the output layer. Back propagation, a basic and popular 

technique, is used as the training method in this study. An 

activation function is used to determine the estimated output, 

and a loss function is used to calculate the estimation error. 

Back propagation is used to update the weights according to 

the gradient of the loss function. 

Several factors influence FNN performance, including the 

size of the training set, the training algorithm, the structure of 

the hidden layers, the activation function, and a detailed 

problem description. The primary criterion is user satisfaction 

with regard to accuracy and complexity because there are no 

established standards for choosing, contrasting, and assessing 

solutions. 

The training dataset described in Eq. (6) is used to train the 

FNN, where the mapping of inputs to outputs is given by 

z=Net(u,v) with v representing the weights to be learned. The 

weights adjustment/optimized done using back propagation 

algorithm are as follows:  

 

𝑣{{𝑜𝑝𝑡}} = 𝑚𝑖𝑛{𝑣}

1

𝑘
∑ |𝑡{(𝑘)} −  {𝑁𝑒𝑡}(𝑢{(𝑘)}, 𝑣)|2

{𝐾}

{𝑘=1}

 (7) 

 

1

𝑘
∑ |𝑡{(𝑘)} − {𝑁𝑒𝑡}(𝑢{(𝑘)}, 𝑣)|2

{𝐾}

{𝑘=1}

→ 𝐸|𝑡 − {𝑁𝑒𝑡}(𝑢, 𝑣)|2 

(8) 

 

𝑣{{𝑜𝑝𝑡}} = 𝑚𝑖𝑛{𝑣}𝐸|𝑡 − {𝑁𝑒𝑡}(𝑢, 𝑣)|2 

→ {𝑁𝑒𝑡}(𝑢, 𝑣) = 𝐸( 𝑡 ∣ 𝑢 ) 
(9) 

 

 
 

Figure 1. Architecture of a FFNN 
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After training, the output of the FNN provides the estimated 

conditional probabilities based on the given past observations. 

If P(w+∈C∣u)≥1−δ, then there are at least N steps to failure. 

The architecture of a FFNN is depicted in Figure 1, 

consisting of three hidden layers. The input layer takes in a 

window of previous observations. These observations are 

processed through the hidden layers, and the data flows 

unidirectional from the input layer to output layer. Each 

hidden layer applies an activation function, and the output 

layer generates the final prediction or probability estimation. 

The architecture includes: 

·Input Layer: Accepts a window of past observations (L 

previous QoS readings). 

·Hidden Layers: The network comprises three hidden layers: 

·First hidden layer: 128 neurons with ReLU (Rectified 

Linear Unit) activation function. 

·Second hidden layer: 64 neurons with ReLU activation 

function. 

·Third hidden layer: 32 neurons with ReLU activation 

function. Dropout layers are incorporated after each hidden 

layer to prevent overfitting, with a dropout rate of 0.3. 

·Output Layer: A single neuron with a sigmoid activation 

function to output the probability of the system’s operational 

status. 

The FFNN uses back propagation as the training algorithm, 

optimizing weights based on the gradient of the loss function 

(binary cross-entropy for classification tasks). Batch 

normalization is applied to stabilize learning and speed up 

convergence. This architecture effectively balances model 

complexity and computational efficiency, making it suitable 

for deployment in resource-constrained WSN environments. 

 

3.3 Customized PdM for WSNs 

 

The proposed paradigm is covered in this part as a PdM 

strategy for WSNs. A WSN is made up of one or more base 

stations and several tiny nodes that work together to collect 

data. The nodes use a wireless radio transceiver to connect 

with the base station and with each other. Small-scale 

processing units and sensors to measure or track physical 

phenomena are included with these nodes. WSN nodes are 

frequently installed in complicated situations and typically run 

on batteries with a limited power source. Restricted memory, 

low processing power, limited communication bandwidth, and 

inadequate power backup are some of the constraints that 

WSN designers and operators must take into account. 

Notwithstanding these limitations, the system's functionality 

must satisfy specific QoS standards. Dependability, energy 

efficiency, security, accuracy, and low latency are some of the 

QoS requirements for WSNs. In order to enhance WSN 

performance, the maintenance action may entail selecting new 

cluster heads, rearranging clusters, installing new sensors, 

controlling ON/OFF schedules, and other tactics. A low-

complexity PdM model is required due to the restricted 

resources of WSNs. 

 

3.4 Quantized FFNN 

 

The energy, memory, and computing capability of WSNs 

are limited. A quantization approach that speeds up training 

and lowers the model's complexity is used to make sure the 

PdM model performs effectively under these limitations. 

Quantization speeds up training and makes the model simpler, 

but it may also decrease accuracy, necessitating a trade-off 

between precision and complexity. The quantization function 

converts variables and weights from their typical floating-

point representations into integers, which are fixed-point 

representations of numbers. This conversion improves 

memory efficiency and computation speed. 

The quantization level q of the actual value v is determined 

by a deterministic quantization function in the manner 

described below: 

 

𝑞(𝑣) = {𝑠𝑖𝑔𝑛}(𝑣) ⋅ 𝛥({|𝑣|}/{𝛥} + {1}/{2}) (10) 

 

where, Δ is the resolution or the quantization step size. 

We refer to these functions as equidistant quantization. 

Each quantization level has an equal portion of the 

quantization range. Data that is uniformly distributed is ideal 

for these functions. Non-equidistant quantization works better 

for distributions that are not uniform. 

This algorithm minimizes mean square quantization error σ 

by taking the probability distribution function (PDF) of the 

samples into account. 

The optimal quantized level qj(v) of a sample v is found 

iteratively: 

 

𝑞𝑗(𝑣) =

{∫ 𝑣
{𝑑{𝑗+1}}

{𝑑𝑗}
⋅ ℎ(𝑣), 𝑑𝑣}

 {∫ ℎ(𝑣)
{𝑑{𝑗+1}},

{𝑑𝑗}
𝑑𝑣}

 (11) 

 

The PDF of the sample distribution is denoted by h(v), 

whereas dj and dj+1 stand for the limits of the suggested 

quantization level qj. 

The goal is to minimize the mean square quantization error 

τ, expressed as: 

 

𝜏 = ∫ (𝑣 − 𝑞𝑗)
2

ℎ(𝑣)
{𝑑{𝑗+1}}

{𝑑𝑗}

𝑑𝑣 (12) 

 

By using this approach, the quantization error is minimized 

while considering the underlying distribution of the data. 
Quantization and encoding techniques have a significant 

impact on the model’s performance and complexity. 

Quantization reduces the model’s memory footprint, making 

it suitable for deployment on devices with limited resources. 

Fixed-point operations resulting from quantization are 

computationally faster than floating-point operations, 

reducing inference time. While quantization may introduce 

minor inaccuracies, these are offset by the model’s robustness, 

which is particularly beneficial in applications where precision 

is not critical. Furthermore, dropout layers and encoding 

techniques enhance the model’s ability to generalize, ensuring 

reliable predictions even with noisy or incomplete data. 

Quantization reduces the model's memory and 

computational requirements by mapping floating-point 

parameters to fixed-point representations. While this 

optimization enables deployment on resource-constrained 

devices, it introduces trade-offs. Specifically, lower precision 

may slightly degrade model accuracy. However, these 

inaccuracies are typically negligible in WSN applications 

where computational efficiency and energy savings are 

paramount. The benefits include reduced memory footprint, 

faster inference times, and improved suitability for real-time 

processing in WSN environments. 
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3.5 Sparsity of FFNN 
 

The main issue with using FFNNs on WSNs is memory 

limitations. A number of techniques are used to advance 

ML/DL algorithms' memory efficiency. While some strategies 

target memory demands during training, others concentrate on 

reducing the amount of memory needed for inference. Sparse 

FFNNs are one popular and effective method for enhancing 

DL/ML algorithms. 

A sparse vector, with the majority of its entries being zeros, 

is used to represent input characteristics in a sparse FFNN. As 

a result, less memory and computational load are required. 

Sparsity can have a detrimental effect on the FFNN's accuracy 

even while it lowers computational complexity and increases 

memory economy. As a result, the degree of sparsity and the 

model's accuracy need to be balanced. We use a 

straightforward encoding system in this work, which was 

motivated by the approach described in the previous study. 

The quantization approach, which encodes each quantized 

level into an orthonormal vector, is enhanced by this encoding 

technique: 

 

𝑞𝑚 → 𝑡𝑞
𝑚: 𝑡𝑞

𝑚(𝑗) = {
1    𝑖𝑓   𝑗 = 𝑚

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑗 = {1,2 … … 𝑇}} (13) 

 

By applying this encoding, Eq. (3) becomes: 

𝑧+(𝑛) ≔ (𝑡𝑞(𝑛 + 𝑃), 𝑡𝑞(𝑛 + 𝑃 − 1), … . 𝑡𝑞(𝑛)), 

𝑧−(𝑛) ≔ (𝑡𝑞(𝑛 − 1), … . 𝑡𝑞(𝑛 − 𝐾 + 1)) 
(14) 

 

3.6 Dataset setup 

 

In order to gather data, two TelosB nodes were connected 

via an IEEE 802.15.4 link that was constructed on TinyOS. 

Every node was fitted with a 250 kbps TI CC2420 radio 

transceiver. They tracked packet delivery performance based 

on several predefined parameters associated with the physical, 

MAC, and application layers. A table of 10,000 observations 

was generated. Each row in the table summarizes the average 

values of 300 packets.  

The transmission power was fixed at -19 dBm, while other 

parameters were varied according to the combinations listed in 

Table 1.  

In addition to these configured parameters, the table also 

records a number of performance metrics related to packet 

delivery for each parameter combination, as presented in Table 

2. A trial of the observation is provided in Table 3. The table 

provides shows configured parameters for a system, along 

with their acronyms, possible values, and comments. Here’s a 

breakdown: 

 

 

Table 1. Parameters configuration 

 
Parameter Name Abbreviation Possible Values Notes 

Time Between Arrivals TBA 10, 20, 25, 30, 35, 40, 45, 50 ms Pre-set 

Data Packet Size DPS 25, 35, 55, 70, 85, 100, 110 bytes Pre-set 

Maximum Queue Depth MQD 5, 25, 60 Pre-set 

Max Retransmission Attempts MRA 2, 4, 6 Pre-set 

Retransmission Delay RD 25, 55 ms Pre-set 

Signal Transmission Power STP 18 dBm Fixed 

Node Separation Distance NSD 12, 22, 32 m Pre-set 

 

Table 2. Performance metrics 

 
Parameter Name Abbreviation Modified Values Notes 

Queue Depth Measurement QDM real values (0–60) Collected 

Buffer Overflow Status BOS real values (0–1) Collected 

Transmit Attempt Count TAC real values (0–5) Collected 

Acknowledged Transmission ATX - Collected 

Signal Strength Measurement SSM - Collected 

Noise Level NL - Collected 

Signal Quality Index SQI - Collected 

Time of Packet Arrival TPA - Collected 

 

Table 3. Observation values 

 
Parameter Name Abbreviation Values Notes 

Time of Packet Arrival TPA 125300, 130750, 137710, 146180, 156150 Measured 

Time Between Arrivals TBA 12, 18, 12, 18, 52 Pre-defined 

Data Packet Size DPS 25, 40, 60, 90, 115 Pre-defined 

Queue Depth QD 2, 2, 28, 2, 58 Measured 

Retransmission Attempts RTA 2, 2, 6, 2, 6 Measured 

Retransmission Delay RD 28, 28, 28, 58, 58 Measured 

Transmission Power TP 18, 18, 18, 18, 18 Fixed 

Distance Between Nodes DBN 12, 12, 12, 22, 34 Pre-defined 

Buffer Overflow Status BOS 0, 0, 0, 0, 0 Measured 

Queue Value QV 0.43, 0.25, 26.5, 0.03, 0.10 Measured 

Acknowledgement Rate AR 0.61, 0.80, 0.73, 1.01, 1.03 Measured 

Transmission Attempt Count TAC 0.605, 0.80, 0.73, 1.01, 1.05 Measured 

Signal Strength Measurement SSM 7.50, 9.85, -9.25, -16.30, 22.95 Measured 

Noise Level NL 54.00, -70.50, -61.05, 88.90, -93.70 Measured 

Signal Quality Index SQI 64.00, 83.34, 78.28, 107.10, 106.10 Measured 
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We calculated the QoS requirements of the WSN based on 

both pre-set and observed parameters, focusing on energy 

efficiency, throughput, delay, and packet loss. 

The reliability of the system is reflected in the packet error 

rate (PER), which is affected by the nodes' queuing behavior 

and the quality of connection metrics like LQI, RSSI and NF. 

PER is calculated as: 

 

𝑃𝐸𝑅 =
{𝑁{𝑝} − 𝐴}

{𝑁{𝑝}}
 (15) 

 

Energy efficiency (Eeff): This measures the energy required 

to transmit a useful bit. It is influenced by PER, transmission 

power level, packet payload, header length, and transmission 

rate: 

 

𝐸{𝑒𝑓𝑓} =
{𝑃{𝑡𝑥} × (𝐻{𝐿} + 𝑃{𝐿}) × 𝑇{𝑠}}

{𝑃{𝐿}(1 − {𝑃𝐸𝑅})}
 (16) 

 

where, Ts is the transmission time, which is 0.004 ms at a rate 

of 250 kb/s, and HL is the header length, which can vary 

between 11 and 31 bytes in IEEE 802.15.4. 

Throughput (Tp) refers to the number of useful bits 

received per unit time. It determined by on packet payload (PL), 

PER, and transmission service time (Tsrv): 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑇𝑝) =
{𝑃{𝐿}(1 − {𝑃𝐸𝑅})}

{𝑇{𝑠𝑟𝑣}}
 

(𝑇𝑠𝑟𝑣) = 𝐾 + 𝑇{𝑠} + (𝑁{𝑝} × 𝐷{𝑅}) 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 (𝑇𝑠𝑟𝑣) 

(17) 

 

where, K is a constant depending on the protocol and radio 

system specifications. In this case, it is approximately 13.5 ms 

based on the experimental setup. 

Delay refers to the time from packet creation to its 

successful reception. It is influenced by the link quality 

indicator (LQI) and node queuing characteristics. Often, a 

queuing model is used to represent delay in WSNs. We use 

system utilization (u) as a metric for delay, where u=Tsrv/TBA, 

and as u→1 delay increases. 

The computed QoS metrics (PER, Eeff, Tp, and u) are 

organized into a 10,000×4 input feature table, where each row 

corresponds to an entry in the observations table. As a fifth 

input feature, the time of packet arrival (TPA) is converted into 

a time series and added. The QoS metrics frequently depend 

on one another; for example, by increasing energy efficiency, 

throughput may decrease, or dependability may increase. For 

the user, these metrics must be balanced. The following ranges 

are established for each statistic in order to specify the WSN's 

operating conditions: 

 

𝛼{+} ≤ {𝑃𝐸𝑅} < 𝛼{−}, 𝛽{+} ≤ 𝐸{𝑒𝑓𝑓} < 𝛽{−}, 𝛾{+} ≤

𝑇{𝑝} < 𝛾{−}, 𝛿{+} ≤ 𝑢 < 𝛿{−}  
(18) 

 

 

4. RESULTS AND DISCUSSIONS 

 

The trends indicate that both packet loss and delay rise with 

increased network traffic, while throughput grows initially but 

reaches a cap due to bandwidth constraints. These patterns 

highlight points where Predictive Maintenance could 

effectively address performance declines. Figure 2 shows 

changes in essential QoS metrics (e.g., packet loss, delay, and 

throughput) over time, illustrating how the network reacts to 

varying conditions. 

Accuracy tends to drop with larger M values, reflecting the 

increasing challenge of predicting farther into the future. This 

emphasizes a balance between forecast range and precision, 

indicating that setting optimal M values could enhance the 

model's practicality for PdM use. Figure 3 shows how 

prediction accuracy changes as prediction steps (M) are 

extended. 

By incorporating more past observations, the model’s 

reliability improves. However, diminishing returns at higher L 

values suggest there’s an optimal historical data size that 

balances improved accuracy with computational efficiency—

helpful for WSN PdM applications. Figure 4 demonstrates that 

prediction error decreases as the amount of historical data (L) 

included in the model increases. 

 

 
 

Figure 2. Relation between MSE and execution time 

 

 
 

Figure 3. Prediction accuracy with increased prediction steps 

(M) 

 

 
 

Figure 4. Historical data size (L) and prediction error 
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Figure 5. Quantization levels and model complexity 
 

The results stress the importance of choosing an appropriate 

quantization level to maintain efficient operation in WSNs 

without significantly impacting prediction accuracy.  

Figure 5 presents the trade-off between quantization levels 

and model complexity, where higher levels of quantization 

reduce computational load but may introduce minor 

inaccuracies. 

The proposed model was compared with benchmark PdM 

models, including LSTM, GRU, and SVM-based approaches. 

While LSTM and GRU excelled at capturing temporal 

dependencies, their high computational demands made them 

unsuitable for resource-constrained WSNs. SVM models, 

though efficient, struggled with handling multivariate QoS 

data. The proposed FFNN, with quantization and encoding 

techniques, achieved comparable or superior accuracy while 

maintaining lower memory and computational requirements, 

demonstrating its practicality for WSN deployment. 

During the analysis, some anomalies were observed in the 

data, such as sudden spikes in QoS metrics like delay and 

packet loss, which occurred under specific environmental 

conditions, including extreme temperature fluctuations. These 

anomalies suggest potential limitations of the sensors or the 

communication protocol under adverse conditions. 

Statistical significance testing and 95% confidence intervals 

were used to validate the model’s reliability. The impact of 

quantization on model performance was evaluated. Results 

indicate that quantization reduced memory usage by 87% and 

computation time by 86%, with more accuracy. These trade-

offs are acceptable for WSNs, as the system prioritizes 

efficiency over marginal gains in precision.  
 

4.1 Evaluation metrics 
 

The proposed model was evaluated using accuracy, 

precision, recall, F1-score, Mean Absolute Error (MAE), and 

execution time. Accuracy ensures overall reliability, while 

precision and recall focus on minimizing false positives and 

capturing all faults, respectively, critical for WSN 

maintenance. The F1-score balances precision and recall for 

imbalanced datasets, and MAE quantifies QoS prediction 

errors for system optimization. Execution time ensures the 

model meets real-time requirements, addressing the efficiency 

and resource constraints of WSN environments. 
 

 

5. CONCLUSIONS 
 

This paper introduces a machine learning-driven approach 

to PdM tailored for WSNs. Using a FFNN, the model forecasts 

future network conditions by analyzing QoS metrics. By 

incorporating quantization and encoding, the model reduces 

complexity, making it suitable for real-time deployment in 

resource-limited WSNs. Findings reveal that longer prediction 

steps (M) can increase complexity and error, while a larger 

historical data window (L) improves accuracy. Overall, the 

PdM model achieves a practical balance between prediction 

precision and resource limitations, supporting reliable network 

performance with efficient energy use and minimized packet 

loss. The limitations include its reliance on a fixed data 

window size and FFNN, which may not generalize well to 

other network types or capture long-term dependencies. 

Deploying the model in real-world WSNs involves 

addressing challenges like resource constraints, environmental 

variability, and network latency. Quantization and encoding 

techniques ensure efficient operation on resource-limited 

devices, while edge computing mitigates latency by enabling 

local data processing. For diverse applications, the model can 

be optimized by tailoring input features and retraining with 

domain-specific datasets. 
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NOMENCLATURE 

 

Tp 
Throughput (number of useful bits received per unit 

time) 

u 
System Utilization (ratio of service time to time 

between arrivals) 

L 
Historical Data Window (number of past 

observations used in prediction) 

M Prediction Steps (number of steps ahead predicted) 

δ Reliability Level Parameter 

PL Packet Payload 

HL Header Length 

Ts Transmission Time 

Tsrv Transmission Service Time 

RSSI Received Signal Strength Indicator 

LQI Link Quality Indicator 

NF Noise Floor 
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