
Comparative Analysis of Activation Functions in Recurrent Neural Network: An

Application to Indonesian Inflation Forecasting

Rahmadi Yotenka1 , Muhammad Muhajir1* , Hermansah2 , Paulo Canas Rodrigues3

1 Department of Statistics, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
2 Department of Mathematics Education, Universitas Kepulauan Riau, Batam 29422, Indonesia
3 Department of Statistics, Federal University of Bahia, Salvador 40170-110, Brazil

Corresponding Author Email: mmuhajir@uii.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120302 ABSTRACT

Received: 2 January 2025

Revised: 3 March 2025

Accepted: 10 March 2025

Available online: 31 March 2025

Inflation is a complex and fluctuating economic phenomenon that requires accurate

modeling approaches for effective forecasting. This study conducts a comparative

analysis of activation function (AF) in Recurrent Neural Network (RNN) models for

forecasting inflation in Indonesia. Three AFs: Logistic, Gompertz, and Hyperbolic

Tangent (Tanh) are evaluated alongside two weight optimization methods, Stochastic

Gradient Descent (SGD) and Adaptive Gradient (AdaGrad). The results show that the

combination of the Logistic AF with the SGD optimizer achieves the highest accuracy,

with an accuracy rate of 93.41% on training data and 93.57% on testing data. Compared

to traditional statistical models such as Autoregressive Integrated Moving Average

(ARIMA), Exponential Smoothing (ETS), Feedforward Neural Network (FFNN), and

General Regression Neural Networks (GRNN), the RNN model demonstrated superior

performance, achieving a SMAPE value of 14.81%, the lowest error among all models.

These findings highlight the crucial role of AF selection in enhancing RNN model

performance for economic time-series forecasting. This study provides valuable

insights for researchers and policymakers to improve inflation forecasting accuracy

using deep learning approaches.

Keywords:

inflation forecasting, RNN, AF, model

optimization, SGD, AdaGrad

1. INTRODUCTION

Inflation is an economic phenomenon characterized by a

general increase in the prices of goods and services over a

sustained period [1]. The government has a long-term goal of

maintaining inflation stability at a low level to support

economic growth and financial stability. Bank Indonesia (BI),

as the monetary authority, is responsible for controlling

inflation through various policies, particularly in dealing with

exchange rate fluctuations and external economic shocks [2,

3].

Before the economic crisis, BI's monetary policy was more

focused on rupiah stability and inflation control. However, the

priority given to exchange rate policy resulted in inflation and

monetary growth targets not being achieved [2, 3]. During the

crisis, BI shifted to a floating exchange rate regime and raised

interest rates by 70% in August 1998 to control hyperinflation

caused by rupiah depreciation and uncontrolled base money

growth. Although inflation was successfully reduced to a

single-digit level until 2000, inflation rates rose again in

subsequent years and have fluctuated ever since [4].

According to the Central Bureau of Statistics (BPS), the

inflation rate in 2022 and 2023 was recorded at 5.51% and

2.61%, respectively, reflecting the continuously changing

inflation dynamics [5]. Therefore, a more accurate nonlinear

model is needed for inflation forecasting [6].

Inflation forecasting is a crucial aspect of monetary policy

formulation and economic decision-making. Traditional

statistical models such as ARIMA and ETS are often used for

inflation forecasting [7]. While these models can capture linear

trends and seasonal patterns, they tend to be less effective in

handling fluctuating and nonlinear inflation patterns. In recent

years, machine learning-based methods, particularly deep

learning, have demonstrated superiority in modeling complex

patterns in time series data [8, 9].

Among deep learning models, RNNs have proven effective

in analyzing sequential data and capturing long-term

dependencies in inflation trends [10, 11]. The main advantage

of RNNs over traditional models is their ability to store

information from previous observations, enabling more

accurate modeling. RNNs have also been shown to outperform

autoregressive models and backpropagation neural networks

in inflation forecasting in various countries such as China [8],

India [9], Canada [10], and the United Kingdom [11].

However, one crucial aspect of RNN optimization that remains

underexplored is the selection of AFs, which play a significant

role in gradient propagation and model stability, ultimately

affecting prediction accuracy [12].

Previous research has shown that various AFs, such as

Logistic [13], Gompertz [14], and Tanh [15], exhibit higher

accuracy compared to ReLU. Additionally, optimization

methods such as SGD [16] and AdaGrad [17] can enhance the

Mathematical Modelling of Engineering Problems
Vol. 12, No. 3, March, 2025, pp. 754-762

Journal homepage: http://iieta.org/journals/mmep

754

https://orcid.org/0000-0001-9415-2475
https://orcid.org/0000-0001-7576-2630
https://orcid.org/0000-0002-0004-8130
https://orcid.org/0000-0002-1248-9910
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120302&domain=pdf

effectiveness of forecasting models.

In 2021, the research conducted by Szandała [18] evaluated

various activation methods for artificial neural networks,

including Sigmoid, Tanh, and ReLU, and provided guidelines

for selecting the best activation algorithm for real-world

applications. In 2022, Ali et al. [19] compared 26 AFs in Long

Short-Term Memory (LSTM) models for classification and

found that alternative functions such as Modified Elliott and

Softsign achieved higher accuracy than Tanh. Meanwhile,

Ranjan et al. [20] demonstrated that using log-Sigmoid

activation in LSTM for time-series classification resulted in

improved accuracy with various optimization algorithms. This

research underscores the crucial role of AF selection in

enhancing the performance of artificial neural networks.

However, to date, no studies have specifically examined the

impact of AF selection and weight updates in RNN models for

time-series applications, particularly in the context of inflation

forecasting. Therefore, this study aims to fill this gap by

conducting a comparative analysis of various AFs in RNN

models. This research will consider three AFs Logistic,

Gompertz, and Tanh along with two weight update methods

SGD and AdaGrad to compare predictive model performance.

By comparing RNN based forecasting results with

traditional statistical models such as ETS, ARIMA, FFNN,

and GRNN, this study will provide empirical insights into the

optimal AF for inflation forecasting [12]. The findings of this

research are expected to contribute to the literature on

economic forecasting and deep learning while providing

practical insights for policymakers and researchers to improve

the accuracy of financial time-series prediction models.

2. METHODS

2.1 RNN

RNN is a method that is used repeatedly to analyze the input

(generally the sequential type of data) as part of deep learning.

The RNN shown in Figure 1 utilizes looping structures to

simulate human decision-making, by saving and retrieving old

data to be utilized at any time [21]. This type of neural network

generates its output based on present input, prior outputs,

inputs, and the hidden state of the system [22]. RNN is a

hidden state network distributed over time, making it possible

to keep huge quantities of data about the past efficaciously.

The principle of its design is that its recurrent connectivity

allows for the memories of inputs from the past to be stored in

the internal structure of the network [23] thus influencing the

output of the network [24].

The notation x(t) represents the input during every time step

t. st denotes the hidden state at every time step t, and o(t)

indicates the output for every time step that is t. U, V, and W

are a matrix of parameters used in an RNN.

Figure 1. Architecture of RNN

2.2 AF

AF can be described as functions of the RNN that are

involved in the calculation of biases and weights. These

functions are designed to generate results from the neural

network. They are an integral part of the process of training

and optimization of a neural network they are accountable for

analyzing patterns in the dataset. AFs play an essential part as

they facilitate the non-linear mapping process between both

output and input data of deep neural networks [25]. Many

activation methods have been designed and implemented in

various neural network models. The functions employed

include Logistic Gompertz, Logistic, and Tanh [26, 27].

The function of logistic activation also referred to as the

sigmoid function, is still a common option in a variety of

neural network models because of its high computational

efficiency as well as an easy definition of the model [27, 28].

The formula for the logarithmic AF can be explained as

follows [29-31]:

𝑓(𝑥)=
1

(1+e-x)
 (1)

This is known as the Tanh function which is commonly

called Tanh. In addition to sigmoid or logistic, Tanh is also

frequently utilized as an activation factor within neural

networks [27]. Tanh is usually preferred over logistics due to

its symmetry in the direction of origin. In addition, Tanh has

gradients that are flexible in their direction change and have a

zero-centered [32]. It is also known that the Tanh function can

be described as continuous, varies, and has values that range

between -1 and 1. Tanh function is defined by Tanh function

is described as [29, 30]:

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2)

The Gompertz AF was an algorithm invented by Benjamin

Gompertz to analyze his model of demographics, which is an

enhancement of the Malthus model [33]. In the realm of

biology, it is in the field of biology, Gompertz function, or the

curve, is often utilized to track growth patterns, in which the

growing phase is shorter than the period of decreasing growth

[34]. It is the Gompertz function, used to analyze time series

is a specific variant of the generalized logistics function. The

Gompertz function is typically represented as follows [14]:

𝑓(𝑥) = 𝑎 ∗ 𝑒𝑥𝑝(−exp(𝑏 − 𝑐 ∗ 𝑥)) (3)

In this case, f(x) is the anticipated value as a function of time

x. a is the higher asymptote, b controls the change along the x-

axis (moving the graph either direction) while c represents the

coefficient of growth (which influences the slope) The Euler's

number (e equals 2.71828) as well exp(x) is the ex.

2.3 Optimizer

Neural networks have attracted the attention of academics

and industry due to their exceptional performance in various

pattern recognition and machine learning tasks. Other machine

learning models, such as support vector machines (SVMs),

decision trees, and RNNs, have unique structures and have

been thoroughly researched theoretically. Therefore, there are

specialized optimization algorithms designed for these

755

models. However, for neural networks, theoretical results that

can be used to design specialized optimization algorithms are

still very limited. As an alternative, gradient descent, a general

algorithm, is often the first choice [35].

Optimizer is an algorithm used to update weights and biases

during the learning process of artificial neural networks,

aiming to reduce the error or difference between the network

output and the desired target. The most commonly employed

foundational algorithm is the gradient descent. However, this

algorithm comes with one drawback, because it is extremely

slow to accomplish a low error rate. The most commonly

employed foundational algorithm is the gradient descent.

However, this algorithm comes with one drawback, because it

is extremely slow to accomplish a low error rate [36]. To

overcome this problem different algorithms are being

developed, such as SGD and AdaGrad.

SGD is commonly utilized as a substitute for gradient

descent in dealing with large-scale issues. While SGD

typically requires more iterations than gradient descent, this

method significantly decreases the requirement for storage and

computation since it doesn't have to store or compute gradients

based on all instances [37]. SGD changes parameters

according to each trial, typically which makes it more

efficient. The process can be carried out with many variances

that can result in significant variations in the goal function.

This can lead to SGD frequently exceeding its targets and

making it difficult to reach a precise minimum value.

However, with the gradual decrease in the learning rate, SGD

eventually exhibits convergence behavior similar to batch

gradient descent and is almost certain to converge to a local or

global minimum. The SGD optimization formula can be

written as follows [38]:

𝜃 = 𝜃 − 𝜂∇(𝐽(𝜃𝑥𝑖𝑦𝑖)) (4)

where, η is a learning rate, xi, yi is the i-th data sample, where

xi is the input yi is the corresponding label or target, and θ is

the parameter vector of the model being optimized. At each

iteration, the value of θ will be updated to minimize the loss

function J.

The AdaGrad optimizer is a gradient-based optimization

algorithm and a modified version of SGD that uses a per-

parameter learning rate, meaning it adjusts the learning rate

according to each parameter. AdaGrad can enhance the

performance of SGD by adjusting the learning rate [27]. The

update formulas used are as follows [39]:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐺𝑡 + 𝜖
∙ 𝑔𝑡 (5)

where, η is a learning rate, θt is the parameter at iteration t, Gt

is the cumulative sum of the gradients, 𝜖 is a small value to

prevent division by zero (usually 𝜖 is around 10-8), and gt is the

gradient for parameter θ at iteration t.

2.4 Methodology

This section outlines the methodology used for time series

data prediction, specifically in the context of forecasting

inflation rates. The case study focuses on inflation in

Indonesia, using monthly Indonesian inflation data from

January 2005 to December 2023. This data was sourced from

BI and is accessible at

https://www.bi.go.id/id/statistik/indikator/data-inflasi.aspx.

The Indonesian inflation data was analyzed using a machine

learning approach with RNNs. A comparative study was

conducted on various AFs, namely Logistic, Gompertz, and

Tanh, as well as weight updating or optimization functions in

the RNN model using the SGD and AdaGrad optimizers. The

objective is to identify the best-performing prediction model.

This study aims to identify the most effective RNN model

for forecasting inflation trends in Indonesia. The analysis

follows a structured approach, adopting the research algorithm

proposed by Hermansah et al. [40] to evaluate and optimize

RNN performance.

1. Determining neurons in the input layer (autoregressive

lag) by analyzing data frequency x, assuming it represents time

series data for forecasting. If the data frequency is m,

autoregressive lags from 1 to m are used. For instance, for

monthly data, the lag is set to 1:12.

2. Data preprocessing, including scaling or normalization,

using the equation:

𝑦 =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (6)

where, y is the normalized value; x is the data to be predicted;

min(x) and max(x) are the minimum and maximum predicted

data values.

3. Splitting the dataset into training data (January 2005 -

December 2022) and testing data (January 2023 - December

2023).

4. Building the RNN model by configuring key parameters,

including the number of neurons, learning rate, epochs,

optimization method, AF, and hyperparameter tuning.

5. Performing data predictions.

6. Denormalizing the predicted results using the equation:

𝑥∗ = 𝑦 ∗ [𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)] + 𝑚𝑖𝑛(𝑥) (7)

to restore values to their original scale, where x* is the value of

data denormalization.

7. Predicted and actual data using Root Mean Squared Error

(RMSE) and Symmetric Mean Absolute Percentage Error

(SMAPE) values. RMSE is a measure used to assess how well

a predictive model is at predicting value. RMSE measures the

difference between the value predicted by the model and the

actual value, giving more weight to larger errors. A lower

RMSE value indicates a model that is better at making

predictions, because it shows that the average prediction error

is smaller. A higher RMSE value indicates that the model is

less accurate in its predictions, with larger errors. RMSE also

has the same units as the measured data, making interpretation

easier. However, keep in mind that RMSE is sensitive to

outliers, so it should be considered along with other metrics

for a more comprehensive model evaluation. RMSE is

calculated using the following formula:

RMSE, which measures prediction errors, calculated as:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐴𝑖 − 𝐹𝑖)

2

𝑛

𝑖=1

 (8)

A lower RMSE indicates better model accuracy, while a

higher RMSE suggests greater prediction errors. RMSE is

sensitive to outliers and should be considered alongside other

evaluation metrics.

756

SMAPE, which assesses forecasting accuracy by comparing

predictions with actual values, calculated as:

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐴𝑖 − 𝐹𝑖|

|𝐴𝑖| + |𝐹𝑖|
2

× 100%

𝑛

𝑖=1

 (9)

where, Ai is the actual value in the period i, Fi is the predicted

value in period i, and n is the number of data points.

8. Forecasting inflation in Indonesia for the period January

2023 - December 2023.

Figure 2 shows the main steps of the RNN model process to

predict inflation. This flowchart summarizes phases of

research that begin at data processing and models design

through evaluation and forecasting. Every phase plays an

important part in the precision as well as the reliability of

forecasts.

Figure 2. RNN modeling flowchart for inflation prediction

3. RESULTS AND DISCUSSION

In this research, a case study is conducted using data on the

inflation rate in Indonesia. The data observed is monthly data

starting from January 2005 to December 2023. Training data

is collected on the first 216 data (from January 2005 to

December 2022) and the last 12 data are used as testing data

(from January 2023 to December 2023). This data can be

found and accessed on the BI website. Furthermore, testing

was conducted consisting of testing the optimization model by

comparing two models, testing the AF by comparing three

functions, testing the learning rate, and testing the number of

epoch iterations.

3.1 Comparing two optimization model

This research uses SGD and AdaGrad optimization

methods. SGD is an iterative learning algorithm that uses

training data to update the model. The algorithm is iterative

which means that each step will endeavor to slightly improve

the model parameters. Each iteration involves using the model

with the current parameters to make predictions on some

training data, comparing the predictions with the expected

results, calculating the error, and using the error to update the

model parameters [41]. AdaGrad is a derivative algorithm of

SGD that adapts to the learning rate with smaller parameters

and model updates. These two methods are often used for

model optimization.

Furthermore, the neurons in the input layer in this study are

proposed based on lag autoregressive with frequency

approach, where time series data has time and frequency

attributes. The time attribute states the time unit of each

observation point, while the frequency attribute states the

quantity of data in a certain period, usually defined per year,

such as monthly data (frequency =12), quarterly data

(frequency =4), quarterly data (frequency =3), semi-annual

data (frequency =2), and annual data (frequency =1). In

addition, both optimization models use a learning rate =0.05

and 500 epochs to get more detailed training from both

optimization methods. The AF used is the Gompertz AF and

the determination of other hyperparameter values as reported

by Keskar and Socher [42]. The test results with both

optimization methods can be seen in Table 1.

Table 1. Optimization model test result

Optimization
Training Data Testing Data

SMAPE Accuracy SMAPE Accuracy

SGD 0.19957 0.93289 0.15071 0.92589

AdaGrad 0.67879 0.38981 0.80961 0.44716

Based on the test results in Table 1, the SGD and AdaGrad

optimization models produce significantly different levels of

accuracy, whereas the SGD optimization model provides

much better accuracy. The SGD optimization method is

superior to the AdaGrad optimization method because it has a

much lower error value (SMAPE value) and a much higher

accuracy value. The SGD optimization method shows to have

an advantage in the optimization model by getting a SMAPE

value of 19.96% for training data and 15.07% for testing data.

At the same time, it shows that it has an accuracy value of

93.29% for training data and 92.59% for testing data.

Meanwhile, the AdaGrad optimization model shows that it has

an error value (SMAPE value) of 67.88% for training data and

80.96% for testing data. At the same time, it shows that it has

an accuracy value of 38.98% for training data and 44.72% for

testing data.

3.2 Comparing between three AFs

This research uses logistic, Gompertz, and Tanh AFs. These

three AFs are often used for the learning process of forecasting

models. In addition, the three AFs use a learning rate =0.05

and 500 epochs to get more detailed training from the SGD

optimization method. Meanwhile, the autoregressive lag and

hyperparameter values are determined in the same way as

testing the optimization model. The test results with the three

AFs can be seen in Table 2.

Table 2. AF test results

AF
Training Data Testing Data

SMAPE Accuracy SMAPE Accuracy

Logistic 0.20498 0.93948 0.15329 0.93081

Gompertz 0.19957 0.93289 0.15071 0.92589

Tanh 1.39794 0.01113 1.46814 0.04255

757

Based on the results presented in Table 2, the logistic and

Gompertz AFs exhibit similar accuracy levels, with only

minor differences. In contrast, the Tanh AF produces the

lowest accuracy. Both the logistic and Gompertz AFs have

their respective strengths and weaknesses. However, this study

indicates that the logistic AF outperforms the Gompertz AF

due to its higher accuracy. Specifically, the logistic AF

achieves an accuracy of 93.95% for training data and 93.08%

for testing data, while the Gompertz AF attains 93.29% for

training data and 92.59% for testing data. Despite its slightly

lower accuracy, the Gompertz AF demonstrates a lower error

value, as reflected in its SMAPE score.

The logistic AF proves to be the most effective among the

three tested functions (Logistic, Gompertz, and Tanh). One

key factor contributing to its superiority is its stability during

training. Being a monotonic function, logistic activation

prevents drastic fluctuations in gradients, ensuring stable

model learning—especially when using the SGD optimization

method applied in this study. Additionally, logistic activation

has the advantage of output scalability, producing values in the

range (0,1), which makes it well-suited for prediction tasks

with limited-scale data. Although the Gompertz AF shares

similar properties, its slightly different growth curve results in

marginally lower accuracy. The logistic AF also mitigates the

vanishing gradient problem more effectively than tanh. While

tanh is widely used in neural networks due to its broader output

range (-1,1), it is more susceptible to vanishing gradients,

leading to slower training and convergence issues, ultimately

resulting in significantly lower accuracy. The superior

performance of logistic activation is further evident in its

lower SMAPE score compared to Gompertz, indicating its

ability to capture relationships within the data more

effectively. However, the Gompertz AF has a slight advantage

in terms of lower error, likely due to its ability to model

gradual changes more efficiently.

On the other hand, Indonesia's inflation data has distinct

characteristics that affect the effectiveness of the AFs used in

the model. One of the primary characteristics is its long-term

fluctuations and trends. Inflation tends to follow cyclical

patterns with short-term fluctuations and long-term trends

influenced by monetary policy, commodity prices, and global

factors. Therefore, AFs that can capture these changing

patterns without being overly sensitive to noise are preferred.

Logistic and Gompertz functions are capable of handling

gradual growth patterns, whereas tanh is more sensitive to

drastic changes, which may not align with the more stable

inflation data trends in the long term.

The distribution of inflation data also plays a crucial role in

selecting the appropriate AF. Generally, inflation data does not

exhibit extreme changes in short periods. The logistic

function, with its moderate growth curve, is more suitable for

handling data with smooth variations. Conversely, Tanh is

more prone to significant gradient changes, which can make

the model overly sensitive to minor fluctuations that should

not significantly impact inflation predictions. Additionally,

inflation can be influenced by seasonal factors, such as price

increases before major holidays, and government policies that

cause gradual changes. In this case, the Gompertz function,

which is often used in economic growth models, has an

advantage in handling gradual changes. However, in this

study, Gompertz still showed slightly lower performance than

logistic activation. Overall, the choice of AF highly depends

on the characteristics of the data used. For Indonesia’s

inflation data, the logistic function proved to be more stable

and provided higher accuracy than Gompertz and Tanh,

although Gompertz had a slight advantage in terms of lower

error. Meanwhile, tanh exhibited significantly poor

performance, likely due to its incompatibility with the stable

inflation data patterns, making the learning process more

challenging.

3.3 Learning rate testing

The optimisation model used is SGD and the epoch is 500.

The AF used is logistic. While the autoregressive lag and other

hyperparameter values are determined in the same way as in

the optimization model testing. Furthermore, experiments

were conducted with learning rates of 0.001, 0.002, 0.050,

0.100, 0.200, 0.500, and 0.900. This is done to determine the

effect of learning rate size on the learning process and also data

testing. The results obtained from the learning rate experiment

can be seen in Table 3.

In Table 3, we can see the accuracy results based on various

learning rates. The highest accuracy value is 95.65% for

training data with a learning rate of 0.100, while the highest

accuracy value is 91.02% for testing data with a learning rate

of 0.050. At a learning rate of 0.050, the difference in the

accuracy of training data and testing data is not too significant.

While the learning rate 0.100 and learning rate 0.200 were

obtained the results of the difference in the accuracy level of

training data and testing data are very significant. This is

because when the learning of a machine is too large, then the

gradient descent value inadvertently increases the error rather

than reducing the error during training. Therefore, the larger

the learning rate value will cause errors in updating the

weights which will affect the training accuracy results. If the

learning rate is too small, too many iterations are required to

reach the desired target. Meanwhile, if it is too large, the

optimization model becomes unstable, thus preventing the

error from reaching the desired target.

3.4 Epoch iteration testing

Experiments were conducted with the SGD optimization

model, logistic AF, learning rate 0.05, and other

hyperparameter values as in reference [42]. While the

autoregressive lag is determined in the same way as testing the

optimization model. This is done to determine the effect of

iteration size on epoch on the learning process and also data

testing. The results obtained from the epoch value experiment

can be seen in Table 4.

Table 4 shows the difference in accuracy results obtained

based on the epoch value. Epoch with the best accuracy value

is obtained at an epoch value of 350 with results on training

data of 93.41% and on testing data of 93.57%. The greater the

epoch value, the better the accuracy, but if the epoch value is

too large, the optimization model becomes less stable, thus

preventing the error from reaching the desired target.

Furthermore, the best RNN model obtained is compared

with several models available in the literature, namely the ETS

model described in reference [43], the ARIMA model

described in reference [44], the FFNN model described in

reference [45], and the GRNN model described in reference

[46]. The empirical study comparison results can be seen in

Table 5 for the best RNN model with several models available

in the literature. The empirical study results show that the

RNN model provides the best results. This is indicated by the

lowest SMAPE value on the testing data.

758

Table 5 shows that the ETS, ARIMA, FFNN, and GRNN

models were chosen as baselines because they represent

commonly used approaches in time series forecasting. The

ETS model [43] was selected for its ability to capture trends

and seasonality using ETS techniques. The ARIMA model [44]

is widely used in time series analysis due to its capability to

handle both stationary and non-stationary data through a

combination of autoregression, differencing, and moving

average components. The FFNN model [45] is a popular

artificial neural network model for nonlinear modeling,

capable of capturing complex patterns in data. The GRNN

model [46] is a kernel-based neural network that employs

probabilistic density estimation, making it a flexible choice for

forecasting and classification tasks without requiring

extensive parameter tuning. By combining classical statistical

methods (ETS, ARIMA) with neural network-based

approaches (FFNN, GRNN), these baseline models provide a

strong comparative foundation to evaluate the advantages of

RNN models in this study.

The ETS model was implemented using the forecast

package in R or statsmodels in Python, with automatic

selection of error (E), trend (T), and seasonality (S)

components based on AIC criteria to ensure the best model.

The ARIMA model was developed using the Box-Jenkins

method, where the auto.arima() function in R's forecast

package or pmdarima in Python was used to determine optimal

parameters (p, d, q) to capture time series patterns. The neural

network-based models were developed using

TensorFlow/Keras, adopting a multilayer perceptron (MLP)

architecture with one or two hidden layers and ReLU

activation. Optimization was performed using the Adam

algorithm, and Mean Squared Error (MSE) was used as the

loss function to minimize prediction errors. The GRNN model

was implemented using scikit-learn or neupy, leveraging

Gaussian kernels to capture complex relationships in data. The

smoothing parameter in GRNN was determined through cross-

validation to enhance model generalization. Each baseline

model provided a comprehensive perspective for comparing

the performance of RNN models tested in this study.

Table 3. AF test results

Learning

Rate

Training Data Testing Data

SMAPE Accuracy SMAPE Accuracy

0.001 0.40664 0.21545 0.31161 0.18597

0.002 0.40754 0.90522 0.31371 0.85066

0.050 0.19578 0.94075 0.21612 0.91017

0.100 0.18083 0.95649 0.24133 0.73286

0.200 0.19591 0.95016 0.50612 0.27017

0.500 0.22223 0.86962 0.16621 0.87568

0.900 0.38180 0.56023 0.44838 0.27857

Table 4. Epoch value testing results

Epoch
Training Data Testing Data

SMAPE Accuracy SMAPE Accuracy

50 0.40598 0.53419 0.30901 0.21330

100 0.37000 0.88571 0.28728 0.83467

150 0.21061 0.91785 0.20282 0.88478

200 0.23483 0.91553 0.16603 0.93558

250 0.26588 0.89410 0.33482 0.88655

300 0.27352 0.89956 0.34080 0.86936

350 0.21973 0.93413 0.16371 0.93570

400 0.23986 0.92865 0.29878 0.82488

450 0.20334 0.94695 0.15968 0.86839

500 0.19091 0.95574 0.19721 0.80388

550 0.19624 0.94549 0.13970 0.86205

600 0.17740 0.95152 0.16219 0.88050

650 0.17415 0.95987 0.15904 0.81246

700 0.17450 0.95655 0.17696 0.83959

750 0.16369 0.96125 0.18270 0.80479

800 0.16086 0.96425 0.18728 0.72012

850 0.17017 0.95816 0.18631 0.84378

900 0.16365 0.96613 0.17047 0.76152

950 0.16068 0.96550 0.17743 0.77399

1000 0.16661 0.96109 0.16752 0.81155

Table 5. Comparison results between the RNN model and several models

Month Actual Data RNN ETS ARIMA FFNN GRNN

Jan. 2023 5.28 8.06 2.61 2.54 2.53 3.41

Feb. 2023 5.47 6.06 2.61 2.54 2.39 3.25

Mar. 2023 4.97 5.16 2.61 2.54 2.41 3.07

Apr. 2023 4.33 4.97 2.61 2.54 2.55 2.91

May 2023 4.00 4.40 2.61 2.54 2.42 2.79

Jun. 2023 3.52 3.90 2.61 2.54 2.49 2.69

Jul. 2023 3.08 3.42 2.61 2.54 2.54 2.62

Aug. 2023 3.27 2.85 2.61 2.54 2.31 2.59

Sep. 2023 2.28 2.66 2.61 2.54 2.48 2.53

Oct. 2023 2.56 2.33 2.61 2.54 2.42 2.55

Nov. 2023 2.86 2.24 2.61 2.54 2.23 2.55

Dec. 2023 2.61 2.24 2.61 2.54 2.22 2.53

SMAPE 0.14812 0.32133 0.33857 0.38357 0.25463

In this study, the comparison between SGD and AdaGrad

optimization methods showed that SGD outperformed

AdaGrad. This was demonstrated by lower error values and

significantly higher accuracy in SGD compared to AdaGrad.

SGD updates model parameters iteratively based on small data

subsets, allowing the model to quickly adapt to patterns

without significant performance degradation. Conversely,

AdaGrad, which adjusts the learning rate based on the

magnitude of past gradients, suffered from diminishing

effectiveness, as indicated by its lower accuracy in both

training and testing data. Hence, SGD is recommended as the

preferred optimization method for the models used in this

study.

Additionally, this research compared three AFs: Logistic,

Gompertz, and Tanh. Results indicated that the logistic AF

achieved the best performance in terms of accuracy and error

reduction. This function maps input values to a (0,1) range,

making it well-suited for nonlinear forecasting tasks like

inflation prediction. The Gompertz function also performed

reasonably well but ranked below logistic activation in

759

accuracy. Meanwhile, the Tanh function exhibited

significantly poorer performance compared to the other two,

with the lowest accuracy and highest error. This is attributed

to Tanh's broader output range (-1 to 1), making it more

susceptible to vanishing gradient issues during training.

The study also examined the impact of learning rate on

model performance by testing values from 0.001 to 0.900.

Results showed that a learning rate of 0.100 achieved the

highest training accuracy (95.65%) but led to overfitting in

testing data. In contrast, a learning rate of 0.050 provided the

best balance between training and testing accuracy (91.02%),

making it the optimal choice. Extremely low learning rates,

such as 0.001, required excessive iterations to converge,

whereas very high rates, like 0.900, resulted in instability and

high error rates. Thus, selecting an appropriate learning rate is

critical for improving model performance.

Similarly, the effect of the number of epochs on model

accuracy was analyzed. Experimental results indicated that

350 epochs yielded the best accuracy for both training

(93.41%) and testing (93.57%). If the epoch count was too low

(e.g., 50 or 100), the model underperformed due to insufficient

training. However, excessive epochs (e.g., over 500) led to

instability and overfitting risks. Hence, selecting an optimal

number of epochs is essential to balance accuracy and

generalization.

Finally, the developed RNN model was compared with

other methods, including ETS, ARIMA, FFNN, and GRNN.

The comparison revealed that the RNN model achieved the

best performance, as indicated by the lowest SMAPE value

(0.14812) compared to other models. This confirms that RNN-

based models are superior in capturing nonlinear patterns in

inflation data compared to traditional statistical methods like

ETS and ARIMA, as well as other neural network models like

FFNN and GRNN. Therefore, the use of RNN for inflation

forecasting is validated as a more accurate and effective

approach than the alternative methods tested in this study.

4. CONCLUSIONS

This study analyzes the impact of AF selection in RNNs for

inflation forecasting in Indonesia. Among the Logistic,

Gompertz, and Tanh AFs, combined with SGD and AdaGrad

optimizers, the Logistic-SGD combination achieved the

highest accuracy (93.41% on training data, 93.57% on testing

data, and a SMAPE of 14.81%). This model outperformed

traditional forecasting methods such as ARIMA, ETS, FFNN,

and GRNN, confirming the advantage of deep learning in

time-series prediction.

The results emphasize the critical role of AFs in optimizing

RNN performance. Proper selection enhances prediction

accuracy, model stability, and generalization capabilities,

making RNN-based approaches highly effective for economic

forecasting. However, this study is limited to standard RNNs

and inflation data from 2005 to 2023. Future research should

incorporate additional macroeconomic indicators to improve

model precision.

To further advance forecasting capabilities, future studies

should explore more advanced architectures such as LSTM,

GRU, and hybrid models, along with ensemble learning

techniques. These improvements could enhance model

reliability and practical applications, benefiting policymakers,

financial analysts, and researchers seeking robust economic

forecasting solutions.

ACKNOWLEDGMENT

The authors would first like to thank the Department of

Statistics, Universitas Islam Indonesia for providing funding

for this research.

REFERENCES

[1] Farichah, S.A. (2022). Analisis inflasi di Indonesia:

Pendekatan Autoregressive Distributed Lag (ARDL).

Jurnal Cakrawala Ilmiah, 1(10): 2467-2484.

https://doi.org/10.53625/jcijurnalcakrawalailmiah.v1i10

.2577

[2] Endri, E. (2008). Analysis of factors influencing inflation

in Indonesia. Economic Journal of Emerging Markets,

13(1): 1-13. https://doi.org/10.20885/ejem.v13i1.356

[3] Salsabila, D. (2024). Bank Indonesia’ s role in mitigating

issues of monetary economic sovereignty and human

rights. Journal Central Banking Law & Institutions, 3(3):

449-470. https://doi.org/10.21098/jcli.v3i3.251

[4] Nugroho, P.W., Basuki, M.U. (2012). Analisis faktor-

faktor yang mempengaruhi inflasi di Indonesia Periode

2000.1–2011.4. Doctoral dissertation, Fakultas

Ekonomika dan Bisnis, 1(1): 69.

[5] Indrawati, S.M., Satriawan, E., Abdurohman. (2024).

Indonesia’s fiscal policy in the aftermath of the

pandemic. Bulletin of Indonesian Economic Studies,

60(1): 1-33.

https://doi.org/10.1080/00074918.2024.2335967

[6] Wahyudin, S. (2019). Prediksi inflasi Indonesia memakai

model ARIMA dan artificial neural network. Jurnal Tata

Kelola dan Kerangka Kerja Teknologi Informasi, 5(2):

57-63. https://doi.org/10.34010/jtk3ti.v5i1.2297

[7] Almosova, A., Andresen, N. (2023). Nonlinear inflation

forecasting with recurrent neural networks. Journal of

Forecasting, 42(2): 240-259.

https://doi.org/10.1002/for.2901

[8] Yang, C., Guo, S. (2021). Inflation prediction method

based on deep learning. Computational Intelligence and

Neuroscience, 2021(1): 1071145.

https://doi.org/10.1155/2021/1071145

[9] Rani, S.J., Haragopal, V.V., Reddy, M.K. (2017).

Forecasting inflation rate of India using neural networks.

International Journal of Computer Applications, 158(5):

45-48. https://doi.org/10.5120/ijca2017912866

[10] Moshiri, S., Cameron, N.E., Scuse, D. (1999). Static,

dynamic, and hybrid neural networks in forecasting

inflation. Computational Economics, 14: 219-235.

https://doi.org/10.1023/A:1008752024721

[11] Binner, J.M., Elger, T., Nilsson, B., Tepper, J.A. (2004).

Tools for non-linear time series forecasting in

economics–an empirical comparison of regime switching

vector autoregressive models and recurrent neural

networks. In Applications of Artificial Intelligence in

Finance and Economics, pp. 71-91.

https://doi.org/10.1016/S0731-9053(04)19003-8

[12] Cihan, P. (2023). Effect of parameter selection on heart

attack risk prediction in an RNN model. In 5th

International Conference on Applied Engineering and

Natural Sciences ICAENS, Konya, Turkey, pp. 56-60.

https://doi.org/10.59287/icaens.964

[13] Xu, B., Huang, R., Li, M. (2016). Revise saturated

activation functions. arXiv preprint, arXiv:1602.05980.

760

http://arxiv.org/abs/1602.05980

[14] Vilca-Huayta, O.A., Tito, U.Y. (2022). Efficient function

integration and a case study with Gompertz functions for

Covid-19 waves. International Journal of Advanced

Computer Science and Applications, 13(8): 545-551.

https://doi.org/10.14569/IJACSA.2022.0130863

[15] De Ryck, T., Lanthaler, S., Mishra, S. (2021). On the

approximation of functions by tanh neural networks.

Neural Networks, 143: 732-750.

https://doi.org/10.1016/j.neunet.2021.08.015

[16] Banerjee, K., Georganas, E., Kalamkar, D.D., Ziv, B.,

Segal, E., Anderson, C., Heinecke, A. (2019).

Optimizing deep learning RNN topologies on intel

architecture. Supercomputing Frontiers and Innovations,

6(3): 64-85. https://doi.org/10.14529/jsfi190304

[17] Xia, M., Shao, H., Ma, X., De Silva, C.W. (2021). A

stacked GRU-RNN-based approach for predicting

renewable energy and electricity load for smart grid

operation. IEEE Transactions on Industrial Informatics,

17(10): 7050-7059.

https://doi.org/10.1109/TII.2021.3056867

[18] Szandała, T. (2021). Review and comparison of

commonly used activation functions for deep neural

networks. Bio-Inspired Neurocomputing, 203-224.

https://doi.org/10.1007/978-981-15-5495-7_11

[19] Ali, M.H.E., Abdel-Raman, A.B., Badry, E.A. (2022).

Developing novel activation functions based deep

learning LSTM for classification. IEEE Access, 10:

97259-97275.

https://doi.org/10.1109/ACCESS.2022.3205774

[20] Ranjan, P., Khan, P., Kumar, S., Das, S.K. (2023). Log-

sigmoid activation-based long short-term memory for

time-series data classification. IEEE Transactions on

Artificial Intelligence, 5(2): 672-683.

https://doi.org/10.1109/TAI.2023.3265641

[21] Kaur, M., Mohta, A. (2019). A review of deep learning

with recurrent neural network. In 2019 International

Conference on Smart Systems and Inventive Technology

(ICSSIT), Tirunelveli, India, pp. 460-465.

https://doi.org/10.1109/ICSSIT46314.2019.8987837

[22] Sehovac, L., Grolinger, K. (2020). Deep learning for load

forecasting: Sequence to sequence recurrent neural

networks with attention. IEEE Access, 8: 36411-36426.

https://doi.org/10.1109/ACCESS.2020.2975738

[23] Sherstinsky, A. (2020). Fundamentals of recurrent neural

network (RNN) and long short-term memory (LSTM)

network. Physica D: Nonlinear Phenomena, 404:

132306. https://doi.org/10.1016/j.physd.2019.132306

[24] Lateko, A.A., Yang, H.T., Huang, C.M., Aprillia, H.,

Hsu, C.Y., Zhong, J.L., Phương, N.H. (2021). Stacking

ensemble method with the RNN meta-learner for short-

term PV power forecasting. Energies, 14(16): 4733.

https://doi.org/10.3390/en14164733

[25] Hayou, S., Doucet, A., Rousseau, J. (2019). On the

impact of the activation function on deep neural networks

training. In International Conference on Machine

Learning, pp. 2672-2680.

[26] Ratnawati, D.E., Marjono, M., Widodo, W., Anam, S.

(2020). Comparison of activation function on extreme

learning machine (ELM) performance for classifying the

active compound. AIP Conference Proceedings, 2264(1):

140001. https://doi.org/10.1063/5.0023872

[27] Shen, S.L., Zhang, N., Zhou, A., Yin, Z.Y. (2022).

Enhancement of neural networks with an alternative

activation function tanhLU. Expert Systems with

Applications, 199: 117181.

https://doi.org/10.1016/j.eswa.2022.117181

[28] Lin, Y.S., Fang, S.L., Kang, L., Chen, C.C., Yao, M.H.,

Kuo, B.J. (2024). Combining recurrent neural network

and sigmoid growth models for short-term temperature

forecasting and tomato growth prediction in a plastic

greenhouse. Horticulturae, 10(3): 230.

https://doi.org/10.3390/horticulturae10030230

[29] Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.

(2018). Activation functions: Comparison of trends in

practice and research for deep learning. arXiv preprint

arXiv:1811.03378. http://arxiv.org/abs/1811.03378

[30] Dewa, C.K. (2018). Suitable CNN weight initialization

and activation function for Javanese vowels

classification. Procedia Computer Science, 144: 124-

132. https://doi.org/10.1016/j.procs.2018.10.512

[31] Zaki, P.W., Hashem, A.M., Fahim, E.A., Mansour, M.A.,

ElGenk, S.M., Mashaly, M., Ismail, S.M. (2019). A

novel sigmoid function approximation suitable for neural

networks on FPGA. In 2019 15th International Computer

Engineering Conference (ICENCO), Cairo, Egypt, pp.

95-99.

https://doi.org/10.1109/ICENCO48310.2019.9027479

[32] Sharma, S., Sharma, S., Athaiya, A. (2017). Activation

functions in neural networks. International Journal of

Engineering Applied Sciences and Technology, 4(12):

310-316.

https://doi.org/10.33564/ijeast.2020.v04i12.054

[33] Iliev, A.I., Kyurkchiev, N., Markov, S. (2017). A note on

the new activation function of Gompertz type. Biomath

Communications, 4(2).

https://doi.org/10.11145/bmc.2017.10.201

[34] Gupta, R., Pandey, G., Pal, S.K. (2021). Comparative

analysis of epidemiological models for COVID-19

pandemic predictions. Biostatistics & Epidemiology,

5(1): 69-91.

https://doi.org/10.1080/24709360.2021.1913709

[35] Zhou, B.C., Han, C.Y., Guo, T.D. (2021). Convergence

of stochastic gradient descent in deep neural network.

Acta Mathematicae Applicatae Sinica, English Series,

37(1): 126-136. https://doi.org/10.1007/s10255-021-

0991-2

[36] Nasuha, A., Sardjono, T.A., Purnomo, M.H. (2018).

Pengenalan viseme dinamis bahasa Indonesia

menggunakan convolutional neural network. Jurnal

Nasional Teknik Elektro dan Teknologi Informasi, 7(3):

258-267. https://doi.org/10.22146/jnteti.v7i3.433

[37] Bottou, L. (2010). Large-scale machine learning with

stochastic gradient descent. In Proceedings of

COMPSTAT'2010: 19th International Conference on

Computational Statistics, Paris France, pp. 177-186.

https://doi.org/10.1007/978-3-7908-2604-3

[38] Alagözlü, M. (2022). Stochastic gradient descent

variants and applications. Università della Svizzera

Italiana. https://doi.org/10.13140/RG.2.2.12528.53767

[39] Kingma, D.P., Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

[40] Hermansah, Muhajir, M., Canas Rodrigues, P. (2024).

Indonesian inflation forecasting with recurrent neural

network long short-term memory (RNN-LSTM).

Enthusiastic: International Journal of Applied Statistics

and Data Science, 4(2): 132-142.

761

https://doi.org/10.20885/enthusiastic.vol4.iss2.art5

[41] Tyagi, A.K., Abraham, A. (2022). Recurrent Neural

Networks: Concepts and Applications. CRC Press.

[42] Keskar, N.S., Socher, R. (2017). Improving

generalization performance by switching from Adam to

SGD. arXiv preprint arXiv:1712.07628.

https://doi.org/10.48550/arXiv.1712.07628

[43] Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.

(2002). A state space framework for automatic

forecasting using exponential smoothing methods.

International Journal of Forecasting, 18(3): 439-454.

https://doi.org/10.1177/008124631004000402

[44] Hyndman, R.J., Khandakar, Y. (2008). Automatic time

series forecasting: The forecast package for R. Journal of

Statistical Software, 27: 1-22.

https://doi.org/10.18637/jss.v027.i03

[45] Hermansah, H., Rosadi, D., Abdurakhman, A., Utami, H.

(2020). Selection of input variables of nonlinear

autoregressive neural network model for time series data

forecasting. Media Statistika, 13(2): 116-124.

https://doi.org/10.14710/medstat.13.2.116-124

[46] Martínez, F., Charte, F., Frías, M.P., Martínez-

Rodríguez, A.M. (2022). Strategies for time series

forecasting with generalized regression neural networks.

Neurocomputing, 491: 509-521.

https://doi.org/10.1016/j.neucom.2021.12.028

762

