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This paper introduces a new family of distributions named the Alpha Power Type II-G 

(APII-G) family, which emerges as a groundbreaking modeling strategy for examining 

data governed by univariate continuous distributions. This family aims to enhance the 

modeling capabilities of continuous prior distributions to better fit the data utilizing a 

new function encompassing the additional parameter power. The innovative 

methodology implemented encompasses two continuous distributions: firstly, the one-

parameter exponential distribution, which engendered a fresh two-parameter, Alpha 

Power II Exponential (APIIE) distribution, and secondly, the two-parameter Weibull 

distribution, which yielded a new three-parameter, Alpha Power II Weibull (APIIW) 

distribution. Moreover, a scrutiny of the characteristics and statistical functions, and the 

estimations of the parameters of the two distributions. The efficacy of these estimators 

is substantiated through simulation studies and finding the mean square error (MSE) 

and bias values of the estimators compared to sample sizes. It has been empirically 

proven that the two suggested models outperformed the asymptotic distributions they 

were compared against using multiple goodness-fit criteria as Akaike information 

criterion (AIC), Bayesian information criterion (BIC), corrected AIC (CAIC) and 

Hannan-Quinn information criterion (HQIC) on authentic datasets, The values of these 

criteria appeared to be the lowest for the two new distributions, which means that the 

new distributions are the best, especially in the context of the given data. 

Keywords: 
Alpha Power-G family, exponential distribution, 

APIIE distribution, Weibull distribution, APIIW 

distribution 

1. INTRODUCTION

In the field of statistical analysis, many distributions have 

been formulated that extend over many years of research. 

Among these distributions are the typical normal distribution 

and the exponential distribution, in addition to the Gamma 

distribution, Weibull distribution, Gumbel distribution, 

Lomax distribution, and others. These distributions are 

intended for use in a variety of fields, such as survival analysis, 

ecology, medicine, actuarial science, reliability engineering, 

hydrology, social sciences, and more. Efforts are constantly 

being made to improve these lifetime distributions to better fit 

specific real datasets, moving away from traditional 

approaches. The incorporation of an additional parameter 

frequently facilitates enhanced control over the characteristics 

of the distribution, including aspects such as skewness, 

kurtosis, or tail behavior. This adaptability is crucial when 

attempting to model empirical data that demonstrates 

attributes inadequately represented by more elementary 

distributions. Empirical datasets are typically derived from 

processes with intricacies that are challenging to encapsulate 

using simpler models. By introducing a parameter, the model 

is enabled to adjust to these intricacies, resulting in improved 

goodness-of-fit evaluations. The newly introduced parameter 

may occasionally signify a significant physical or probabilistic 

characteristic of the phenomenon being modeled. This 

augmentation contributes to the interpretability of the model; 

for instance, in survival analysis, the incorporation of a shape 

parameter into a baseline hazard function permits the 

modeling of increasing, constant, or decreasing hazard rates 

over time. Also, incorporating a new complementary 

parameter to the distribution may improve its accuracy for a 

variety of data, and lead to improved predictive capabilities. 

Integrating an additional parameter into the conventional 

baseline distributions has given rise to numerous distinct 

distribution families Recently. A method introduced by 

Mahdavi and Kundu [1] involved the first presentation of the 

Alpha Power technique for producing novel distributions, 

subsequently adopted by various researchers for the creation 

of multiple distributions using this approach. This method was 

dependent on finding the distribution function CDF 𝐹(𝑥, 𝛼) of 

the first type Alpha Power distribution as following: 

𝐹(𝑥, 𝛼) =
𝛼𝐺(𝑥) − 1

𝛼 − 1
, 0 < 𝛼, 𝛼 ≠ 1 (1) 

where, the function 𝐺(𝑥) denotes to the CDF of the baseline 

distribution, potentially affected by the parameter vector. 

Mahdavi and Kundu [1] introduced an extra one parameter to 

the exponential distribution, deriving various properties and 
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demonstrating its practical application through data analysis. 

Arashi et al. [2] extended the beta-generating technique to 

multivariate distributions, constructing a new family of 

distributions with Dirichlet-generated marginals and 

demonstrating their applicability through simulated and real 

data analysis. Hassan et al. [3] proposed Weibull-Lindley 

distribution by a technique that adds one parameter to the 

baseline Weibull distributions. Farooq et al. [4] generalized 

the method of generating continuous distributions by nesting 

one model within another, which includes famous 

distributions like Beta, Kumaraswami, and Gamma as special 

cases, thereby enhancing the modeling of complex systems. 

Kalt [5] developed a generator for new distributions by adding 

a parameter by using the survival function.  

This study focuses on enhancing the flexibility of a specific 

set of distribution functions by introducing an additional 

parameter. The newly introduced group is referred to as the 

APII-G family. A number of some properties of distribution 

functions within this category are examined in this paper. 

Then, this family is applied to create two distributions, the first 

is a two-parameter distribution by integrating the new group 

into the one-parameter exponential distribution. The resulting 

distribution from the exponential distribution exhibits several 

useful properties. The paper also delves into the estimators of 

the unknown coefficients of the resulting distribution. The 

second is a three-parameter distribution constructed by 

applying the new family with the two-parameter Weibull 

distribution and studying its statistic properties and the 

estimators of the three parameters. These two distributions 

were chosen for generalization due to their importance in wide 

applications in engineering research and others in studies [6-

9]. Moreover, an evaluation of the two distributions for some 

sets of real, data is included, along with comparisons with 

other similar, distributions by using the goodness-of-fit 

criteria. 

2. NEW FAMILY WITH SOME PROPERTIES

Modern classes of distributions stemming from a 

straightforward, innovative, and well-founded transformation 

of the baseline distribution are not yet common. Within this 

manuscript, we put forth a potential candidate in which we 

present a transformation that is contingent upon the Alpha 

Power of baseline distribution generated APII-G family, as 

specified by the subsequent CDF. The general formula for 

CDF of the new family (APII-G) is defined by 

𝐹(𝑥, 𝛼) =
(1 + 𝐺(𝑥))

𝛼
− 1

2𝛼 − 1
, 𝛼 > 0 (2) 

where, the function G(x) denotes to the CDF of the baseline 

distributions, potentially affected by the parameter vector, 

designated as R. In the field of mathematical functions, it is 

noted that the function 𝐺(𝑥)  represents the cumulative 

distribution function obtained from existing distributions. This 

specific function is mathematically expressed by Eq. (2), 

which not only indicates the cumulative distribution function 

related to APII-G but also provides insight into its properties. 

In cases where 𝑥1 > 𝑥2 is true, it can be inferred that 𝐺(𝑥1) >
𝐺(𝑥2), so that 𝐹(𝑥1; 𝜑, 𝛼) > 𝐹(𝑥2; 𝜑, 𝛼) is a direct result, thus

establishing an important relationship within the mathematical 

framework. Therefore, it can be concluded that the function 

𝐹(𝑥; 𝜑, 𝛼) fulfills the properties of distribution functions of 

being monotonically increasing. Also, the limit of 

𝐹(𝑥: 𝜑, 𝛼) satisfied the following: 

𝑙𝑖𝑚
𝑥→−∞

𝐹(𝑥; 𝜑, 𝛼) = 𝑙𝑖𝑚
𝐺(𝑥)→0

𝐹(𝑥; 𝜑, 𝛼) = 0 

𝑙𝑖𝑚
𝑥→∞

𝐹(𝑥; 𝜑, 𝛼) = 𝑙𝑖𝑚
𝐺(𝑥)→1

𝐹(𝑥; 𝜑, 𝛼) = 1 

To find the density function, we derive the Eq. (1) and we 

obtain: 

𝑓(𝑥, 𝛼) =
𝛼(1 + 𝐺(𝑥))

𝛼−1
𝑔(𝑥)

2𝛼 − 1
, 𝛼 > 0 (3) 

Which fulfills the basic condition for the probability density 

function as follows: 

∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

−∞

= ∫
𝛼(1 + 𝐺(𝑥))

𝛼−1
𝑔(𝑥)

2𝛼 − 1
𝑑𝑥

∞

−∞

 

=
1

2𝛼 − 1
[(2)𝛼 − 1] = 1 

(4) 

When the well definition of the general form of the 

transformation has been established, as indicated by Eq. (2), 

which serves as a representation of the cumulative distribution 

function, it is important to highlight that through this 

formulation, the corresponding density function can be 

derived. The application of this constant transformation is then 

directed towards two specific distributions, the exponential 

and the Weibull, by replacing G(x) in the transformation with 

the cumulative distribution function related to these respective 

distributions. This substitution is the basis for creating the new 

distributions for this family because it allows a comprehensive 

examination of the statistical properties and functions that 

define the new transformed distributions.  When the value of 

new alpha parameter in the new distributions is equal to 1, it 

will remain the same as the original distribution that was used. 

3. APIIE DISTRIBUTION

In this section, we will apply the new APII-G family with 

the one-parameter exponential distribution, where we will 

obtain a two-parameter new distribution which is called APIIE 

distribution, by replacing G(x) in Eq. (2) with the CDF of the 

exponential distribution, then the CDF of APIIE distribution is 

defined as follows: 

𝐹(𝑥; 𝛼, 𝜆) =
(2 − 𝑒

−𝑥
𝜆 )

𝛼

− 1

2𝛼 − 1
, 𝑥 > 0, 𝛼, 𝜆 > 0 

(5) 

And the pdf is defined as the following formula: 

𝑓(𝑥, 𝛼, 𝜆) =
𝛼 (2 − 𝑒

−𝑥
𝜆 )

𝛼−1

𝑒
−𝑥
𝜆

𝜆(2𝛼 − 1)
, 𝑥 > 0; 𝛼, 𝜆 > 0 

(6) 

Some plots of the CDF 𝐹(𝑥; 𝛼, 𝜆) and pdf 𝑓(𝑥, 𝛼, 𝜆) of the 

(APIIE) model,  which is plotted for some different value of 

the parameters 𝛼 and 𝜆 in Figure 1 and Figure 2, respectively. 
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Figure 1. The CDF of APIIE 

 

 
 

Figure 2. The pdf of APIIE 

 

3.1 The statistical properties of the APIIE distribution 

 

We present the functions of reliability, reversed hazard, 

hazard rate, and the cumulative of the hazard rate of APIIE 

distribution [10]. The survival function of random variable 

𝑋~𝐴𝑃𝐼𝐼𝐸(𝛼, 𝜆) is defined by the following: 
 

�̅�(𝑥; 𝛼, 𝜆) = 1 − 𝐹(𝑥; 𝛼, 𝜆) =
2𝛼−(2 − 𝑒

−𝑥
𝜆 )

𝛼

2𝛼 − 1
 

(7) 

 

The function of reverse hazard 𝑟(𝑥: 𝛼, λ) to the APIIE 

distribution is defined by the following: 
 

𝑟(𝑥: 𝛼, 𝜆) =
𝑓(𝑥: 𝛼, 𝜆)

𝐹(𝑥: 𝛼, 𝜆)
=
𝛼 (2 − 𝑒

−𝑥
𝜆 )

𝛼−1

𝑒
−𝑥
𝜆

𝜆 ((2 − 𝑒
−𝑥
𝜆 )

𝛼

− 1)
 (8) 

 

The function of hazard function ℎ(𝑥: 𝛼, 𝜆)  to the APIIE 

distribution is defined by the following: 
 

ℎ(𝑥: 𝛼, 𝜆) =
𝑓(𝑥: 𝛼, 𝜆)

�̅�(𝑥: 𝛼, 𝜆)
=
𝛼 (2 − 𝑒

−𝑥
𝜆 )

𝛼−1

𝑒
−𝑥
𝜆

𝜆 (2𝛼−(2 − 𝑒
−𝑥
𝜆 )

𝛼

)
 (9) 

And the cumulative hazard 𝐻(𝑥: 𝛼, 𝜆)  of the APIIE is 

defined by the following: 

 

𝐻(𝑥: 𝛼, 𝜆) = −𝐿𝑛[1 − 𝐹(𝑥: 𝛼, 𝜆)] 

= −𝐿𝑛 [
2𝛼−(2 − 𝑒

−𝑥
𝜆 )

𝛼

2𝛼 − 1
] 

(10) 

 

3.2 The moments of APIIE distribution 

 

We will define the 𝑟𝑡ℎ moment (at the point of origin) for 

APIIE distribution by the following theorem. 

 

Theorem: 

If X is variable to APIIE distribution, then moment of the 

order 𝑟 (about the point of origin) is defined by the following: 

 

µ ̀𝑟 =
𝛼𝜆𝑟𝑟!

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − 𝑛)! 𝑛! (𝑛 + 1)(𝑟+1)

∞

𝑛=0

 (11) 

 
Proof: 

By definition the moment of the order 𝑟 (about the point of 

origin) 𝜇�̀� to the variable X of APIIE distribution: 
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𝜇�̀� = 𝐸(𝑥
𝑟) = ∫ 𝑥𝑟

∞

0

𝑓(𝑥, 𝛼, 𝜆) 𝑑𝑥, 𝑟 = 1,2,3, … 

µ̀𝑟 =
𝛼

𝜆(2𝛼 − 1)
∫ 𝑥𝑟
∞

0

(2 − 𝑒
−𝑥
𝜆 )

𝛼−1

𝑒
−𝑥
𝜆 𝑑𝑥 

(12) 

 

Let 𝑒
−𝑥

𝜆 = 𝑦, and if 𝑥 → 𝑜 then 𝑦 → 1; if 𝑥 → ∞ then 𝑦 →

0, 𝑑𝑥 =
−𝝀

𝑦
 𝑑𝑦, then 

 

𝜇�̀� =
𝛼𝜆𝑟

(2𝛼 − 1)
∫(−𝑙𝑛𝑦)𝑟
1

0

(2 − 𝑦)𝛼−1 𝑑𝑦 (13) 

 

Now, Taking the Maclaurin series of formula (2 − 𝑦)𝛼−1, 

we obtain the following series: 

 

(2 − 𝑦)𝛼−1 =∑
(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − 𝑛)! 𝑛!

∞

𝑛=0

𝑦𝑛 (14) 

 

We replace Eq. (14) with Eq. (13) 

 

𝜇�̀� =
𝛼 𝜆𝑟

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛!

∞

𝑛=0

 

∫(−𝑙𝑛𝑦)𝑟
1

0

𝑦𝑛𝑑𝑦 

(15) 

 

Using the infinitive form in reference [11] and comparing it 

with Eq. (15), the integration result becomes as follows: 

 

𝜇�̀� =
𝛼 𝜆𝑟𝑟!

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − 𝑛)! 𝑛! (𝑛 + 1)(𝑟+1)

∞

𝑛=0

 (16) 

 

Now, by using theorem (3.2.1) we calculate the mean and 

variance as follows: 
 

𝐸(𝑥) =
𝛼 𝜆

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛! (𝑛 + 1)2

∞

𝑛=0

 (17) 

 

𝑉𝑎𝑟(𝑥) =
𝛼𝜆22!

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛! (𝑛 + 1)3

∞

𝑛=0

 

−
𝛼2𝜆2

(2𝛼 − 1)2
(∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛! (𝑛 + 1)2

∞

𝑛=0

)

2

 

(18) 

 

The moment-generating function  (mgf), denoted by the 

symbol 𝑀𝑥(𝑡), of APIIE can be find by the following: 
 

𝑀𝑥(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫ 𝑒𝑡𝑥

∞

0

𝑓(𝑥, 𝛼, 𝜆) 𝑑𝑥 (19) 

 

By Taylor series for 𝑒𝑡𝑥 yields, which is 𝑒𝑡𝑥 = ∑
𝑡𝑠𝑥𝑠

𝑠!

∞
𝑠=0 . 

 

𝑀𝑥(𝑡) =∑
𝑡𝑠

𝑠!
∫ 𝑥𝑠
∞

0

𝑓(𝑥, 𝛼, 𝜆) 𝑑𝑥 =∑
𝑡𝑠

𝑠!
�́�𝑠

∞

𝑠=0

∞

𝑠=0

 (20) 

And by substituting Eq. (16) into Eq. (16) then 

 

𝑀𝑥(𝑡) =
𝛼

(2𝛼 − 1)
∑∑

𝜆𝑠𝑡𝑠(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛! (𝑛 + 1)(𝑠+1)

∞

𝑛=0

∞

𝑠=0

 (21) 

 

3.3 Maximum Likelihood Estimation (MLE) of APIIE 

distribution 

 

In this subsection, we find MLE of the two parameters 𝛼 

and 𝜆 . If 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 denote a sample of APIIE, the 

function of likelihood is defined by 

 

𝐿(𝛼, 𝜆; 𝑥) =∏𝑓(𝑥𝑖: 𝛼, 𝜆)

𝑛

𝑖=1

=∏
𝛼(2 − 𝑒

−𝑥
𝜆 )

𝛼−1

𝑒
−𝑥
𝜆

𝜆(2𝛼 − 1)

𝑛

𝑖=1

 

=
𝛼𝑛∏ (2 − 𝑒

−𝑥𝑖
𝜆 )

𝛼−1
𝑛
=1 𝑒

−1
𝜆
∑ 𝑥𝑖
𝑛
=1

𝜆𝑛(2𝛼 − 1)𝑛
 

(22) 

 

and the logarithm of 𝐿(𝛼, 𝜆; 𝑥) will be as 

 

𝑙𝑛(𝐿(𝛼, 𝜆; 𝑥)) = 𝑛 𝑙𝑛 𝛼 − 𝑛 𝑙𝑛 ( 2𝛼 − 1 

−𝑛 𝑙𝑛 𝜆 −
1

𝜆
∑𝑥𝑖

𝑛

𝑖=1

+ (α − 1)∑ 𝑙𝑛 (2 − 𝑒−
𝑥𝑖
𝜆 )

𝑛

𝑖=1
 

(23) 

 

by taking derivatives of 𝑙𝑛(𝐿(𝛼, 𝜆; 𝑥)) to the parameter 𝛼 and 

𝜆 respectfully, then we get 

 

𝜕 𝑙𝑛(𝐿(𝛼, 𝜆; 𝑥))

𝜕𝜆
=
−𝑛

𝜆
+
1

𝜆2
∑𝑥𝑖

𝑛

𝑖=1

 

−
(α − 1)

𝜆2
∑

𝑥𝑖𝑒
−𝑥𝑖
𝜆

(2 − 𝑒−
𝑥𝑖
𝜆 )

𝑛

𝑖=1

 

(24) 

 

𝜕 𝑙𝑛(𝐿(𝛼, 𝜆; 𝑥))

𝜕𝛼
=
𝑛

𝛼
−
𝑛2𝛼𝑙𝑛2

2𝛼 − 1
+∑𝑙𝑛(2 − 𝑒−

𝑥𝑖
𝜆 )

𝑛

𝑖=1

 (25) 

 

By setting Eq. (24) equal to zero, we get  

 

𝜆 −
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

+
(α − 1)

𝑛
∑

𝑥𝑖𝑒
−𝑥𝑖
𝜆

(2 − 𝑒−
𝑥𝑖
𝜆 )

𝑛

𝑖=1

= 0 (26) 

 

Also, by setting Eq. (25) equal to zero, we get  

 

𝑛

𝛼
−
𝑛2𝛼𝑙𝑛2

2𝛼 − 1
+∑𝑙𝑛(2 − 𝑒−

𝑥𝑖
𝜆 )

𝑛

𝑖=1

= 0 (27) 

 

By solving Eq. (26) and Eq. (27), by numerical methods, 

then obtain the MLE for both parameters 𝛼 and 𝜆. 

 

3.4 Order statistics of APIIE 

 

If 𝑌1 , 𝑌2, … , 𝑌𝑛  denotes the order statistic to the random 

sample 𝑋1 , 𝑋2. … , 𝑋𝑛  taken from the population distributing 

by the APIIE distribution with the CDF 𝐹𝑋(𝑥) and pdf 𝑓𝑋(𝑥), 
then the pdf of random variable 𝑌𝑗 of the order 𝑗 is defined by 

following: 
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𝑓𝑌𝑗(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!

(

 
(2 − 𝑒−

𝑥𝑗
𝜆 )

𝛼

− 1

2𝛼 − 1

)

 

𝑗−1

 

(

 
2𝛼−(2 − 𝑒−

𝑥𝑗
𝜆 )

𝛼

2𝛼 − 1

)

 

𝑛−𝑗

𝛼 (2 − 𝑒−
𝑥𝑗
𝜆 )

𝛼−1

𝑒−
𝑥𝑗
𝜆

𝜆(2𝛼 − 1)
 

(28) 

 
Also, if 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 then the joint pdf of 𝑌𝑖  and 𝑌𝑗  with 

the order random variable 𝑢 and 𝑣, is 

 

𝑓𝑌𝑖,𝑌𝑗(𝑢, 𝑣) =
𝑛!

(𝑛 − 𝑗)! (𝑗 − 𝑖 − 1)! (𝑖 − 1)!
 (29) 

 

with 0 < 𝑢 < 𝑣 < ∞. The j.p.d.f of n order random variables 

𝑌1, 𝑌2, … , 𝑌𝑛  can extract more than one ranking statistics 

through our use of similar functions. Thus, the joint pdf for all 

order statistics𝑓𝑌1 ,𝑌2.…,𝑌𝑛(𝑥1, … , 𝑥𝑛) , taken from the APIIE 

distribution, as the following: 

 

𝑓𝑋(1),…..,,𝑋(𝑛)(𝑥1,…., 𝑥𝑛) 

= 𝑛!
𝛼𝑛∏ (2 − 𝑒

−𝑥𝑖
𝜆 )

𝛼−1
𝑛
=1

𝜆𝑛(2𝛼 − 1)𝑛
 

𝑒
−1
𝜆
∑ 𝑥𝑖
𝑛
=1  

(30) 

 

 

3.5 Simulation studies of the APIIE distribution 

 

In order to understand and interpret experimentally the 

adopted estimation method MLE that was studied in this 

section of the study, we will employ the simulation approach 

to examine the MLEs of two parameters of the APIIE 

distribution. This part includes a description of the Monte 

Carlo simulation experiment for the research in terms of the 

sample sizes which generated when the number of iterations 

of the simulation 1000. We also present the simulation test 

results obtained where we used statistical R software with the 

“BFGS mathed” to apply this simulation. The stages of 

building simulation experiments contain some important 

stages, which are the stage of choosing the sample size, where 

n was chosen: (n=30, 50, 75, 100, 150, 250, 500), the stage of 

choosing values for the parameters for three experiments, the 

default values for the parameters (𝛼, 𝜆)=(1.5, 2.5), (𝛼, 𝜆)=(1.5, 

5) and (𝛼, 𝜆)=(2.5, 8). The stage of generating appropriate data 

for the APIIE distribution by employing the inverse 

cumulative distribution function on uniformly distributed 

random variables, calculating the MLE for the two parameters 

(𝛼, 𝜆) and following the calculation of the MSEs and the bias. 

 

MSE(𝜓) =
1

1000
∑ℎ=1
1000  (𝜓ℎˆ − 𝜓)

2
 

𝐵𝑖𝑎𝑠 (𝜓) =
1

1000
∑ℎ=1
1000  (𝜓ℎˆ − 𝜓) 

 

where, 𝜓 represents one of the parameters 𝛼, 𝜆. Following the 

simulation, the outcomes are shown in Figure 3. 

 

 
 

Figure 3. The MSE and bias of the APIIE distribution for different parameters values 
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3.6 Application APIIE distribution with real data sets 
 

In this section, our focus will be directed towards the 

examination and interpretation of an authentic data collection 

that serves to show the advantages of new family associated 

with the application of the aforementioned APIIE distribution 

methodology. To gauge the relevance of the model, multiple 

information criteria were determined. These requirements 

featured the AIC, which weighs the trade-off between model 

fit and complexity. Additionally, the CAIC was computed to 

address potential issues with small sample sizes. The BIC 

underwent scrutiny to penalize models with a significant 

number of parameters, demonstrating a preference for simpler 

models. Finally, the HQIC was integrated in the assessment, 

which is a modification of the AIC that considers the number 

of observations in the dataset. AIC, CAIC, and BIC are 

common criteria for comparing the fit of models to real data. 

These criteria are defined as follows: 

 
𝐴𝐼𝐶 = −2𝑙𝑛𝐿𝑀 + 2ℎ𝑝
𝐵𝐼𝐶 = −2𝑙𝑛𝐿𝑀 + ℎ𝑝𝑙𝑛 𝑛

𝐶𝐴𝐼𝐶 = −2𝑙𝑛𝐿𝑀 + ℎ𝑝(𝑙𝑛 𝑛 + 1)

𝐻𝑄𝐼𝐶 = −2𝑙𝑛𝐿𝑀 + 2ℎ𝑝𝑙𝑛 (𝑙𝑛 (𝑛))

 

 

where,  𝐿𝑀  is maximized of the likelihood function, ℎ𝑝  is 

number of parameters estimated and n is size of data sample. 

The first dataset under consideration has been sourced from 

the research conducted by Bjerkedal in the year 1960, 

encompassing information pertaining to the survival durations 

(measured in days) of a total of 72 guinea pigs that were 

deliberately infected with highly pathogenic tubercle bacilli. 

This compilation of data is outlined as shown in Table 1. 

These data were recently used by Elgarhy et al. [12]. 

Comparing the distributions chosen by Elgarhy  with the 

APIIE distribution. It turns out that the APIIE distribution is 

better than the other test distributions, as shown in Table 2. 

The second dataset provides a comprehensive depiction of 

the failures and service durations pertaining to a specific 

model of windshield, as documented in reference [13]. The 

dataset in question meticulously outlines the service durations 

related to a particular model of windshield. This dataset, 

comprised of 63 instances of Aircraft Windshield service 

times, is meticulously itemized and presented in a structured 

format. This data is outlined as shown in Table 3. 

This data was recently used by Almarashi et al [14]. They 

compared the TIHLE distribution with the exponential 

distribution, and when we studied this evidence on the new 

distribution, it turned out to be most suitable for data than the 

other distributions, as shown in Table 4. 

The third dataset employed by Hinkley [15], functions as 

the central element of focus in the present study. This 

particular dataset comprises a series of thirty consecutive 

measurements of March precipitation, delineated in inches, 

pertaining to the Minneapolis/St. Paul region. The information 

encompassed within this dataset provides significant and 

noteworthy perspectives on the various patterns and 

tendencies observed in rainfall within this specific 

geographical vicinity. This data is outlined as shown in Table 

5. 

These data were recently used by Sapkota et al. [16]. To 

demonstrate the performance of the ATE distribution, a 

number of well-known distributions were chosen for a 

comparative evaluation. Among these distributions are the 

Gompertz distribution (GZD), Exponential power distribution 

(EPD), the Marshall-Olkin Ext-Exponential distribution 

(MOEED), and the Exponential extension (NHED). This 

compilation of data is outlined as in Table 6. 

According to the resulting criteria values  in Table 2, Table 

4 and Table 6, we see that the APIIE model is the best 

according to the criteria of fit that was used compared the other 

test distributions with which it was compared in the tables. 

 

Table 1. Data on survival durations of guinea pigs 

 
0.1 0.33 0.44 0.56 0.59 0.72 0.74 

0.77 0.92 0.93 0.96 1 1 1.02 

1.05 1.07 0.07 0.08 1.08 1.08 1.09 

1.12 1.13 1.15 1.16 1.2 1.21 1.22 

1.22 1.24 1.3 1.34 1.36 1.39 1.44 

1.46 1.53 1.59 1.6 1.63 1.63 1.68 

1.71 1.72 1.76 1.83 1.95 1.96 1.97 

2.02 2.13 2.15 2.16 2.22 2.3 2.31 

2.4 2.45 2.51 2.53 2.54 2.54 2.78 

2.93 3.27 3.42 3.47 3.61 4.02 4.32 

4.58 5.55      

 

Table 2. Goodness for first dataset 

 
Distribution AIC CAIC BIC HQIC 

EWED 225.041 226.641 224.47 228.666 

EED 308.551 308.725 308.266 310.364 

WED 298.659 299.012 298.231 301.378 

RED 289.026 289.199 288.74 290.838 

APII-ED 206.824 206.998 211.377 208.637 

 

Table 3. Data on failures of windshields 

 
0.046 1.436 2.592 0.14 1.492 2.6 0.15 

1.58 2.67 0.248 1.719 2.717 0.28 1.794 

2.819 0.313 1.915 2.82 0.389 1.92 2.878 

0.487 1.963 2.95 0.622 1.978 3.003 0.9 

2.053 3.102 0.952 2.065 3.304 0.966 2.117 

3.483 1.003 2.137 3.5 1.01 2.141 3.622 

1.085 2.163 3.655 1.092 2.183 3.695 1.152 

2.24 4.015 1.183 2.341 4.628 1.244 2.435 

4.806 1.249 2.464 4.881 1.262 2.543 5.14 

 

Table 4. Goodness for second dataset 

 
Distribution AIC CAIC BIC HQIC 

ED 222.597 223.196 226.883 224.283 

TIHLED 211.706 211.906 211.305 213.392 

APII-ED 206.113 206.313 210.40002 207.799 

 

Table 5. Data on precipitation to the Minneapolis 

 
0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 

2.20 3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 

0.59 0.81 2.81 1.87 1.18 1.35 4.75 2.48 0.96 

1.89 0.90 2.05       

 

Table 6. Goodness for third dataset 

 

Distribution AIC BIC CAIC HQIC 

ATED 82.4562 85.2585 82.9006 83.3527 

EPD 84.9537 87.7561 85.3982 85.8502 

MOEED 82.7540 85.5564 83.1984 83.6505 

GZD 86.1523 88.9547 86.5967 87.0488 

NHED 86.8436 89.6459 87.2880 87.7401 

APII-ED 80.7381 83.5405 81.1825 81.6346 
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4. APIIW DISTRIBUTION 

 

In this section, we will apply the new APII-G family with 

the two-parameter Weibull distribution, where we will obtain 

a new distribution with three parameters which is called 

APIIW distribution, by replacing G(x) in Eq. (2) with the CDF 

of the Weibull distribution, as follows: 

 

𝐹(𝑥; 𝜆, 𝛼, 𝜅) =

(2 − 𝑒−(
𝑥
𝜆
)
𝑘

)

𝛼

− 1

2𝛼 − 1
, (𝜆, 𝛼, 𝜅, 𝑥) > 0 

(31) 

 

And the pdf of the APIIW is defined as the following 

formula: 

 

𝑓(𝑥; 𝜆, 𝛼, 𝜅) =

𝛼𝑘 (2 − 𝑒−(
𝑥
𝜆
)
𝑘

)

𝛼−1

𝑒−(
𝑥
𝜆
)
𝑘

𝑥𝑘−1

𝜆𝑘(2𝛼 − 1)
 

(𝑥; 𝜆, 𝛼, 𝜅) > 0 

(32) 

 

Some plots of the CDF f(x;λ,α,κ) and PDF f(x;λ,α,κ) of the 

APIIW model,  which is plotted for some different value of the 

parameters α, κ and λ are sketched in Figure 4 and Figure 5. 

respectively. 

 

 
 

Figure 4. The CDF of APIIW 

 

 
 

Figure 5. The pdf of APIIW 

 

4.1 The statistical properties of APIIW distribution 

 

We present the functions of reliability, reversed hazard, 

hazard rate, and the cumulative of the hazard rate of APIIW 

distribution [17]. 

The survival function of random variable 

𝑋~𝐴𝑃𝐼𝐼𝑊(𝛼, 𝜆, 𝑘) is defined as follows: 

 

�̅�(𝑥; 𝛼, 𝜆, 𝑘) = 1 − 𝐹(𝑥; 𝛼, 𝜆, 𝑘) =

2𝛼−(2 − 𝑒
−(
𝑥
𝜆
)
𝑘

)

𝛼

2𝛼 − 1
 

(33) 

 

The function of reverse hazard 𝑟(𝑥: 𝛼, λ) to the APIIW 

distribution is defined by the following: 
 

𝑟(𝑥: 𝛼, 𝜆, 𝑘) =
𝑓(𝑥: 𝛼, 𝜆, 𝑘)

𝐹(𝑥: 𝛼, 𝜆, 𝑘)
=

𝛼𝑘 (2 − 𝑒−(
𝑥
𝜆
)
𝑘

)

𝛼−1

𝑒−(
𝑥
𝜆
)
𝑘

𝑥𝑘−1

𝜆𝑘 ((2 − 𝑒−(
𝑥
𝜆
)
𝑘

)

𝛼

− 1)

 (34) 

The function of hazard ℎ(𝑥: 𝛼, 𝜆, 𝑘)  of the APIIW 

distribution is defined by the following: 

 

ℎ(𝑥: 𝛼, 𝜆, 𝑘) =
𝑓(𝑥:𝛼,𝜆,𝑘)

�̅�(𝑥:𝛼,𝜆,𝑘)
=

𝛼𝑘(2−𝑒
−(
𝑥
𝜆
)
𝑘

)

𝛼−1

𝑒
−(
𝑥
𝜆
)
𝑘

𝑥𝑘−1

𝜆𝑘(2𝛼−(2−𝑒
−(
𝑥
𝜆
)
𝑘

)

𝛼

)

  (35) 

 
And the function of cumulative hazard 𝐻(𝑥: 𝛼, 𝜆, 𝑘) of the 

APIIW distribution is defined by the following: 

 
𝐻(𝑥: 𝛼, 𝜆, 𝑘) = −𝐿𝑛[1 − 𝐹(𝑥: 𝛼, 𝜆, 𝑘)] 

= −𝐿𝑛

[
 
 
 2𝛼−(2−𝑒−(

𝑥
𝜆
)
𝑘

)

𝛼

2𝛼−1

]
 
 
 

  
(36) 
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4.2 Moments of APIIW distribution 

 

We will define the 𝑟𝑡ℎ moment (at the point of origin) for 

APIIW distribution by the following theorem. 

 

Theorem: 

If X is a variable to the APIIW distribution, then moment of 

the order 𝑟  (about the point of origin) is defined by the 

following. 

 

𝜇�̀� =
𝛼𝜆𝑟

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛!

∞

𝑛=0

Γ(
𝑟 + 𝑘
𝑘

)

(𝑛 + 1)
𝑟+𝑘
𝑘

 (37) 

 

Proof: 

By definition the moment of the order 𝑟 (about the point of 

origin) 𝜇�̀� to the variable X of APIIW distribution. 

 

𝜇�̀� = 𝐸(𝑥
𝑟) = ∫ 𝑥𝑟

∞

0

𝑓(𝑥: 𝛼, 𝜆, 𝑘) 𝑑𝑥 

= ∫

𝛼𝑘 (2 − 𝑒−(
𝑥
𝜆
)
𝑘

)

𝛼−1

𝑒−(
𝑥
𝜆
)
𝑘

𝑥𝑟+𝑘−1

𝜆𝑘(2𝛼 − 1)

∞

0

𝑑𝑥 

=
𝛼𝑘

𝜆𝑘(2𝛼 − 1)
∫ (2 − 𝑒−(

𝑥
𝜆
)
𝑘

)

𝛼−1∞

0

𝑒−(
𝑥
𝜆
)
𝑘

𝑥𝑟+𝑘−1 𝑑𝑥 

𝑥, 𝛼, 𝜆, 𝑘 > 0, 𝑟 = 1,2,3, … 

(38) 

 

Let 𝒆−(
𝒙

𝝀
)
𝒌

= 𝑦 , if 𝑥 → 𝑜  then  𝑦 → 1 , and if 𝑥 → ∞ then 

𝑦 → 0, 𝑑𝑥 =
−𝝀

𝑘𝑦
 (−𝑙𝑛𝑦)

1

𝑘
−1𝑑𝑦. So 

 

𝜇�̀� =
𝛼𝜆𝑟

(2𝛼 − 1)
∫(−𝑙𝑛𝑦)

𝑟+𝑘
𝑘
−1

1

0

(2 − 𝑦)𝛼−1 𝑑𝑦 (39) 

 

Now, Taking the Maclaurin series of formula (2 − 𝑦)𝛼−1, 

we obtain the following series: 

 

(2 − 𝑦)𝛼−1 =∑
(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛!

∞

𝑛=0

𝑦𝑛 (40) 

 

We replace (2 − 𝑦)𝛼−1 in Eq. (39) with Eq. (40) 

 

𝜇�̀� =
𝛼 𝜆𝑟

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛!

∞

𝑛=0

 

∫(−𝑙𝑛𝑦)
𝑟+𝑘
𝑘
−1

1

0

𝑦𝑛𝑑𝑦 

(41) 

 

Using the infinitive form in reference [11] and comparing it 

with Eq. (40), the integration result becomes as follows: 

 

𝜇�̀� =
𝛼𝜆𝑟(𝛼 − 1)!

(2𝛼 − 1)
∑

(−1)𝑛2𝛼−(𝑛+1)

(𝛼 − 1 − 𝑛)! 𝑛!

∞

𝑛=0

𝛤(
𝑟 + 𝑘
𝑘

)

(𝑛 + 1)
𝑟+𝑘
𝑘

 (42) 

 

Now, by using theorem (4.2.1) we calculate the mean and 

variance as follows. 

𝐸(𝑥) =
𝛼𝜆

(2𝛼 − 1)
∑

Γ(
1 + 𝑘
𝑘

)(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛! (𝑛 + 1)
1+𝑘
𝑘

∞

𝑛=0

 (43) 

 
𝑉𝑎𝑟(𝑥) = 

𝛼𝜆2

(2𝛼 − 1)
∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛!

∞

𝑛=0

Γ (
2 + 𝑘
𝑘

)

(𝑛 + 1)
2+𝑘
𝑘

 

−
𝛼2𝜆2

(2𝛼 − 1)2
(∑

(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)

(𝛼 − 1 − n)! 𝑛!

∞

𝑛=0

Γ(
1 + 𝑘
𝑘

)

(𝑛 + 1)
1+𝑘
𝑘

)

2

 

(44) 

 

The moment generating function  mgf, denoted by the 

symbol 𝑀𝑥(𝑡) , of APIIW distribution  can be find by the 

following: 
 

𝑀𝑥(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫ 𝑒𝑡𝑥

∞

0

𝑓(𝑥: 𝛼, 𝜆, 𝑘) (45) 

 

where, 𝑓(𝑥: 𝛼, 𝜆, 𝑘) 𝑑𝑥  is pdf of APIIW distribution. By 

Taylor series for 𝑒𝑡𝑥 yields, which is 𝑒𝑡𝑥 = ∑
𝑡𝑠𝑥𝑠

𝑠!
∞
𝑠=0 . 

 

𝑀𝑥(𝑡) =∑
𝑡𝑠

𝑠!
∫ 𝑥𝑠
∞

0

𝑓(𝑥: 𝛼, 𝜆, 𝑘) 𝑑𝑥 =∑
𝑡𝑠

𝑠!
�́�𝑠

∞

𝑠=0

∞

𝑠=0

 (46) 

 

And by substituting Eq. (42) into Eq. (46) then 

 

𝑀𝑥(𝑡) =
𝛼

(2𝛼 − 1)
 

∑∑
𝜆𝑠𝑡𝑠(−1)𝑛(𝛼 − 1)! 2𝛼−(𝑛+1)Γ(

𝑠 + 𝑘
𝑘

)

𝑠! (𝛼 − 1 − n)! 𝑛! (𝑛 + 1)
𝑠+𝑘
𝑘

∞

𝑛=0

∞

𝑠=0

 

(47) 

 

4.3 Maximum Likelihood Estimation of APIIW 

 

In this subsection, we find MLE of the two parameters 𝛼, 𝜆 

and 𝑘 . If 𝑥1, 𝑥2, 𝑥3… , 𝑥𝑛 denote a sample of APIIW, the 

function of likelihood is defined by references [18, 19]. 

 

𝐿(𝛼, 𝜆, 𝑘; 𝑥) =∏𝑓(𝑥𝑖: 𝛼, 𝜆, 𝑘)

𝑛

𝑖=1

 

=∏

𝛼𝑘 (2 − 𝑒−
(
𝑥𝑖
𝜆
)
𝑘

)

𝛼−1

𝑒−(
𝑥𝑖
𝜆
)
𝑘

𝑥𝑘−1

𝜆𝑘(2𝛼 − 1)

𝑛

𝑖=1

 

=

𝛼𝑛𝑘𝑛∏ (2 − 𝑒−(
𝑥𝑖
𝜆
)
𝑘

)

𝛼−1

∏ 𝑥𝑖
𝑘−1𝑛

𝑖=1
𝑛
=1 𝑒−

∑ (
𝑥𝑖
𝜆
)
𝑘

𝑛
𝑖=1

𝜆𝑛𝑘(2𝛼 − 1)𝑛
 

(48) 

 

Then the logarithm of the likelihood in Eq. (48) will have 

the following: 

 

𝑙𝑛 𝐿(𝛼, 𝜆, 𝑘; 𝑥) = n ln 𝛼 + n ln 𝑘 − 𝑛 ln( 2𝛼 − 1) 

−nkln 𝜆 −∑(
𝑥𝑖
𝜆
)
𝑘

𝑛

𝑖=1

+ (k − 1)∑ln(𝑥𝑖)

𝑛

𝑖=1

 

+(α − 1)∑ 𝑙𝑛(2 − 𝑒−(
𝑥𝑖
𝜆
)
𝑘

)
𝑛

𝑖=1
 

(49) 
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by taking the partial derivatives of 𝑙𝑛 𝐿(𝛼, 𝜆, 𝑘; 𝑥))  with 

respect to the parameter 𝛼 , 𝜆 and 𝑘 respectful, as follows: 
 

𝜕 𝑙𝑛 𝐿(𝛼, 𝜆, 𝑘; 𝑥)

𝜕𝜆
=
−𝑘𝑛

𝜆
+

𝑘

𝜆𝑘+2
∑(𝑥𝑖)

𝑘

𝑛

𝑖=1

 

−
(α − 1)k

𝜆𝑘+2
∑

(𝑥𝑖)
𝑘𝑒−(

𝑥𝑖
𝜆
)
𝑘

(2 − 𝑒−(
𝑥𝑖
𝜆
)
𝑘

)

𝑛

𝑖=1

 

(50) 

 

By setting Eq. (50) equal to zero, we get  

 

−𝑘𝑛

𝜆
+

𝑘

𝜆𝑘+2
∑(𝑥𝑖)

𝑘

𝑛

𝑖=1

−
(α − 1)k

𝜆𝑘+2
∑

(𝑥𝑖)
𝑘𝑒

−(
𝑥𝑖
𝜆
)
𝑘

(2 − 𝑒
−(
𝑥𝑖
𝜆
)
𝑘

)

𝑛

𝑖=1

= 0 (51) 

 

𝜕 𝑙𝑛(𝐿(𝛼, 𝜆, 𝑘; 𝑥))

𝜕𝛼
=
𝑛

𝛼
−
𝑛2𝛼𝑙𝑛2

2𝛼 − 1
+∑𝑙𝑛(2 − 𝑒

−(
𝑥𝑖
𝜆
)
𝑘

)

𝑛

𝑖=1

 (52) 

 

Also, by setting Eq. (52) equal to zero, we get  

 

𝑛

𝛼
−
𝑛2𝛼𝑙𝑛2

2𝛼 − 1
+∑𝑙𝑛(2 − 𝑒−(

𝑥𝑖
𝜆
)
𝑘

)

𝑛

𝑖=1

= 0 (53) 

 

𝜕 𝑙𝑛(𝐿(𝛼, 𝜆, 𝑘; 𝑥))

𝜕𝑘
=
𝑛

𝑘
 

+(𝛼 − 1)∑
𝑒−(

𝑥𝑖
𝜆
)
𝑘

(
𝑥𝑖
𝜆
)
𝑘

ln (
𝑥𝑖
𝜆
)

2 − 𝑒−(
𝑥𝑖
𝜆
)
𝑘

𝑛

𝑖=1

 

+∑𝑙𝑛(𝑥𝑖) −∑(
𝑥𝑖
𝜆
)
𝑘

ln (
𝑥𝑖
𝜆
) − 𝑛𝑙𝑛(𝜆)

𝑛

𝑖=1

𝑛

𝑖=1

 

(54) 

 

Also, by setting Eq. (54) equal to zero, we get 
 

𝑛

𝑘
+ (𝛼 − 1)∑

𝑒−(
𝑥𝑖
𝜆
)
𝑘

(
𝑥𝑖
𝜆
)
𝑘

ln (
𝑥𝑖
𝜆
)

2 − 𝑒−(
𝑥𝑖
𝜆
)
𝑘

𝑛

𝑖=1

 

+∑𝑙𝑛(𝑥𝑖) −∑(
𝑥𝑖
𝜆
)
𝑘

ln (
𝑥𝑖
𝜆
) − 𝑛𝑙𝑛(𝜆)

𝑛

𝑖=1

𝑛

𝑖=1

= 0 

(55) 

 

By solving Eq. (51), Eq. (53) and Eq. (55), by using 

numerical methods, then obtain the MLE for all the parameters 

𝛼, 𝜆 and 𝑘. 
 

4.4 Order statistics of APIIW distribution 
 

If 𝑌1, 𝑌2, … , 𝑌𝑛  denotes the order statistic to the random 

sample 𝑋1 , 𝑋2, … , 𝑋𝑛  taken from the population distributing 

by the APIIW distribution with the CDF 𝐹𝑋(𝑥) and pdf 𝑓𝑋(𝑥), 
then the pdf of random variable 𝑌𝑗 of the order 𝑗 is defined by 

following: 
 

𝑓𝑌𝑗(𝑥) =

𝑛! 𝛼𝑘 (2 − 𝑒−(
𝑥
𝜆
)
𝑘

)

𝛼−1

𝑒−(
𝑥
𝜆
)
𝑘

𝑥𝑘−1

(𝑗 − 1)! (𝑛 − 𝑗)! 𝜆𝑘(2𝛼 − 1)
 

(
(2−𝑒

−(
𝑥
𝜆
)
𝑘

)

𝛼

−1

2𝛼−1
)

𝑗−1

(
2𝛼−(2−𝑒

−(
𝑥
𝜆
)
𝑘

)

𝛼

2𝛼−1
)

𝑛−𝑗

  

(56) 

And, if 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 then the joint pdf of 𝑌𝑖  and 𝑌𝑗  with 

the order random variable 𝑢 and 𝑣, is 

 

𝑓𝑌𝑖,𝑌𝑗(𝑢, 𝑣)𝑓𝑋(𝑖),𝑋(𝑗)(𝑢, 𝑣) =
𝑛!

(𝑖 − 1)! (𝑗 − 𝑖 − 1)! (𝑛 − 𝑗)!
 

(

 
 
(2 − 𝑒

−(
𝑢
𝜆
)
𝑘

)

𝛼

− 1

2𝛼 − 1

)

 
 

 

(

 
 
(2 − 𝑒

−(
𝑣
𝜆
)
𝑘

)

𝛼

− 1

2𝛼 − 1
−

(2 − 𝑒
−(
𝑢
𝜆
)
𝑘

)

𝛼

− 1

2𝛼 − 1

)

 
 

𝑗−𝑖−1𝑖−1

 

(

 
 
2𝛼−(2 − 𝑒

−(
𝑣
𝜆
)
𝑘

)

𝛼

2𝛼 − 1

)

 
 

𝑛−𝑗

𝛼𝑘 (2 − 𝑒
−(
𝑢
𝜆
)
𝑘

)

𝛼−1

𝑒
−(
𝑢
𝜆
)
𝑘

𝑢𝑘−1

𝜆𝑘(2𝛼 − 1)
 

𝛼𝑘 (2 − 𝑒
−(
𝑣
𝜆
)
𝑘

)

𝛼−1

𝑒
−(
𝑣
𝜆
)
𝑘

𝑣𝑘−1

𝜆𝑘(2𝛼 − 1)
, 0 < 𝑢 < 𝑣 < ∞ 

(57) 

 

The j.p.d.f of n order random variables 𝑌1, 𝑌2, … , 𝑌𝑛  can 

extract more than one ranking statistics through our use of 

similar functions. Thus, the joint pdf for all order 

statistics 𝑓𝑌1,𝑌2,…,𝑌𝑛(𝑥1,…., 𝑥𝑛) , taken from the APIIW 

distribution, as the following  

 

𝑓𝑌1,𝑌2.…,𝑌𝑛(𝑥1,…., 𝑥𝑛) = 

{
 
 

 
 

𝑛!

𝛼𝑛𝑘𝑛∏ (2 − 𝑒
−(
𝑥𝑖
𝜆
)
𝑘

)

𝛼−1

∏ 𝑥𝑖
𝑘−1𝑛

𝑖=1
𝑛
=1 𝑒

−∑ (
𝑥𝑖
𝜆
)
𝑘

𝑛
𝑖=1

𝜆𝑛𝑘(2𝛼 − 1)𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
0 < 𝑥1 < ⋯ < 𝑥𝑛 < ∞

 
(58) 

 

4.5 Simulation studies of the APIIW distribution 
 

In order to understand and interpret experimentally the 

adopted estimation method MLE that was studied in this 

section of the study, we will employ the simulation approach 

to examine the MLEs of the all parameters of the APIIW 

distribution. This part includes a description of the Monte 

Carlo simulation experiment for the research in terms of the 

sizes of samples which generated when the number of 

iterations of the simulation 1000. We also present the 

simulation test results obtained where we used statistical R 

software to apply the simulation method. The stages of 

building simulation experiments contain some important 

stages, which are the stage of choosing the sample size, where 

n was chosen: (n = 30, 50, 75, 100, 150, 250, 500), the stage 

of choosing values for the parameters for three experiments, 

the default values for the parameters (𝛼, 𝜆, 𝑘 )=(0.5,4,0.5), 

(𝛼, 𝜆, 𝑘)=(1.5,0.5,1.5) and (𝛼, 𝜆, 𝑘)=(2.5,1.5,4). The stage of 

generating appropriate data for the APII-W distribution and 

calculating the MLE for the three parameters (𝛼, 𝜆, 𝑘 ) and 

following the calculation of the MSE and the bias. Following 

the simulation, the outcomes are shown in Figure 6. 
 

4.6 Application APIIW distribution with real data 
 

In this section, as in the Section 3.6, our focus will be 

directed towards the examination and interpretation of an 

authentic data collection that serves to show the advantages of 
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the application of the aforementioned APIIW distribution 

methodology on real datasets. To gauge the relevance of the 

model, multiple information criteria were determined. These 

requirements featured the AIC, which weighs the trade-off 

between model fit and complexity. Additionally, the CAIC 

was computed to address potential issues with small sample 

sizes, the BIC underwent scrutiny to penalize models with a 

significant number of parameters, demonstrating a preference 

for simpler models. Finally, the HQIC was integrated in the 

assessment, which is a modification of the AIC that considers 

the number of observations in the dataset. 

 

 
 

Figure 6. The MSE and the bias of the APIIW distribution for different parameters values 
 

The first authentic dataset illustrates an uncensored dataset 

derived from Nichols and Padgett's research on the breaking 

stress of the carbon fibers (measured in Gba) [20]. This dataset 

is presented as shown in Table 7. 

These data were recently used by Hassan and Hemeda [21]. 

By comparing the distributions, they chose with the APIIW 

distribution, we found that the new APIIW distribution is 

better than the other distributions, as shown in Table 8. 

The second dataset showcases the durations of remission 

(expressed in months) for a specific group of 128 patients 

diagnosed with bladder cancer, as detailed by Lee and Wang 

in 2003. This dataset is shown in Table 9. 

 

Table 7. Data on the stress of the carbon fibres 
 

3.7 2.74 2.73 2.5 3.6 3.11 3.27 2.87 1.47 

4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 

4.9 3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 

2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 

2.85 3.56 3.15 2.55 2.59 2.38 2.77 1.92 3.68 

2.97 1.36 0.98 2.67 4.91 3.68 1.84 1.59 3.19 

1.57 0.81 5.56 1.73 1.59 2.00 2.48 0.85 1.61 

2.79 4.70 2.03 1.61 2.21 1.89 2.88 2.82 2.05 

3.65         

 

Table 8. Goodness for first dataset 
 

Distribution AIC CAIC BIC HQIC 

AWBXIID 1018.17 1024.43 1027.40 1020.9 

AWUD 1021.24 1026.06 1032.40 1024.0 

EMWD 1927.80 1935.70 1939.81 1930.6 

TEMWD 1452.15 1487.27 1534.74 1454.9 

APII-WD 211.237 211.580 218.149 213.99 
 

Table 9. Data on duration of remission of bladder cancer 
 

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 

0.20 2.23 3.52 4.98 6.97 9.02 13.29 0.40 

2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 

2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 

2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 

2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 

3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 

4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 

4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75 

4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 

5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 

7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 

1.46 11.79 18.10 4.40 5.85 8.26 11.98 19.13 

1.76 3.25 4.50 6.25 12.02 2.02 3.31 4.51 

6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07 

2.07 21.73 3.36 6.93 8.65 12.63 22.69  
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These data were recently used by Almetwally [22]. So, 

when we studied this evidence on the new APII distribution, it 

turned out to be better than the other two distributions, as 

shown in Table 10. 

The third dataset comprises 76 observations pertaining to 

the endurance limits of fatigue fracture in Kevlar 373/epxy 

under constant pressure at a stress level of 90%, until all 

specimens experienced failure. This dataset is presented as 

shown in Table 11. 

These data were recently used by Selim [23]. The above-

mentioned dataset was utilized by him for fitting to the inv. 

generated power Weibull (IGPWD), inv. Naderajah-Haghighi 

(INHD), inv. Weibull (IWD), and inv. exponential (IED). So 

when we studied this evidence on the new APIIW distribution, 

it turned out to be better than the other two distributions, as 

shown in Table 12. 

Based on the results in Tables 4-6, we see that the APIIW 

model is the best according to the criteria of fit to the data that 

was used compared to the other distributions with which it was 

compared in the tables. 

 

Table 10. Goodness for the second dataset 

 
Distribution AIC CAIC BIC HQIC 

IED 922.765 922.796 925.617 923.923 

IWD 892.002 892.098 897.706 894.319 

INHD 866.118 866.214 871.822 868.436 

IRD 1550.683 1550.715 1553.535 1551.842 

IGPWD 859.819 860.013 868.375 863.296 

APIIWD 826.604 826.798 835.160 830.080 

 

Table 11. Data on endurance limits of fatigue fracture 

 
0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 

0.4763 0.5650 0.5671 0.6566 0.6748 0.6751 

0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 

0.8851 0.9113 0.9120 0.9836 1.0483 1.0596 

1.0773 1.1733 1.2570 1.2766 1.2985 1.3211 

1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 

1.7083 1.7263 1.7460 1.7630 1.7746 1.8275 

1.8375 1.8503 1.8808 1.8878 1.8881 1.9316 

1.9558 2.0048 2.0408 2.0903 2.1093 2.1330 

2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 

2.4951 2.5260 2.9911 3.0256 3.2678 3.4045 

3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 

5.4435 5.5295 6.5541 9.0960   

 

Table 12. Goodness for the third dataset 

 

Distribution AIC BIC CAIC HQIC 

IED 328.203 330.5337 328.257 329.1344 

IRD 693.8294 696.1601 693.8834 694.7608 

IWD 311.0787 315.7401 311.2431 312.9416 

INHD 293.0930 297.7545 293.2574 294.9560 

IGPWD 270.1234 277.1156 270.4568 272.9179 

APIIWD 247.7863 254.7785 248.1197 250.5808 

 

 

5. CONCLUSIONS 

 

The significance of extended distributions was initially 

acknowledged within the domain of financial sciences and 

subsequently recognized in various other applied disciplines, 

including engineering and medical sciences. In order to 

accommodate data within these fields, a multitude of 

methodologies has been developed. Within this framework, 

we have examined a two-parameter heavy-tailed model, 

designated as the Alpha Power Type II Exponential 

distribution, alongside a three-parameter heavy-tailed model, 

referred to as the Alpha Power Type II Weibull distribution, 

The two new models serve as specific cases of a novel family 

approach that facilitates closed-form expressions for certain 

fundamental mathematical and associated properties. The 

introduced class is termed the APII-G family. The efficacy of 

the proposed family of distributions has been substantiated 

through the analysis of six distinct data sets originating from 

the domains of medical, engineering, and financial sciences, 

demonstrating that the two models exhibit superior 

performance relative to established heavy-tailed distribution 

alternatives. The family developed within this research 

represents a promising methodological advancement for the 

modeling of data in the context of distribution theory, and may 

prove beneficial for scholars engaged with such data sets. 

Consequently, the novel two models may function as a 

formidable competitive alternative to existing models in the 

field. 

Future work includes the following aspects: 

(1) A bivariate extension of the Alpha Power Type II 

Exponential distribution; 

(2) A bivariate extension of the Alpha Power Type II 

Weibull distribution; 

(3) Using the APII-G family to expand the Rayleigh 

distribution; 

(4) Using the APII-G family to expand the continuous 

uniform distribution; 

(5) Using the APII-G family to expand the Gamma 

distribution; 

(6) Modeling engineering data with APII-G family 

extension. 
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