
A Computational Model for Transverse Thermal Displacements in Symmetric Sandwich 

Beam by Using Higher Order Shear Deformation Theory 

Sanjay Kantrao Kulkarni

Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Pune 412115, India 

Corresponding Author Email: sanjay.kulkarni@sitpune.edu.in

Copyright: ©2025 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120318 ABSTRACT 

Received: 14 July 2024 

Revised: 13 September 2024 

Accepted: 20 September 2024 

Available online: 31 March 2025 

The effect of change in the material orthotropy and length to thickness ratios on 

transverse thermal displacement of sandwich beam is studied and presented in this 

paper. Further, the thermal transverse displacements are also obtained for various 

coefficients of thermal expansion ratios. The parabolic shear deformation beam theory 

(PSDT), trigonometric shear deformation beam theory (TSDT) and classical beam 

theory (CBT) are used to obtain transverse thermal displacements. The equations of 

motion are developed by using virtual work principle. A three layer simply supported 

sandwich beam is considered for the analysis. A computer program in FORTRAN 

language is developed to evaluate central thermal displacements for various aspect 

ratios, various modular ratios and various thermal expansion coefficient ratios. The 

displacement field of the parabolic and trigonometric beam theories takes into account 

stretching, bending and effect of shear deformation. The transverse displacements 

obtained by parabolic, trigonometric and classical beam theories are compared with 

each other and the results available in the literature wherever possible. It has been 

noticed that the transverse thermal displacement is low for high degree of orthotropy 

and low coefficient of thermal expansion ratio results in low transverse thermal 

displacement. 
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1. INTRODUCTION

Sandwich beams consisting of face sheets and core material 

has wide application in civil, mechanical and aerospace 

engineering. The sandwich beams are light weight and have 

high stiffness. The durability and structural efficiency of 

sandwich beam is very high. Therefore, these beams have wide 

application in shipbuilding also. 

In the literature, sandwich beams are analysed by using 

various structural theories. Sandwich beams with functionally 

graded material as core and homogeneous face sheets were 

analysed by Deng et al. [1]. The quadrature element method 

was used by author. The thermal post buckling behaviour of 

sandwich beam with functionally graded core was presented 

by Li et al. [2]. The core in this sandwich beam has negative 

poison’s ratio with honeycomb. The sandwich beams with 

cellular core were analysed for deflections under dynamic 

thermal loads by Mamoon et al. [3]. The functionally graded 

beam with piezoelectric layers was studied for thermal 

buckling behaviour by Ellali et al. [4]. The sandwich beam 

having functionally graded core were studied for free vibration 

by using complementary functions method and presented by 

Yildirim [5]. The plane stress condition was taken into 

consideration by author. A review on analysis of functionally 

graded sandwich beam using analytical methods based on 

refined beam theories was addressed by Sayyad and Ghugal 

[6]. The thermal bending analysis of a sandwich beam with 

simple support in thermal environment was studied and hand 

over by Kulkarni and Ghugal [7]. The authors used order 

theory with cubic equation. A numerical study of sandwich 

beams on flexural buckling was studied by Chen et al. [8]. In 

the study, author examine thermally induced non-uniform 

cross sectional properties of sandwich beam. Sandwich beams 

with functionally graded material face sheets under flexural 

load were analysed by Theotokoglou and Mallios [9]. The 

vibration of sandwich beam with thermally induced non-

uniform cross-sectional properties was studied by Chen et al. 

[10]. The sandwich beam with porous functionally graded 

material core in between two isotropic face sheets were 

analysed for free thermal vibration by Hung et al. [11]. The 

soft core sandwich plates were analysed for free vibration by 

Sayyad and Ghugal [12] by using four variable trigonometric 

theory. The authors considered the transverse shear in the 

theory rotary inertia. A refined trigonometric beam theory was 

developed by Sayyad et al. [13] for flexural examination of 

laminated and sandwich structural beams. Analysis of 

sandwich and composite laminated beams was examined and 

presented by Pawar et al. [14] with the use of novel shear and 

transverse deformation theory. A review of buckling, vibration 

and flexure of sandwich and composite laminated beam based 

on layer-wise theories, equivalent single layer theories, zig-

zag theories and elasticity exact theory was hand over by 

Sayyad and Ghugal [15]. The curved sandwich and laminated 

beams were analysed and presented by Avhad and Sayyad [16] 

by using a new quasi-3D polynomial type beam theory. 

Homogeneous plates under flexure and vibration of thick plate 
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by using higher order theory was presented by Murty [17, 18]. 

The exact benchmarking solution for laminated plates and 

plates under cylindrical bending was provided by Bhaskar et 

al. [19]. The thermal post buckling of sandwich beam resting 

on elastic foundation and acted upon by uniform thermal rise 

has been presented by Wang et al. [20]. A non-linear bending 

analysis of sandwich beam consisting of carbon nanotube 

reinforced composite sheet subjected to thermo-mechanical 

loading was presented by Lal and Markad [21]. The buckling 

of functionally graded sandwich beam in thermal environment 

with constant, linear and nonlinear thermal load was presented 

by Daikh et al. [22]. The passive constrained layer damping 

(PCLD) sandwich beams was analysed by Karmi et al. [23] in 

thermal environment. The frequency and temperature 

dependent of viscoelastic laws are considered by authors. A 

sandwich beam theory based on Bernoulli’s hypothesis was 

developed by Krajcinovic [24] for sandwich beams under 

static loads. A sandwich beam with thick viscoelastic core was 

analyzed and presented by Cortes and Sarria [25] by using 

finite element approach. The non prismatic beams play a vital 

role in engineering. These beams are often subjected to 

dynamic and static loads. The free vibration of such non-

prismatic beams was presented by Jebur and Alansari [26].  

After going through literature, it has been noticed that a 

study on transverse thermal displacement of sandwich beam in 

thermal environment when aspect ratio, modular ratio i.e. 

degree of orthotropy and thermal expansion coefficient ratio 

changes is unavailable or lacking in the literature. 

Hence, the purpose of this work is to examine the transverse 

thermal displacements when degree of orthotropy and 

coefficient of thermal expansion ratio changes. This novel 

approach will be useful in satellite structures and automotive 

engineering where low thermal coefficient and high stiffness 

is required. 

 

 

2. MATHEMATICAL FRAMEWORK 

 

In the mathematical framework, the concept of virtual work 

principle is used to derive the equations of motion and 

boundary conditions. The integration by parts is used for 

further solution. The simply supported symmetric sandwich 

beam is considered for thermal analysis. The effect of thermal 

load is included in strain. The Hook’s law and corresponding 

constitutive relationship is taken in to consideration during 

analysis. The thermal load or temperature variation is assumed 

to be linear across the thickness of the beam. The z axis is 

along the thickness of sandwich beam and assumed as positive 

in downward direction. Further, close-form Navier’s 

technique is adopted to develop analytical solution. A 

computer program in FORTRAN-90 has been developed to 

obtain thermal central displacements in sandwich beam when 

aspect ratio, modular ratio and coefficient of thermal 

expansion ratio changes. 

 

 

3. THE SANDWICH BEAM 

 

The coordinate system and configuration of the sandwich 

beam is shown in Figure 1(a). The sandwich beam (0/core/0) 

has soft core in between two orthotropic layers as shown in 

Figure 1(b). The two orthotropic layers have fibres parallel to 

x axis. The angle between fibres and x axis is zero. The two 

orthotropic layers are known as face sheets. 

 
(a) 

 
(b) 

 

Figure 1. (a) The coordinate system and geometry of 

sandwich beam; (b) Thickness of each layer of sandwich 

beam 
 

The upper and lower face sheets are 00 laminated 

orthotropic layers having a thickness of 0.1 h each. The soft 

core has a thickness of 0.8 h. Where h is the overall thickness 

of sandwich beam. The z axis is along the thickness of the 

sandwich beam and considered as positive in the downward 

direction. The face sheets are thin and soft core is lightweight 

and thick. The upper surface of sandwich beam represents (z=-

h⁄2). The upper surface is subjected to thermal load T(x, z). The 

coordinates of sandwich beam can be expressed as given 

below 

 

0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, −
ℎ

2
≤ 𝑧 ≤

ℎ

2
 (1) 

 

 

4. DISPLACEMENT FIELD OF PSDT 
 

The displacement field or kinematic of the PSDT is based 

on the following assumption: 

1. The components of displacement along x axis and z axis 

are represented by u and w respectively.  

2. Since the sandwich beam is a dimensional problem the 

displacement along y is considered as zero.  

3. The axial displacement (u) along x axis consists of 

stretching (𝑢0) , bending (−𝑧
𝜕𝑤(𝑥)

𝜕𝑥
) , and shear 

component 𝑧 (1 −
4𝑧2

3ℎ2). 

4. The shear component in the TSDT is 
ℎ

𝜋
sin (

𝜋𝑧

ℎ
). 

5. The shear component in the classical beam theory is zero. 

6. The transverse thermal displacement (w) is considered as 

a function of x only.  

7. The beam is acted upon by thermal load only.  

8. No body forces are considered in the thermal analysis.  

9. The perfect bond is assumed between layers of beam. 

Based on the above assumptions the kinematic or 

displacement field of the PSDT can be written as below 
 

𝑢(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧
𝜕𝑤(𝑥)

𝜕𝑥
+ 𝑧 (1 −

4𝑧2

3ℎ2
) 𝜑𝑥(𝑥) (2) 
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𝑤(𝑥, 𝑧) = 𝑤(𝑥) (3) 
 

where, 𝑢(𝑥, 𝑧) represents the displacement along x axis and 

𝑤(𝑥, 𝑧)  represents transverse displacement along z direction. 

The axial displacement along x is the function x and z, whereas 

the transverse displacement along z is the function of x. The 

mid-plane displacement 𝑢0(𝑥)  and shear slope 𝜑𝑥  are the 

functions of x only. The displacement field has cubic term 

representing the effect of shear deformation. The present theory 

(PSDT) excludes the transverse normal effect. The transverse 

displacement along z direction is the function of x only. This is 

the limitation of the present theory.  
 

4.1 Strain displacement relation  
 

The strains (normal and shear) are evaluated from 

fundamentals of theory of elasticity. These strains are shown by 

following equations 
 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
+ 𝑧 (1 −

4𝑧2

3ℎ2
)

𝜕𝜑𝑥

𝜕𝑥
 (4) 

 

𝛾𝑧𝑥 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= (1 −

4𝑧2

ℎ2
) 𝜑𝑥  (5) 

 

4.2 Constitutive relations (CR)  
 

The constitutive relation for sandwich beam is expressed by 

the following equation 

 

{
𝜎𝑥

𝜏𝑧𝑥
}

𝑘
= [

𝑄̄11 0

0 𝑄̄55

]
𝑘

{
𝜀𝑥 − 𝛼𝑥𝑇

𝛾𝑧𝑥
}

𝑘

 (6) 

 

The reduced stiffness coefficients in the above equation are 

represented by 𝑄̄𝑖𝑗
(𝑘)

. These coefficients are computed by using 

the following equation 

 

𝑄̄11
(𝑘)

=
𝐸1

(𝑘)

(1 − 𝜇12
(𝑘)

𝜇21
(𝑘)

)
, 𝑄̄55

(𝑘)
= 𝐺̄13

(𝑘)
 (7) 

 

The Young’s modulus, shear modulus and Poisson’s ratio are 

represented by E, G and 𝜇𝑖𝑗, respectively.  

 

4.3 Thermal variation (Through thickness) 
 

The temperature distribution across the thickness (h) of the 

soft core sandwich beam is considered as given below 
 

𝑇(𝑥, 𝑧) =
2𝑧

ℎ
𝑇1(𝑥) (8) 

 

The change in temperature is represented by T in the above 

Eq. (8). The temperature change is considered as a function of x 

and z. The thermal load T1 is linearly varying through the depth 

of sandwich beam. The thermal load T1 is considered as a 

function of x. The sinusoidal distribution of temperature 

changeis as given below 
 

𝑇(𝑥, 𝑧) = (
2𝑧

ℎ
𝑇1) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) (9) 

 

The positive integer of sine series is represented by m in the 

above Eq. (9). This is further used in Navier’s solution of simply 

supported sandwich beam.  

5. EQUATIONS OF MOTION AND BOUNDARY 

CONDITIONS  
 

The concept of virtual work displacements in analytical form 

is used to obtain equations of motion. The principle when 

applied to beam leads to following equation 
 

𝑏 ∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜏𝑧𝑥𝛿𝛾𝑧𝑥)
𝑥=𝑎

𝑥=0

𝑧=
ℎ
2

𝑧=−
ℎ
2

𝑑𝑥𝑑𝑧 

− ∫ 𝑞(𝑥)𝛿𝑤𝑑𝑥
𝑥=𝑎

𝑥=0

= 0 

(10) 

 

The unknown displacement variables and corresponding 

variation is denoted by δ in the above equation. The governing 

equations of static equilibrium or equations of motion are 

deduced from the above Eq. (10) by using integrating by parts 

and setting the coefficients of 𝜕𝑢0, 𝜕𝑤  and 𝜕𝜑𝑥  to zero 

separately. The obtained equations of motion are as given 

below 
 

−𝐴11

𝜕2𝑢0

𝜕2𝑥2
+ 𝐵11

𝜕3𝑤

𝜕𝑥3
− (𝐵11 −

4

3ℎ2
𝐸11)

𝜕2𝜙𝑥

𝜕𝑥2
 

+𝑇𝐵11

2

ℎ

𝜕𝑇1

𝜕𝑥
= 0 

(11) 

 

−𝐵11

𝜕3𝑢0

𝜕𝑥3
+ 𝐷11

𝜕4𝑤

𝜕𝑥4
− (𝐷11 −

4

3ℎ2
𝐹11)

𝜕3𝜙𝑥

𝜕𝑥3
 

+
2

ℎ
𝑇𝐷11

𝜕2𝑇1

𝜕𝑥2
= 𝑞 

(12) 

 

− (𝐵11 −
4

3ℎ2
𝐸11)

𝜕2𝑢0

𝜕𝑥2
+ (𝐷11 −

4

3ℎ2
𝐹11)

𝜕3𝑤

𝜕𝑥3
 

− (𝐷11 +
16

9ℎ4
𝐻11 −

8

3ℎ2
𝐹11)

𝜕2𝜙𝑥

𝜕𝑥2
 

+ (𝑇𝐷11 −
4

3ℎ2
𝑇𝐹11) (

2

ℎ
)

𝜕𝑇1

𝜕𝑥
 

+ (𝐴55 −
4

ℎ2
𝐷55) 𝜙𝑥 − (𝐷55 −

4

ℎ2
𝐹55)

4

ℎ2
𝜙𝑥 = 0 

(13) 

 

The associated boundary conditions along edges 𝑥 = 0 and 

𝑥 = 𝑎 are as follows 

 

𝐴11

𝜕𝑢0

𝜕𝑥
− 𝐵11

𝜕2𝑤

𝜕𝑥2
+ (𝐵11 −

4

3ℎ2
𝐸11)

𝜕𝜙𝑥

𝜕𝑥
 

−𝑇𝐵11

2

ℎ
𝑇1 = 0, or 𝑢0 is prescribed. 

(14) 

 

−𝐵11

𝜕𝑢0

𝜕𝑥
+ 𝐷11

𝜕2𝑤

𝜕𝑥2
− (𝐷11 −

4

3ℎ2
𝐹11)

𝜕𝜙𝑥

𝜕𝑥
 

+𝑇𝐷11

2

ℎ
𝑇1 = 0, or 

𝑑𝑤

𝑑𝑥
 is prescribed. 

(15) 

 

𝐵11

𝜕2𝑢0

𝜕𝑥2
− 𝐷11

𝜕3𝑤

𝜕𝑥3
+ (𝐷11 −

4

3ℎ2
𝐹11)

𝜕2𝜙𝑥

𝜕𝑥2
 

−
2

ℎ
𝑇𝐷11

𝜕𝑇1

𝜕𝑥
= 0, or 𝑤 is prescribed. 

(16) 

 

(𝐵11 −
4

3ℎ2
𝐸11)

𝜕𝑢0

𝜕𝑥
− (𝐷11 −

4

3ℎ2
𝐹11)

𝜕2𝑤

𝜕𝑥2
 

+ (𝐷11 +
16

9ℎ4
𝐻11 −

8

3ℎ2
𝐹11)

𝜕𝜑𝑥

𝜕𝑥
 

− (𝑇𝐷11 −
4

3ℎ2
𝑇𝐹11)

2

ℎ
𝑇1 = 0, or 𝜑𝑥 is prescribed. 

(17) 
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In Eqs. (14) through (17), the natural boundary conditions are 

represented by left hand side equations and the kinematic 

boundary conditions are shown by right-hand side ones. The 

stiffness coefficients (𝐴𝑖𝑗 , 𝐵𝑖𝑗 , . . . . . . . . ) in the above equations 

are defined as follows 

 

(𝐴11, 𝐵11, 𝐷11, 𝐸11, 𝐹11, 𝐻11) 

= ∑ ∫ 𝑄̄11
(𝑘)(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6)

𝑧𝑘+1

𝑧𝑘

𝑑𝑧

𝑁

𝑘=1

 
(18) 

 

(𝐴55, 𝐷55, 𝐹55) = ∑ ∫ 𝑄̄55
(𝑘)(1, 𝑧2, 𝑧4)

𝑧𝑘+1

𝑧𝑘

𝑑𝑧

𝑁

𝑘=1

 (19) 

 
(𝑇𝐵11, 𝑇𝐷11, 𝑇𝐹11) 

= ∑(𝛼𝑥)

𝑁

𝑘=1

∫ 𝑄̄11
(𝑘)(𝑧, 𝑧2, 𝑧4)𝑑𝑧

𝑧𝑘+1

𝑧𝑘

 
(20) 

 

For three layers symmetric sandwich beam 

𝑢0, 𝐵11, 𝐸11 and 𝑇𝐵11 = 0. 

 

 

6. APPLICATION OF THEORY 

 

The performance or efficiency of parabolic (PSDT) shear 

deformation beam theory is examined by applying it to 

sandwich beam subjected temperature field. A three-layer soft 

core sandwich beam (simply supported) is considered for 

thermal analysis. The central transverse displacements are 

evaluated for different aspect ratios and modular ratios. The 

effect of change in coefficient of thermal expansion ratio on 

transverse displacement is also examined for different aspect 

ratios. The material properties are as shown below: 
 

Material properties for orthotropic layer (00) 

 

The Graphite-Epoxy material is considered for orthotropic 

layer [19].  
 

𝐸𝐿

𝐸𝑇

= 25,
𝐺𝐿𝑇

𝐸𝑇

= 0.5,
𝐺𝑇𝑇

𝐸𝑇

= 0.2, 

𝜇𝐿𝑇 = 𝜇𝑇𝑇 = 0.25,
𝛼𝑇

𝛼𝐿

= 1125 

 

The direction parallel to the fibre is represented by L 

(Longitudinal) and the direction perpendicular to the fibre is 

represented by T (Transverse). The thermal expansion 

coefficient in the fibre direction is shown by 𝛼𝐿. The thermal 

expansion coefficient in the transverse direction is represented 

by 𝛼𝑇. 

The properties of material are as given below [13]: 

 

For 00 layers: (𝑄11 = 25), (𝑄55 = 0.5) 

For soft core: (𝑄11 = 4), (𝑄55 = 0.06) 

 

The thermal expansion coefficients:  

 

(
𝛼𝐿

𝛼0

= 0.333) , (
𝛼𝑇

𝛼0

= 1) 

 

For soft core: 𝛼𝑐𝑜𝑟𝑒 = 𝛼𝐿 = 𝛼𝑇 = 1.36𝛼0. 

The normalization factor is 𝛼0  for the thermal expansion 

coefficients. 

 

6.1 Closed-form Navier technique 

 

Below mentioned are the edge conditions used for sandwich 

beam (0/core/0) along the edges 𝑥 = 0 and 𝑥 = 𝑎. 
 

𝑤 = 0, 𝑀𝑥 = 0, 𝑁𝑥 = 0, 𝑀𝑥
𝑠 = 0 (21) 

 

Navier’s technique is used to get displacement variables. The 

solution form for (𝑢0), (𝑤) and (𝜑𝑥) that satisfies the boundary 

conditions exactly as given below 

 

𝑢0(𝑥) = ∑ 𝑢0𝑚 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
)

∞

𝑚=1,3,5

 (22) 

 

𝑤(𝑥) = ∑ 𝑤𝑚 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
)

∞

𝑚=1,3,5

 (23) 

 

𝜑𝑥(𝑥) = ∑ 𝜑𝑥𝑚 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
)

∞

𝑚=1,3,5

 (24) 

 

where, 𝑢0𝑚, 𝑤𝑚 and 𝜑𝑥𝑚 are to be determined and known as 

series coefficients. The thermal load is expanded given below. 

 

𝑇1(𝑥) = ∑ 𝑇1𝑚 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
)

∞

𝑚=1

 (25) 

 

where, m is positive integer and 𝑇1𝑚 is the coefficient of single 

Fourier sine series expansion for thermal load as follows 

 
(𝑇𝐵11, 𝑇𝐷11, 𝑇𝐹11) 

= ∑(𝛼𝑥)

𝑁

𝑘=1

∫ 𝑄̄11
(𝑘)(𝑧, 𝑧2, 𝑧4)𝑑𝑧

𝑧𝑘+1

𝑧𝑘

 
(26) 

 

The intensity of thermal load is denoted by 
1T in the above 

Eq. (25). Substitution of Eqs. (22) through (25) into equations 

of motion (11), (12) and (13) gives simultaneous equations as 

given below 

 

[

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

] {

𝑢0𝑚

𝑤𝑚

𝜑𝑥𝑚

} = {

𝑓1

𝑓2

𝑓3

} (27) 

 

The stiffness coefficients (𝑘11, 𝑘12, … . )  of the stiffness 

matrix [𝑘] in Eq. (27) are defined as follows 

 

𝑘11 = 𝐴11

𝑚2𝜋2

𝑎2
, 𝑘12 = 𝑘21 = −𝐵11

𝑚3𝜋3

𝑎3
, 

𝑘13 = 𝑘31 = (𝐵11 −
4

3ℎ2
𝐸11)

𝑚2𝜋2

𝑎2
 

𝑘22 = 𝐷11

𝑚4𝜋4

𝑎4
, 𝑘23 = 𝑘32 = − (𝐷11 −

4

3ℎ2
𝐹11)

𝑚3𝜋3

𝑎3
 

𝑘33 = (𝐷11 +
16

9ℎ4
𝐻11 −

8

3ℎ2
𝐹11)

𝑚2𝜋2

𝑎2
+ (𝐴55 −

4

ℎ2
𝐷55)

− (𝐷55 −
4

ℎ2
𝐹55)

4

ℎ2
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The force vector elements {𝑓1, 𝑓2, 𝑓3}  in Eq. (27) are as 

follows 

 

𝑓1 = −𝑇𝐵11
2

ℎ

𝑚𝜋

𝑎
𝑇1𝑚, 𝑓2 =

2

ℎ
𝑇𝐷11

𝑚2𝜋2

𝑎2 𝑇1𝑚 

𝑓3 = − (𝑇𝐷11 −
4

3ℎ2
𝑇𝐹11)

𝑚𝜋

𝑎
(

2

ℎ
) 𝑇1𝑚 

 

After solving the above set of algebraic equations, the 

values of 𝑢0𝑚, 𝑤𝑚 and 𝜙𝑥𝑚 can be determined. Once obtained 

the values of 𝑢0𝑚, 𝑤𝑚  and 𝜑𝑥𝑚  one can then calculate all 

central thermal displacements within the beam by using Eqs. 

(5)-(9) and (11). 

 

6.2 Numerical results and discussion 

 

Thermal central displacements are computed in the soft core 

sandwich beam. The boundary condition is simply supported 

and the sandwich beam is subjected to pure thermal load 

varying linearly through the thickness of sandwich beam. 

The central thermal transverse displacements are obtained 

for different aspect ratios, i.e., length to thickness ratios 

(𝑆 =
𝑎

ℎ
), various modular ratios (

𝐸1

𝐸2
) and various coefficient 

of thermal expansion ratios (
𝛼2

𝛼1
) . These central thermal 

displacements are given in following dimensionless form for 

the discussion purpose 

 

𝑤̄ (
𝑎

2
, 0) =

ℎ𝑤

𝛼𝐿𝑇1𝑎2
 

 

Table 1. Normalized transverse central thermal 

displacements for different aspect ratios under sinusoidal and 

uniform thermal load in symmetric sandwich beam 

 
Beam 

Configuration 

Aspect 

Ratio 

PSDT 

𝒘̅ 

TSDT 

𝒘̅ 

HBT 

[7] 

CBT 

𝒘̅ 

 Sinusoidal Thermal Load 

0/core/0 

100 0.2924 0.2922 0.2924 0.2924 

50 0.2924 0.2923 - 0.2924 

25 0.2924 0.2927 - 0.2924 

20 0.2924 0.2931 - 0.2924 

12.5 0.2924 0.2951 - 0.2924 

10 0.2924 0.2986 0.2923 0.2924 

6.25 0.2923 0.2699 - 0.2924 

5 0.2922 0.2812 - 0.2924 

4 0.2917 0.2839 0.2882 0.2924 

2 0.2499 0.2859 - 0.2924 

 Uniformly Distributed Load 

0/core/0 

100 0.3571 0.3576 0.3607 0.3572 

50 0.3571 0.3571 - 0.3572 

25 0.3572 0.3569 - 0.3572 

20 0.3572 0.3593 - 0.3572 

12.5 0.3572 0.3609 - 0.3572 

10 0.3572 0.3654 0.3606 0.3572 

6.25 0.3571 0.3292 - 0.3572 

5 0.3570 0.3433 - 0.3572 

4 0.3565 0.3467 0.3566 0.3572 

2 0.3170 0.3492 - 0.3572 

 

The effect of change of aspect ratios on transverse 

displacement is shown in the Table 1. The results of transverse 

thermal displacements computed by PSDT and TSDT shows a 

significant difference within aspect ratios 2 to 20. This is due 

to shape function of parabolic and TSDT. The results obtained 

by TSDT are higher as compared to results obtained by PSDT 

for thick sandwich beam. These displacements are more or less 

similar after aspect ratio 20. The results computed by CBT are 

irrespective of aspect ratio. The results obtained by these three 

theories are same for aspect ratio 100. This indicates that 

higher order theories (PSDT and TSDT) are applicable to thin  

and moderately thick beams, whereas CBT is applicable to 

thin beam. The assumptions of classical beam theory ignore 

the shear deformation effect, whereas actually the shear 

deformation effect is very prominent in laminated sandwich 

beams. The higher order theories (PSDT and TSDT) include 

the shear deformation effect in the theory; therefore, these 

theories are applicable to thick and thin plate. The use of 

higher order theory is practical take away and becomes 

necessary for the analysis of sandwich beams. Figure 2 shows 

the effect of the change of aspect ratio on transverse thermal 

displacement under sinusoidal thermal load. The transverse 

thermal displacements obtained by PSDT, TSDT, and CBT are 

compared with the results available in the literature [7] 

wherever possible, as shown in Table 1. 

 

 
 

Figure 2. Effect of change of aspect ratio on central 

transverse thermal displacement 

 

Table 2. Normalized central transverse displacement under 

sinusoidal thermal load for various modular ratios for aspect 

ratio 4 

 

Beam 

Configuration 

𝑬𝟏

𝑬𝟐
 S 

PSDT 

𝒘̅ 

TSDT 

𝒘̅ 

CBT 

𝒘̅ 

0/core/0 5 4 0.4870 0.5026 0.4875 

 10 4 0.3866 0.7013 0.3872 

 15 4 0.3385 0.3146 0.3391 

 20 4 0.3103 0.2984 0.3109 

 25 4 0.2917 0.2839 0.2924 

 30 4 0.2786 0.2728 0.2792 

 35 4 0.2688 0.2642 0.2695 

 40 4 0.2612 0.2575 0.2619 

 

Table 3. Normalized central transverse displacement under 

sinusoidal thermal load for various modular ratios for aspect 

ratio 10 
 

Beam 

Configuration 

𝑬𝟏

𝑬𝟐
 S 

PSDT 

𝒘̅ 

TSDT 

𝒘̅ 

CBT 

𝒘̅ 

0/core/0 5 10 0.4875 0.4892 0.4875 

 10 10 0.3872 0.3899 0.3872 

 15 10 0.3391 0.3428 0.3391 

 20 10 0.3109 0.3157 0.3109 

 25 10 0.2924 0.2986 0.2924 

 30 10 0.2792 0.2881 0.2792 

 35 10 0.2695 0.2836 0.2695 

 40 10 0.2619 0.2951 0.2619 
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Figure 3. The effect of change of modular ratio on transverse 

displacement beam subjected to single sine thermal load for 

aspect ratio 4 

 

 
 

Figure 4. The effect of change of modular ratio on transverse 

displacement of beam subjected to single sine thermal load 

for aspect ratio 10 

 

 
 

Figure 5. The effect of change of coefficient of thermal 

expansion ratio on transverse displacement of beam subjected 

to single sine thermal load for aspect ratio 4 

 

The change in modular ratio, i.e., material orthotropy affects 

the transverse displacement as shown in Tables 2 and 3. The 

results of transverse displacements obtained by TSDT for 

aspect ratio 4 shows a considerable variation as compared to 

PSDT results when modular ratio changes from 5 to 20. 

However, these results are more or less similar for aspect ratio 

10. This is clearly noted from Figures 3 and 4. It is noted that 

for low modular ratio the transverse displacement is high and 

for high modular ratio the transverse displacement is low. 

Thus, these results are useful in selection of material for 

sandwich beam. The sandwich beams used in automotive 

engineering need low thermal transverse displacement and 

high stiffness. The modular ratio between 25 to 40 shows 

lower thermal deformations. This high modulus is preferable 

in automotive engineering for better thermal performance. 

The effect of change of thermal expansion coefficient ratio 

on transverse displacement is shown in Tables 4 and 5. The 

ratio of coefficient of thermal expansion is considered from 2 

to 20. It is noted that the transverse thermal displacements are 

directly proportional to coefficient of thermal expansion 

ratios. This linear variation is shown in Figure 5. The 

transverse displacement is low for low ratio of coefficient of 

thermal expansion. The sandwich beams used in satellite 

structures, automotive engineering, suspension components in 

vehicle need low or minimum thermal expansion and high 

stiffness. This practical take away is useful for future study. 

 

Table 4. Dimensionless transverse thermal displacements for 

various ratios of coefficients of thermal expansions under 

sinusoidal thermal load for aspect ratio (S) 4  

 

Beam Configuration 
𝜶𝟐

𝜶𝟏
 S 

PSDT 

𝒘̅ 

TSDT 

𝒘̅ 

CBT 

𝒘̅ 

0/core/0 2 4 0.2524 0.2480 0.2527 

 3 4 0.2917 0.2839 0.2924 

 4 4 0.3310 0.3197 0.3320 

 5 4 0.3703 0.3556 0.3716 

 6 4 0.4096 0.3914 0.4112 

 7 4 0.4490 0.4273 0.4508 

 8 4 0.4883 0.4632 0.4904 

 9 4 0.5276 0.4990 0.5301 

 10 4 0.5669 0.5349 0.5697 

 11 4 0.6062 0.5708 0.6093 

 12 4 0.6456 0.6066 0.6489 

 13 4 0.6849 0.6425 0.6885 

 14 4 0.7242 0.6784 0.7281 

 15 4 0.7635 0.7142 0.7678 

 16 4 0.8028 0.7501 0.8074 

 17 4 0.8422 0.7859 0.8470 

 18 4 0.8815 0.8218 0.8866 

 19 4 0.9208 0.8577 0.9262 

 20 4 0.9601 0.8935 0.9658 
Note: Modular ratio is considered as 25 

 

Table 5. Dimensionless transverse thermal displacements in 

beam subjected to single sine thermal load for various 

coefficients of thermal expansions ratios for aspect ratio (S) 

10 

 
Beam 

Configuration 

𝜶𝟐

𝜶𝟏
 S 

PSDT 

𝒘̅ 

TSDT 

𝒘̅ 

CBT 

𝒘̅ 

0/core/0 2 10 0.2527 0.2563 0.2527 

 3 10 0.2924 0.2986 0.2924 

 4 10 0.3320 0.3410 0.3320 

 5 10 0.3716 0.3834 0.3716 

 6 10 0.4112 0.4258 0.4112 

 7 10 0.4508 0.4682 0.4508 

 8 10 0.4904 0.5106 0.4904 

 9 10 0.5300 0.5530 0.5301 

 10 10 0.5697 0.5954 0.5697 

 11 10 0.6093 0.6378 0.6093 

 12 10 0.6489 0.6802 0.6489 

 13 10 0.6885 0.7226 0.6885 

 14 10 0.7281 0.7650 0.7281 

 15 10 0.7677 0.8073 0.7678 

 16 10 0.8074 0.8497 0.8074 

 17 10 0.8470 0.8921 0.8470 

 18 10 0.8866 0.9345 0.8866 

 19 10 0.9262 0.9769 0.9262 

 20 10 0.9658 1.0193 0.9658 
Note: Modular ratio is considered as 25 
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7. CONCLUSIONS 

 

The effect of change of aspect ratio, change of degree of 

orthotropy and change of coefficient of thermal expansion 

ratio on central transverse displacements is studied by using 

parabolic, trigonometric and classical beam theories. 

Transverse displacements obtained for thick beam by using 

TSDT shows a noticeable change as compared to other 

theories. It has been noticed that the trigonometric and 

parabolic theories are suitable for thick and thin sandwich 

beam. The transverse thermal displacements computed by 

classical beam theory for various aspect ratios are irrespective 

of aspect ratio. This is because of eliminating the shear 

deformation effect in the theory. This theory (CBT) is 

applicable to thin beams only. Further, it is observed that 

transverse displacement is low for high modular ratio. The low 

coefficient of thermal expansion material for face sheets and 

soft core may be used. The satellite structures need minimum 

thermal expansion high stiffness.  

Thus, the usefulness of the effect of degree of orthotropy on 

transverse thermal displacement is seen in satellite structures. 

It is seen that the transverse displacement is directly 

proportional to coefficient of thermal expansion ratio. The low 

ratio of coefficient of thermal expansion results in low 

transverse thermal displacement. This will be useful in 

automotive engineering where sandwich beam is used to 

improve the thermal performance required. The performance 

of these theories (PSDT and TSDT) may be improved in the 

future by adding transverse normal effect in the theory and its 

application to sandwich beams subjected to combined thermal 

and mechanical load. 
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NOMENCLATURE 
 

𝜀𝑥 Normal strain 

𝛾𝑧𝑥 Shear strain 

𝜎𝑥 Normal stress 

𝜏𝑧𝑥 Transverse shear stress 

𝐸 Young’s modulus 

𝐺 Shear modulus 

𝜇𝑖𝑗 Poisson’s ratio 

𝐴𝑖𝑗 , 𝐵𝑖𝑗 , .. Stiffness coefficients 

𝛼0 Normalized factor for thermal expansion 

coefficient 

[𝑘] Stiffness coefficient 

{𝑓} Force vector 

(𝑆 =
𝑎

ℎ
) Aspect ratio 

(
𝐸1

𝐸2

) 
Modular ratio 

(
𝛼2

𝛼1

) =
𝛼𝑇

𝛼𝐿

 
Coefficient of thermal expansion ratio 
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