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Inflation is a complex and fluctuating economic phenomenon that requires accurate 

modeling approaches for effective forecasting. This study conducts a comparative 

analysis of activation function (AF) in Recurrent Neural Network (RNN) models for 

forecasting inflation in Indonesia. Three AFs: Logistic, Gompertz, and Hyperbolic 

Tangent (Tanh) are evaluated alongside two weight optimization methods, Stochastic 

Gradient Descent (SGD) and Adaptive Gradient (AdaGrad). The results show that the 

combination of the Logistic AF with the SGD optimizer achieves the highest accuracy, 

with an accuracy rate of 93.41% on training data and 93.57% on testing data. Compared 

to traditional statistical models such as Autoregressive Integrated Moving Average 

(ARIMA), Exponential Smoothing (ETS), Feedforward Neural Network (FFNN), and 

General Regression Neural Networks (GRNN), the RNN model demonstrated superior 

performance, achieving a SMAPE value of 14.81%, the lowest error among all models. 

These findings highlight the crucial role of AF selection in enhancing RNN model 

performance for economic time-series forecasting. This study provides valuable 

insights for researchers and policymakers to improve inflation forecasting accuracy 

using deep learning approaches. 
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1. INTRODUCTION

Inflation is an economic phenomenon characterized by a 

general increase in the prices of goods and services over a 

sustained period [1]. The government has a long-term goal of 

maintaining inflation stability at a low level to support 

economic growth and financial stability. Bank Indonesia (BI), 

as the monetary authority, is responsible for controlling 

inflation through various policies, particularly in dealing with 

exchange rate fluctuations and external economic shocks [2, 

3]. 

Before the economic crisis, BI's monetary policy was more 

focused on rupiah stability and inflation control. However, the 

priority given to exchange rate policy resulted in inflation and 

monetary growth targets not being achieved [2, 3]. During the 

crisis, BI shifted to a floating exchange rate regime and raised 

interest rates by 70% in August 1998 to control hyperinflation 

caused by rupiah depreciation and uncontrolled base money 

growth. Although inflation was successfully reduced to a 

single-digit level until 2000, inflation rates rose again in 

subsequent years and have fluctuated ever since [4]. 

According to the Central Bureau of Statistics (BPS), the 

inflation rate in 2022 and 2023 was recorded at 5.51% and 

2.61%, respectively, reflecting the continuously changing 

inflation dynamics [5]. Therefore, a more accurate nonlinear 

model is needed for inflation forecasting [6]. 

Inflation forecasting is a crucial aspect of monetary policy 

formulation and economic decision-making. Traditional 

statistical models such as ARIMA and ETS are often used for 

inflation forecasting [7]. While these models can capture linear 

trends and seasonal patterns, they tend to be less effective in 

handling fluctuating and nonlinear inflation patterns. In recent 

years, machine learning-based methods, particularly deep 

learning, have demonstrated superiority in modeling complex 

patterns in time series data [8, 9]. 

Among deep learning models, RNNs have proven effective 

in analyzing sequential data and capturing long-term 

dependencies in inflation trends [10, 11]. The main advantage 

of RNNs over traditional models is their ability to store 

information from previous observations, enabling more 

accurate modeling. RNNs have also been shown to outperform 

autoregressive models and backpropagation neural networks 

in inflation forecasting in various countries such as China [8], 

India [9], Canada [10], and the United Kingdom [11]. 

However, one crucial aspect of RNN optimization that remains 

underexplored is the selection of AFs, which play a significant 

role in gradient propagation and model stability, ultimately 

affecting prediction accuracy [12]. 

Previous research has shown that various AFs, such as 

Logistic [13], Gompertz [14], and Tanh [15], exhibit higher 

accuracy compared to ReLU. Additionally, optimization 

methods such as SGD [16] and AdaGrad [17] can enhance the 
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effectiveness of forecasting models. 

In 2021, the research conducted by Szandała [18] evaluated 

various activation methods for artificial neural networks, 

including Sigmoid, Tanh, and ReLU, and provided guidelines 

for selecting the best activation algorithm for real-world 

applications. In 2022, Ali et al. [19] compared 26 AFs in Long 

Short-Term Memory (LSTM) models for classification and 

found that alternative functions such as Modified Elliott and 

Softsign achieved higher accuracy than Tanh. Meanwhile, 

Ranjan et al. [20] demonstrated that using log-Sigmoid 

activation in LSTM for time-series classification resulted in 

improved accuracy with various optimization algorithms. This 

research underscores the crucial role of AF selection in 

enhancing the performance of artificial neural networks. 

However, to date, no studies have specifically examined the 

impact of AF selection and weight updates in RNN models for 

time-series applications, particularly in the context of inflation 

forecasting. Therefore, this study aims to fill this gap by 

conducting a comparative analysis of various AFs in RNN 

models. This research will consider three AFs Logistic, 

Gompertz, and Tanh along with two weight update methods 

SGD and AdaGrad to compare predictive model performance. 

By comparing RNN based forecasting results with 

traditional statistical models such as ETS, ARIMA, FFNN, 

and GRNN, this study will provide empirical insights into the 

optimal AF for inflation forecasting [12]. The findings of this 

research are expected to contribute to the literature on 

economic forecasting and deep learning while providing 

practical insights for policymakers and researchers to improve 

the accuracy of financial time-series prediction models. 

 

 

2. METHODS 

 

2.1 RNN 

 

RNN is a method that is used repeatedly to analyze the input 

(generally the sequential type of data) as part of deep learning. 

The RNN shown in Figure 1 utilizes looping structures to 

simulate human decision-making, by saving and retrieving old 

data to be utilized at any time [21]. This type of neural network 

generates its output based on present input, prior outputs, 

inputs, and the hidden state of the system [22]. RNN is a 

hidden state network distributed over time, making it possible 

to keep huge quantities of data about the past efficaciously. 

The principle of its design is that its recurrent connectivity 

allows for the memories of inputs from the past to be stored in 

the internal structure of the network [23] thus influencing the 

output of the network [24]. 

The notation x(t) represents the input during every time step 

t. st denotes the hidden state at every time step t, and o(t) 

indicates the output for every time step that is t. U, V, and W 

are a matrix of parameters used in an RNN. 

 

 
 

Figure 1. Architecture of RNN 

2.2 AF 

 

AF can be described as functions of the RNN that are 

involved in the calculation of biases and weights. These 

functions are designed to generate results from the neural 

network. They are an integral part of the process of training 

and optimization of a neural network they are accountable for 

analyzing patterns in the dataset. AFs play an essential part as 

they facilitate the non-linear mapping process between both 

output and input data of deep neural networks [25]. Many 

activation methods have been designed and implemented in 

various neural network models. The functions employed 

include Logistic Gompertz, Logistic, and Tanh [26, 27].  

The function of logistic activation also referred to as the 

sigmoid function, is still a common option in a variety of 

neural network models because of its high computational 

efficiency as well as an easy definition of the model [27, 28]. 

The formula for the logarithmic AF can be explained as 

follows [29-31]: 

 

𝑓(𝑥)=
1

(1+e-x)
 (1) 

 

This is known as the Tanh function which is commonly 

called Tanh. In addition to sigmoid or logistic, Tanh is also 

frequently utilized as an activation factor within neural 

networks [27]. Tanh is usually preferred over logistics due to 

its symmetry in the direction of origin. In addition, Tanh has 

gradients that are flexible in their direction change and have a 

zero-centered [32]. It is also known that the Tanh function can 

be described as continuous, varies, and has values that range 

between -1 and 1. Tanh function is defined by Tanh function 

is described as [29, 30]: 

 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2) 

 

The Gompertz AF was an algorithm invented by Benjamin 

Gompertz to analyze his model of demographics, which is an 

enhancement of the Malthus model [33]. In the realm of 

biology, it is in the field of biology, Gompertz function, or the 

curve, is often utilized to track growth patterns, in which the 

growing phase is shorter than the period of decreasing growth 

[34]. It is the Gompertz function, used to analyze time series 

is a specific variant of the generalized logistics function. The 

Gompertz function is typically represented as follows [14]: 

 

𝑓(𝑥) = 𝑎 ∗ 𝑒𝑥𝑝(−exp(𝑏 − 𝑐 ∗ 𝑥)) (3) 

 

In this case, f(x) is the anticipated value as a function of time 

x. a is the higher asymptote, b controls the change along the x-

axis (moving the graph either direction) while c represents the 

coefficient of growth (which influences the slope) The Euler's 

number (e equals 2.71828) as well exp(x) is the ex. 

 

2.3 Optimizer 

 

Neural networks have attracted the attention of academics 

and industry due to their exceptional performance in various 

pattern recognition and machine learning tasks. Other machine 

learning models, such as support vector machines (SVMs), 

decision trees, and RNNs, have unique structures and have 

been thoroughly researched theoretically. Therefore, there are 

specialized optimization algorithms designed for these 
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models. However, for neural networks, theoretical results that 

can be used to design specialized optimization algorithms are 

still very limited. As an alternative, gradient descent, a general 

algorithm, is often the first choice [35]. 

Optimizer is an algorithm used to update weights and biases 

during the learning process of artificial neural networks, 

aiming to reduce the error or difference between the network 

output and the desired target. The most commonly employed 

foundational algorithm is the gradient descent. However, this 

algorithm comes with one drawback, because it is extremely 

slow to accomplish a low error rate. The most commonly 

employed foundational algorithm is the gradient descent. 

However, this algorithm comes with one drawback, because it 

is extremely slow to accomplish a low error rate [36]. To 

overcome this problem different algorithms are being 

developed, such as SGD and AdaGrad. 

SGD is commonly utilized as a substitute for gradient 

descent in dealing with large-scale issues. While SGD 

typically requires more iterations than gradient descent, this 

method significantly decreases the requirement for storage and 

computation since it doesn't have to store or compute gradients 

based on all instances [37]. SGD changes parameters 

according to each trial, typically which makes it more 

efficient. The process can be carried out with many variances 

that can result in significant variations in the goal function. 

This can lead to SGD frequently exceeding its targets and 

making it difficult to reach a precise minimum value. 

However, with the gradual decrease in the learning rate, SGD 

eventually exhibits convergence behavior similar to batch 

gradient descent and is almost certain to converge to a local or 

global minimum. The SGD optimization formula can be 

written as follows [38]: 

 

𝜃 = 𝜃 − 𝜂∇(𝐽(𝜃𝑥𝑖𝑦𝑖)) (4) 

 

where, η is a learning rate, xi, yi is the i-th data sample, where 

xi is the input yi is the corresponding label or target, and θ is 

the parameter vector of the model being optimized. At each 

iteration, the value of θ will be updated to minimize the loss 

function J.  

The AdaGrad optimizer is a gradient-based optimization 

algorithm and a modified version of SGD that uses a per-

parameter learning rate, meaning it adjusts the learning rate 

according to each parameter. AdaGrad can enhance the 

performance of SGD by adjusting the learning rate [27]. The 

update formulas used are as follows [39]: 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐺𝑡 + 𝜖
∙ 𝑔𝑡 (5) 

 

where, η is a learning rate, θt is the parameter at iteration t, Gt 

is the cumulative sum of the gradients, 𝜖 is a small value to 

prevent division by zero (usually 𝜖 is around 10-8), and gt is the 

gradient for parameter θ at iteration t. 

 

2.4 Methodology 

 

This section outlines the methodology used for time series 

data prediction, specifically in the context of forecasting 

inflation rates. The case study focuses on inflation in 

Indonesia, using monthly Indonesian inflation data from 

January 2005 to December 2023. This data was sourced from 

BI and is accessible at 

https://www.bi.go.id/id/statistik/indikator/data-inflasi.aspx. 

The Indonesian inflation data was analyzed using a machine 

learning approach with RNNs. A comparative study was 

conducted on various AFs, namely Logistic, Gompertz, and 

Tanh, as well as weight updating or optimization functions in 

the RNN model using the SGD and AdaGrad optimizers. The 

objective is to identify the best-performing prediction model.  

This study aims to identify the most effective RNN model 

for forecasting inflation trends in Indonesia. The analysis 

follows a structured approach, adopting the research algorithm 

proposed by Hermansah et al. [40] to evaluate and optimize 

RNN performance. 

1. Determining neurons in the input layer (autoregressive 

lag) by analyzing data frequency x, assuming it represents time 

series data for forecasting. If the data frequency is m, 

autoregressive lags from 1 to m are used. For instance, for 

monthly data, the lag is set to 1:12. 

2. Data preprocessing, including scaling or normalization, 

using the equation: 

 

𝑦 =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (6) 

 

where, y is the normalized value; x is the data to be predicted; 

min(x) and max(x) are the minimum and maximum predicted 

data values.  

3. Splitting the dataset into training data (January 2005 - 

December 2022) and testing data (January 2023 - December 

2023). 

4. Building the RNN model by configuring key parameters, 

including the number of neurons, learning rate, epochs, 

optimization method, AF, and hyperparameter tuning. 

5. Performing data predictions.  

6. Denormalizing the predicted results using the equation: 

 

𝑥∗ = 𝑦 ∗ [𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)] + 𝑚𝑖𝑛(𝑥) (7) 

 

to restore values to their original scale, where x* is the value of 

data denormalization. 

7. Predicted and actual data using Root Mean Squared Error 

(RMSE) and Symmetric Mean Absolute Percentage Error 

(SMAPE) values. RMSE is a measure used to assess how well 

a predictive model is at predicting value. RMSE measures the 

difference between the value predicted by the model and the 

actual value, giving more weight to larger errors. A lower 

RMSE value indicates a model that is better at making 

predictions, because it shows that the average prediction error 

is smaller. A higher RMSE value indicates that the model is 

less accurate in its predictions, with larger errors. RMSE also 

has the same units as the measured data, making interpretation 

easier. However, keep in mind that RMSE is sensitive to 

outliers, so it should be considered along with other metrics 

for a more comprehensive model evaluation. RMSE is 

calculated using the following formula: 

RMSE, which measures prediction errors, calculated as:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐴𝑖 − 𝐹𝑖)

2

𝑛

𝑖=1

 (8) 

 

A lower RMSE indicates better model accuracy, while a 

higher RMSE suggests greater prediction errors. RMSE is 

sensitive to outliers and should be considered alongside other 

evaluation metrics. 
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SMAPE, which assesses forecasting accuracy by comparing 

predictions with actual values, calculated as: 

 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐴𝑖 − 𝐹𝑖|

|𝐴𝑖| + |𝐹𝑖|
2

× 100%

𝑛

𝑖=1

 (9) 

 

where, Ai is the actual value in the period i, Fi is the predicted 

value in period i, and n is the number of data points. 

8. Forecasting inflation in Indonesia for the period January 

2023 - December 2023. 

Figure 2 shows the main steps of the RNN model process to 

predict inflation. This flowchart summarizes phases of 

research that begin at data processing and models design 

through evaluation and forecasting. Every phase plays an 

important part in the precision as well as the reliability of 

forecasts. 

 

 
 

Figure 2. RNN modeling flowchart for inflation prediction 

 

 

3. RESULTS AND DISCUSSION  

 

In this research, a case study is conducted using data on the 

inflation rate in Indonesia. The data observed is monthly data 

starting from January 2005 to December 2023. Training data 

is collected on the first 216 data (from January 2005 to 

December 2022) and the last 12 data are used as testing data 

(from January 2023 to December 2023). This data can be 

found and accessed on the BI website. Furthermore, testing 

was conducted consisting of testing the optimization model by 

comparing two models, testing the AF by comparing three 

functions, testing the learning rate, and testing the number of 

epoch iterations. 

 

3.1 Comparing two optimization model 

 

This research uses SGD and AdaGrad optimization 

methods. SGD is an iterative learning algorithm that uses 

training data to update the model. The algorithm is iterative 

which means that each step will endeavor to slightly improve 

the model parameters. Each iteration involves using the model 

with the current parameters to make predictions on some 

training data, comparing the predictions with the expected 

results, calculating the error, and using the error to update the 

model parameters [41]. AdaGrad is a derivative algorithm of 

SGD that adapts to the learning rate with smaller parameters 

and model updates. These two methods are often used for 

model optimization. 

Furthermore, the neurons in the input layer in this study are 

proposed based on lag autoregressive with frequency 

approach, where time series data has time and frequency 

attributes. The time attribute states the time unit of each 

observation point, while the frequency attribute states the 

quantity of data in a certain period, usually defined per year, 

such as monthly data (frequency =12), quarterly data 

(frequency =4), quarterly data (frequency =3), semi-annual 

data (frequency =2), and annual data (frequency =1). In 

addition, both optimization models use a learning rate =0.05 

and 500 epochs to get more detailed training from both 

optimization methods. The AF used is the Gompertz AF and 

the determination of other hyperparameter values as reported 

by Keskar and Socher [42]. The test results with both 

optimization methods can be seen in Table 1. 

 

Table 1. Optimization model test result 

 

Optimization 
Training Data Testing Data 

SMAPE Accuracy SMAPE Accuracy 

SGD 0.19957 0.93289 0.15071 0.92589 

AdaGrad 0.67879 0.38981 0.80961 0.44716 

 

Based on the test results in Table 1, the SGD and AdaGrad 

optimization models produce significantly different levels of 

accuracy, whereas the SGD optimization model provides 

much better accuracy. The SGD optimization method is 

superior to the AdaGrad optimization method because it has a 

much lower error value (SMAPE value) and a much higher 

accuracy value. The SGD optimization method shows to have 

an advantage in the optimization model by getting a SMAPE 

value of 19.96% for training data and 15.07% for testing data. 

At the same time, it shows that it has an accuracy value of 

93.29% for training data and 92.59% for testing data. 

Meanwhile, the AdaGrad optimization model shows that it has 

an error value (SMAPE value) of 67.88% for training data and 

80.96% for testing data. At the same time, it shows that it has 

an accuracy value of 38.98% for training data and 44.72% for 

testing data. 

 

3.2 Comparing between three AFs 

 

This research uses logistic, Gompertz, and Tanh AFs. These 

three AFs are often used for the learning process of forecasting 

models. In addition, the three AFs use a learning rate =0.05 

and 500 epochs to get more detailed training from the SGD 

optimization method. Meanwhile, the autoregressive lag and 

hyperparameter values are determined in the same way as 

testing the optimization model. The test results with the three 

AFs can be seen in Table 2. 
 

Table 2. AF test results 

 

AF 
Training Data Testing Data 

SMAPE Accuracy SMAPE Accuracy 

Logistic 0.20498 0.93948 0.15329 0.93081 

Gompertz 0.19957 0.93289 0.15071 0.92589 

Tanh 1.39794 0.01113 1.46814 0.04255 
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Based on the results presented in Table 2, the logistic and 

Gompertz AFs exhibit similar accuracy levels, with only 

minor differences. In contrast, the Tanh AF produces the 

lowest accuracy. Both the logistic and Gompertz AFs have 

their respective strengths and weaknesses. However, this study 

indicates that the logistic AF outperforms the Gompertz AF 

due to its higher accuracy. Specifically, the logistic AF 

achieves an accuracy of 93.95% for training data and 93.08% 

for testing data, while the Gompertz AF attains 93.29% for 

training data and 92.59% for testing data. Despite its slightly 

lower accuracy, the Gompertz AF demonstrates a lower error 

value, as reflected in its SMAPE score. 

The logistic AF proves to be the most effective among the 

three tested functions (Logistic, Gompertz, and Tanh). One 

key factor contributing to its superiority is its stability during 

training. Being a monotonic function, logistic activation 

prevents drastic fluctuations in gradients, ensuring stable 

model learning—especially when using the SGD optimization 

method applied in this study. Additionally, logistic activation 

has the advantage of output scalability, producing values in the 

range (0,1), which makes it well-suited for prediction tasks 

with limited-scale data. Although the Gompertz AF shares 

similar properties, its slightly different growth curve results in 

marginally lower accuracy. The logistic AF also mitigates the 

vanishing gradient problem more effectively than tanh. While 

tanh is widely used in neural networks due to its broader output 

range (-1,1), it is more susceptible to vanishing gradients, 

leading to slower training and convergence issues, ultimately 

resulting in significantly lower accuracy. The superior 

performance of logistic activation is further evident in its 

lower SMAPE score compared to Gompertz, indicating its 

ability to capture relationships within the data more 

effectively. However, the Gompertz AF has a slight advantage 

in terms of lower error, likely due to its ability to model 

gradual changes more efficiently. 

On the other hand, Indonesia's inflation data has distinct 

characteristics that affect the effectiveness of the AFs used in 

the model. One of the primary characteristics is its long-term 

fluctuations and trends. Inflation tends to follow cyclical 

patterns with short-term fluctuations and long-term trends 

influenced by monetary policy, commodity prices, and global 

factors. Therefore, AFs that can capture these changing 

patterns without being overly sensitive to noise are preferred. 

Logistic and Gompertz functions are capable of handling 

gradual growth patterns, whereas tanh is more sensitive to 

drastic changes, which may not align with the more stable 

inflation data trends in the long term. 

The distribution of inflation data also plays a crucial role in 

selecting the appropriate AF. Generally, inflation data does not 

exhibit extreme changes in short periods. The logistic 

function, with its moderate growth curve, is more suitable for 

handling data with smooth variations. Conversely, Tanh is 

more prone to significant gradient changes, which can make 

the model overly sensitive to minor fluctuations that should 

not significantly impact inflation predictions. Additionally, 

inflation can be influenced by seasonal factors, such as price 

increases before major holidays, and government policies that 

cause gradual changes. In this case, the Gompertz function, 

which is often used in economic growth models, has an 

advantage in handling gradual changes. However, in this 

study, Gompertz still showed slightly lower performance than 

logistic activation. Overall, the choice of AF highly depends 

on the characteristics of the data used. For Indonesia’s 

inflation data, the logistic function proved to be more stable 

and provided higher accuracy than Gompertz and Tanh, 

although Gompertz had a slight advantage in terms of lower 

error. Meanwhile, tanh exhibited significantly poor 

performance, likely due to its incompatibility with the stable 

inflation data patterns, making the learning process more 

challenging. 
 

3.3 Learning rate testing 

 

The optimisation model used is SGD and the epoch is 500. 

The AF used is logistic. While the autoregressive lag and other 

hyperparameter values are determined in the same way as in 

the optimization model testing. Furthermore, experiments 

were conducted with learning rates of 0.001, 0.002, 0.050, 

0.100, 0.200, 0.500, and 0.900. This is done to determine the 

effect of learning rate size on the learning process and also data 

testing. The results obtained from the learning rate experiment 

can be seen in Table 3. 

In Table 3, we can see the accuracy results based on various 

learning rates. The highest accuracy value is 95.65% for 

training data with a learning rate of 0.100, while the highest 

accuracy value is 91.02% for testing data with a learning rate 

of 0.050. At a learning rate of 0.050, the difference in the 

accuracy of training data and testing data is not too significant. 

While the learning rate 0.100 and learning rate 0.200 were 

obtained the results of the difference in the accuracy level of 

training data and testing data are very significant. This is 

because when the learning of a machine is too large, then the 

gradient descent value inadvertently increases the error rather 

than reducing the error during training. Therefore, the larger 

the learning rate value will cause errors in updating the 

weights which will affect the training accuracy results. If the 

learning rate is too small, too many iterations are required to 

reach the desired target. Meanwhile, if it is too large, the 

optimization model becomes unstable, thus preventing the 

error from reaching the desired target. 

 

3.4 Epoch iteration testing 

 

Experiments were conducted with the SGD optimization 

model, logistic AF, learning rate 0.05, and other 

hyperparameter values as in reference [42]. While the 

autoregressive lag is determined in the same way as testing the 

optimization model. This is done to determine the effect of 

iteration size on epoch on the learning process and also data 

testing. The results obtained from the epoch value experiment 

can be seen in Table 4. 

Table 4 shows the difference in accuracy results obtained 

based on the epoch value. Epoch with the best accuracy value 

is obtained at an epoch value of 350 with results on training 

data of 93.41% and on testing data of 93.57%. The greater the 

epoch value, the better the accuracy, but if the epoch value is 

too large, the optimization model becomes less stable, thus 

preventing the error from reaching the desired target. 

Furthermore, the best RNN model obtained is compared 

with several models available in the literature, namely the ETS 

model described in reference [43], the ARIMA model 

described in reference [44], the FFNN model described in 

reference [45], and the GRNN model described in reference 

[46]. The empirical study comparison results can be seen in 

Table 5 for the best RNN model with several models available 

in the literature. The empirical study results show that the 

RNN model provides the best results. This is indicated by the 

lowest SMAPE value on the testing data. 
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Table 5 shows that the ETS, ARIMA, FFNN, and GRNN 

models were chosen as baselines because they represent 

commonly used approaches in time series forecasting. The 

ETS model [43] was selected for its ability to capture trends 

and seasonality using ETS techniques. The ARIMA model [44] 

is widely used in time series analysis due to its capability to 

handle both stationary and non-stationary data through a 

combination of autoregression, differencing, and moving 

average components. The FFNN model [45] is a popular 

artificial neural network model for nonlinear modeling, 

capable of capturing complex patterns in data. The GRNN 

model [46] is a kernel-based neural network that employs 

probabilistic density estimation, making it a flexible choice for 

forecasting and classification tasks without requiring 

extensive parameter tuning. By combining classical statistical 

methods (ETS, ARIMA) with neural network-based 

approaches (FFNN, GRNN), these baseline models provide a 

strong comparative foundation to evaluate the advantages of 

RNN models in this study. 

The ETS model was implemented using the forecast 

package in R or statsmodels in Python, with automatic 

selection of error (E), trend (T), and seasonality (S) 

components based on AIC criteria to ensure the best model. 

The ARIMA model was developed using the Box-Jenkins 

method, where the auto.arima() function in R's forecast 

package or pmdarima in Python was used to determine optimal 

parameters (p, d, q) to capture time series patterns. The neural 

network-based models were developed using 

TensorFlow/Keras, adopting a multilayer perceptron (MLP) 

architecture with one or two hidden layers and ReLU 

activation. Optimization was performed using the Adam 

algorithm, and Mean Squared Error (MSE) was used as the 

loss function to minimize prediction errors. The GRNN model 

was implemented using scikit-learn or neupy, leveraging 

Gaussian kernels to capture complex relationships in data. The 

smoothing parameter in GRNN was determined through cross-

validation to enhance model generalization. Each baseline 

model provided a comprehensive perspective for comparing 

the performance of RNN models tested in this study. 
 

Table 3. AF test results 

 
Learning 

Rate 

Training Data Testing Data 

SMAPE Accuracy SMAPE Accuracy 

0.001 0.40664 0.21545 0.31161 0.18597 

0.002 0.40754 0.90522 0.31371 0.85066 

0.050 0.19578 0.94075 0.21612 0.91017 

0.100 0.18083 0.95649 0.24133 0.73286 

0.200 0.19591 0.95016 0.50612 0.27017 

0.500 0.22223 0.86962 0.16621 0.87568 

0.900 0.38180 0.56023 0.44838 0.27857 

 

Table 4. Epoch value testing results 

 

Epoch 
Training Data Testing Data 

SMAPE Accuracy SMAPE Accuracy 

50 0.40598 0.53419 0.30901 0.21330 

100 0.37000 0.88571 0.28728 0.83467 

150 0.21061 0.91785 0.20282 0.88478 

200 0.23483 0.91553 0.16603 0.93558 

250 0.26588 0.89410 0.33482 0.88655 

300 0.27352 0.89956 0.34080 0.86936 

350 0.21973 0.93413 0.16371 0.93570 

400 0.23986 0.92865 0.29878 0.82488 

450 0.20334 0.94695 0.15968 0.86839 

500 0.19091 0.95574 0.19721 0.80388 

550 0.19624 0.94549 0.13970 0.86205 

600 0.17740 0.95152 0.16219 0.88050 

650 0.17415 0.95987 0.15904 0.81246 

700 0.17450 0.95655 0.17696 0.83959 

750 0.16369 0.96125 0.18270 0.80479 

800 0.16086 0.96425 0.18728 0.72012 

850 0.17017 0.95816 0.18631 0.84378 

900 0.16365 0.96613 0.17047 0.76152 

950 0.16068 0.96550 0.17743 0.77399 

1000 0.16661 0.96109 0.16752 0.81155 

 

Table 5. Comparison results between the RNN model and several models 

 
Month Actual Data RNN ETS ARIMA FFNN GRNN 

Jan. 2023 5.28 8.06 2.61 2.54 2.53 3.41 

Feb. 2023 5.47 6.06 2.61 2.54 2.39 3.25 

Mar. 2023 4.97 5.16 2.61 2.54 2.41 3.07 

Apr. 2023 4.33 4.97 2.61 2.54 2.55 2.91 

May 2023 4.00 4.40 2.61 2.54 2.42 2.79 

Jun. 2023 3.52 3.90 2.61 2.54 2.49 2.69 

Jul. 2023 3.08 3.42 2.61 2.54 2.54 2.62 

Aug. 2023 3.27 2.85 2.61 2.54 2.31 2.59 

Sep. 2023 2.28 2.66 2.61 2.54 2.48 2.53 

Oct. 2023 2.56 2.33 2.61 2.54 2.42 2.55 

Nov. 2023 2.86 2.24 2.61 2.54 2.23 2.55 

Dec. 2023 2.61 2.24 2.61 2.54 2.22 2.53 

SMAPE 0.14812 0.32133 0.33857 0.38357 0.25463 

 

In this study, the comparison between SGD and AdaGrad 

optimization methods showed that SGD outperformed 

AdaGrad. This was demonstrated by lower error values and 

significantly higher accuracy in SGD compared to AdaGrad. 

SGD updates model parameters iteratively based on small data 

subsets, allowing the model to quickly adapt to patterns 

without significant performance degradation. Conversely, 

AdaGrad, which adjusts the learning rate based on the 

magnitude of past gradients, suffered from diminishing 

effectiveness, as indicated by its lower accuracy in both 

training and testing data. Hence, SGD is recommended as the 

preferred optimization method for the models used in this 

study. 

Additionally, this research compared three AFs: Logistic, 

Gompertz, and Tanh. Results indicated that the logistic AF 

achieved the best performance in terms of accuracy and error 

reduction. This function maps input values to a (0,1) range, 

making it well-suited for nonlinear forecasting tasks like 

inflation prediction. The Gompertz function also performed 

reasonably well but ranked below logistic activation in 
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accuracy. Meanwhile, the Tanh function exhibited 

significantly poorer performance compared to the other two, 

with the lowest accuracy and highest error. This is attributed 

to Tanh's broader output range (-1 to 1), making it more 

susceptible to vanishing gradient issues during training. 

The study also examined the impact of learning rate on 

model performance by testing values from 0.001 to 0.900. 

Results showed that a learning rate of 0.100 achieved the 

highest training accuracy (95.65%) but led to overfitting in 

testing data. In contrast, a learning rate of 0.050 provided the 

best balance between training and testing accuracy (91.02%), 

making it the optimal choice. Extremely low learning rates, 

such as 0.001, required excessive iterations to converge, 

whereas very high rates, like 0.900, resulted in instability and 

high error rates. Thus, selecting an appropriate learning rate is 

critical for improving model performance. 

Similarly, the effect of the number of epochs on model 

accuracy was analyzed. Experimental results indicated that 

350 epochs yielded the best accuracy for both training 

(93.41%) and testing (93.57%). If the epoch count was too low 

(e.g., 50 or 100), the model underperformed due to insufficient 

training. However, excessive epochs (e.g., over 500) led to 

instability and overfitting risks. Hence, selecting an optimal 

number of epochs is essential to balance accuracy and 

generalization. 

Finally, the developed RNN model was compared with 

other methods, including ETS, ARIMA, FFNN, and GRNN. 

The comparison revealed that the RNN model achieved the 

best performance, as indicated by the lowest SMAPE value 

(0.14812) compared to other models. This confirms that RNN-

based models are superior in capturing nonlinear patterns in 

inflation data compared to traditional statistical methods like 

ETS and ARIMA, as well as other neural network models like 

FFNN and GRNN. Therefore, the use of RNN for inflation 

forecasting is validated as a more accurate and effective 

approach than the alternative methods tested in this study. 

 

 

4. CONCLUSIONS 

 

This study analyzes the impact of AF selection in RNNs for 

inflation forecasting in Indonesia. Among the Logistic, 

Gompertz, and Tanh AFs, combined with SGD and AdaGrad 

optimizers, the Logistic-SGD combination achieved the 

highest accuracy (93.41% on training data, 93.57% on testing 

data, and a SMAPE of 14.81%). This model outperformed 

traditional forecasting methods such as ARIMA, ETS, FFNN, 

and GRNN, confirming the advantage of deep learning in 

time-series prediction. 

The results emphasize the critical role of AFs in optimizing 

RNN performance. Proper selection enhances prediction 

accuracy, model stability, and generalization capabilities, 

making RNN-based approaches highly effective for economic 

forecasting. However, this study is limited to standard RNNs 

and inflation data from 2005 to 2023. Future research should 

incorporate additional macroeconomic indicators to improve 

model precision. 

To further advance forecasting capabilities, future studies 

should explore more advanced architectures such as LSTM, 

GRU, and hybrid models, along with ensemble learning 

techniques. These improvements could enhance model 

reliability and practical applications, benefiting policymakers, 

financial analysts, and researchers seeking robust economic 

forecasting solutions. 
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