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This study evaluates ensemble learning methods, including Random Forest (RF), 

XGBoost, and LightGBM, utilizing bagging and stacking techniques to predict 

electromagnetic interference (EMI) levels. The dataset includes various signal types, 

such as LorenzModif, Gaussian, Noise, Ampalt, Triangle, Square, and Sine, which are 

applied to modify the LED driver's switching frequency as part of the spread-spectrum 

techniques aimed at reducing EMI. Parameters such as frequency and amplitude were 

also considered to ensure a comprehensive analysis of EMI behaviour. During 

preprocessing, the data were first processed using one-hot encoding and feature scaling 

before being analyzed using machine learning models. The models were evaluated 

based on mean absolute error (MAE), mean squared error (MSE), and coefficient of 

determination (R²). The results showed that Stacking achieved the highest R² value of 

0.7347, slightly outperforming RF (0.7327), indicating better predictive accuracy. 

Statistical analysis revealed significant differences between Stacking and models such 

as XGBoost and LightGBM but not between stacking and RFs. Data visualization using 

residual plots and scatter diagrams further reinforces the superiority of stacking and RFs 

in EMI prediction. These findings suggest that ensemble learning can effectively 

enhance EMI prediction in LED drivers, ultimately supporting the design and 

manufacturing processes. 
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1. INTRODUCTION

EMI presents a significant challenge in LED driver 

operation owing to the rapid voltage and current fluctuations 

during switching. If not correctly managed, EMI can disrupt 

LED systems and other sensitive electronics, sometimes 

leading to failures in critical industries like forestry [1, 2]. To 

ensure stable operation, LED drivers must comply with 

electromagnetic compatibility (EMC) standards and 

implement effective mitigation strategies [3]. The severity of 

EMI depends on various factors, including interference power, 

frequency, induced power, and input resistance [4]. 

Addressing these challenges requires robust control strategies, 

microgrids (MGs), and energy storage systems (ESSs) to 

maintain stability [5]. 

Additionally, advanced monitoring techniques help detect 

vulnerabilities in power distribution networks (PDNs) before 

EMI-related failures occur, ensuring long-term reliability [6]. 

As smart grids become more complex, with thousands of 

interconnected devices, the risk of EMI disruptions increases. 

This growing complexity makes predictive models more 

essential than ever for ensuring stability and reliability [7]. 

Despite advancements in EMI filters and modulation 

techniques [2, 8-10], predicting EMI in LED drivers remains 

a significant challenge. Traditional approaches, such as EMI 

filters [11, 12] and chaotic signal modulation [13, 14], often 

struggle with the complexities of modern LED circuits. These 

methods require extensive parameter tuning and frequently fail 

to adapt to real-world conditions. While some signal 

modulation techniques can mitigate specific EMI frequencies, 

they tend to be less effective against broadband interference, 

resulting in inconsistent performance. More advanced 

computational techniques provide better accuracy but face 

difficulties handling high-dimensional nonlinear data and 

complex circuit interactions [15]. These limitations highlight 

the need for a more dynamic and adaptable approach to EMI 

prediction in LED drivers. 

Machine learning, particularly ensemble learning 

techniques, offers a promising alternative for improving EMI 

prediction. Unlike single-model approaches, ensemble 

methods combine multiple models to enhance accuracy, 

generalization, and robustness. Techniques such as Bagging, 

Boosting, and Stacking help reduce overfitting, minimize 

variance, and capture complex EMI patterns [16]. RF 

enhances robustness by averaging multiple decision trees, 

reducing prediction noise. XGBoost efficiently manages 
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feature interactions and minimizes bias using gradient 

boosting, while LightGBM optimizes speed and 

computational efficiency, making it ideal for large-scale 

datasets. By leveraging these techniques, machine learning can 

provide a deeper and more adaptable understanding of EMI 

behaviour in LED driver circuits. 

This study evaluates the effectiveness of RF, XGBoost, and 

LightGBM in predicting EMI levels in LED driver circuits. 

The models were trained using data from various operating 

conditions, considering key system parameters. Performance 

was assessed using metrics such as prediction accuracy and 

stability, ensuring the models are reliable and practical for 

real-world applications. By applying these advanced machine 

learning techniques, this research aims to develop a more 

accurate, adaptable, and efficient EMI prediction framework, 

assisting engineers in designing better LED drivers while 

ensuring compliance with EMI regulations. 

 

 

2. METHODOLOGY 

 

2.1 Data collection and preprocessing 

 

This study's data came from the conducted emission (CE) 

test generated by the LM3409 LED buck topology evaluation 

board. This study aims to measure the level of EMI generated 

by LED drivers under various operating conditions, precisely 

when the switching frequency of the driver is modified 

through signal injection with different characteristics. The 

experimental setup can be seen in Figure 1 and involves some 

of the following equipment: 

 

• LED LM3409 evaluation board: This evaluation 

board was used as the testbed for measuring EMI 

under various signal injection conditions. 

• Spectrum analyzer (SA): This instrument 

measured the EMI levels emitted by the driver 

during the test. 

• Arbitrary function generator (AFG): This 

instrument injects periodic and non-periodic 

signals into the system. 

• Line impedance stabilization network (LISN): 

Ensures LED drivers' precise and stable 

connection to the test equipment. 

• PC: A computer is used to generate non-periodic 

signals. 

 

 
 

Figure 1. Conducted emission measurement setup 

The data set was obtained from an experiment when the 

LED driver modified its switching signal by injecting various 

signals. The injected signals include periodic signals (Triangle, 

Square, and Sine) and non-periodic signals (Gaussian, Noise, 

LorenzModif, and Ampalt), which simulate highly 

unpredictable EMI to evaluate EMI behaviour 

comprehensively. 

In particular, non-periodic signals are important in applying 

spread spectrum techniques. By injecting these signals into the 

LED driver, the signal energy is dispersed over a broader range 

of frequencies, not concentrated at a specific frequency. This 

dispersion helps reduce peak interference and EMI more 

effectively, making the spread spectrum a valuable strategy for 

improving EMC. By combining periodic-based non-periodic 

signals and spread spectrum, this study aims to predict the EMI 

level when switching frequency modifications are performed 

on LED driver circuits in various switching signal 

characteristics, periodic or non-periodic. 

 

2.1.1 Features and data overview 

Each sheet in the dataset contains one of the signal types 

with the following key features: 

• Frequency (Hz): The frequency of the injected signal 

plays a crucial role in the intensity of the EMI 

generated. 

• Signal characteristics (dBV): The amplitude of the 

signal, measured in microvolt decibels (dBV), 

reflects how strong the injected signal is. 

• EMI (dBV): The level of EMI generated, which is 

the primary target variable in this study, indicates the 

level of interference measured in microvolt decibels. 

This dataset consists of 1,203 data points for each signal 

type. With eight different signal categories, the total data 

collected reached 9,624 points. This comprehensive data 

reflects the behaviour of EMI at switching frequencies that 

vary in the range of 150 kHz to 30 MHz, allowing for an in-

depth analysis of the impact of signal characteristics on EMI 

levels. 

The data is organized in separate sheets based on signal type 

to make analysis easier. This approach allows for a clearer 

understanding of how variations in signal characteristics affect 

EMI in LED systems. Each sheet records the relationship 

between signal frequency, signal strength, and EMI generated 

at various points during testing, providing more detailed 

insight into EMI patterns and trends in the system. 

 

2.1.2 Data collection process 

This data set was obtained from a series of controlled 

experiments in which the switching frequency of the LED 

driver was modified using different types of signals. The 

signals used include periodic signals, such as sine, square, and 

triangle, and non-periodic signals, including Gauss, Noise, 

LorenzModif, and Ampalt. This experiment is carried out 

through the following stages: 

1) Signal generation: The periodic signal generated 

directly by the AFG is first injected into the driver to 

observe the basic EMI level. Later, non-periodic 

signals were introduced, such as LorenzModif signals, 

which are simulated before being fed into the system 

via the AFG to represent real-world interference better. 

2) Measurement: The CE spectrum is measured to 

determine the EMI generated by the LED driver by 

both types of signals. 

This experimental setup was created so that the data 
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collected covered a wide range of possible EMI scenarios, and 

the results could be more relevant and valuable for real-world 

systems. 

 

2.1.3 Preprocessing and data integrity 

Several preprocessing steps are performed to prepare the 

data before analysis, including: 

• Normalization: All features, such as frequency, signal 

characteristics, and EMI levels, are normalized so that the 

model can learn somewhat without being affected by 

differences in scale or data size. 

• Outlier detection: Identify and remove outliers in the data 

so they do not affect the accuracy of the model's 

predictions. 

• Feature engineering: Additional features like the signal-

to-noise ratio are calculated to capture the more complex 

relationship between signal characteristics and EMI levels.  

By implementing these preprocessing steps, the collected 

data becomes cleaner and more structured, making it more 

ready for use in machine learning models. This process 

ensures that the model can predict the EMI in an LED driver 

system more accurately and reliably, even under various 

operational conditions. 

 

2.2 Model training 

 

In this study, the initial model was trained using the default 

settings for each algorithm, including RF, K-Nearest Neighbor 

(K-NN), and Support Vector Regressor (SVR). This approach 

provided an initial overview of the underlying performance of 

each model. 

To improve prediction accuracy, we perform 

hyperparameter tuning to find the best combination that 

maximizes model performance. This process involves cross-

validation, grid search, and manual adjustment, ensuring the 

model optimally predicts EMI in the LED driver system. This 

process involves cross-validation, grid search, and manual 

adjustment, ensuring the model optimizes predicting EMI on 

the LED driver system. 

 

2.2.1 Hyperparameter tuning process 

Each model has hyperparameters adjusted based on its role 

in predicting EMI. 

A). RF 

The RF model is adjusted to various hyperparameters to 

improve the performance. One of the key parameters, 

n_estimators (the number of trees in the model), was initially 

set at 100 and then tested in the range of 50-200 to find the 

best balance between accuracy and computational efficiency. 

This range was chosen because the model was not too simple 

and was not heavy to run. 

In addition, the max_depth (maximum depth of the tree) is 

set between 5 and 30 to control the tree's growth and prevent 

overfitting. With this approach, the tree can grow deep enough 

to capture relevant patterns without memorizing the training 

data. 

Several other key parameters were also adjusted to optimize 

the model. min_samples_split, which determines the 

minimum number of samples needed to divide a node, was 

tested in the range of 2-10 to find the most appropriate level of 

granularity. Meanwhile, min_samples_leaf, which controls the 

minimum number of samples in each leaf node, varies between 

one to five. 

This adjustment ensures that each node has sufficient 

samples to generate more generalized and accurate predictions, 

reducing the risk of overfitting without sacrificing the model 

performance. 

B). K-NN 

Some hyperparameters were adjusted to maximize model 

performance. The first is n_neighbors, which determines the 

number of neighbours used in the prediction process. The 

values of this parameter were tested in the range of 3 to 15 to 

determine the optimal balance between accuracy and the 

model's ability to recognize patterns in general. By adjusting 

these parameters, we can further understand how the number 

of neighbours selected affects the model's ability to classify 

the data more accurately. 

In addition to the n_neighbors, several other important 

parameters were tested to improve the model's performance. 

One is weights, tested with two schemes: 'uniform', where 

each neighbour has the same influence, and 'distance', where 

closer neighbours have more weight than farther ones. This 

test aims to determine the most effective weighting method for 

handling data. 

In addition, the distance metric used to measure the 

proximity between data points was also adjusted by comparing 

'minkowski' and 'Euclidean' to evaluate how this choice 

affected the accuracy and performance of the model. To 

determine the most optimal combination of parameters, we 

tested the K-NN model using a grid search with cross-

validation to determine the best configuration. 

C). SVR 

The performance of the SVR model was improved by 

adjusting several key hyperparameters. One of the parameters 

tested was C, which controls the balance between flexibility in 

customizing the training data and the model's simplicity. The 

C value was tested in the range of 0.1 to 10 to determine the 

optimal point that prevents underfitting and overfitting. 

In addition, the epsilon parameter, which determines the 

error tolerance, was tested in the range of 0.01 to 0.5. This test 

aims to understand the extent to which the model can ignore 

minor variations in the data without overreacting to noise. 

The selection of kernel functions is also explored to find the 

best approach for capturing complex patterns in the data. Some 

kernels tested include 'rbf', 'linear', and 'poly', which are 

analyzed to evaluate their impact on model performance. 

A manual grid search was performed using cross-validation 

to obtain the optimal combination of parameters. This 

approach allows the systematic exploration of various 

configurations so that the model can achieve the best balance 

between accuracy and generalization when making predictions. 

 

2.2.2 Ensemble learning tuning 

In addition to individual models, ensemble learning 

techniques, particularly Bagging and Stacking, have also been 

applied and adapted. This method combines several basic 

models to improve overall prediction performance and 

accuracy. 

A). Bagging (Bootstrap Aggregating) 

The ensemble learning approach in this study applies 

Bootstrap Aggregating (Bagging) to improve the stability and 

accuracy of predictions by combining several models. This 

technique trains various models using different subsets of data, 

thereby improving generalization capabilities while reducing 

the risk of overfitting [17]. 

Bagging reduces the variance in the model, in which some 

of the same base models are trained on different parts of the 

training data. The final result is then obtained by averaging the 
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output of all models. 

This study applied bagging to the RF and K-NN models to 

evaluate how these techniques can improve prediction 

performance. The mathematical formulation of the Bagging 

method is described by Eq. (1). 

�̂�𝑏𝑎𝑔𝑔𝑖𝑛𝑔 =
1

𝐵
∑ �̂�𝑏

𝐵

𝑏=1

(1) 

where, 

�̂�𝑏 is the output of the b-th base model's prediction.

B is the number of base models (or estimators). 

The bagging regressor was implemented with a SVR as the 

base model, and 50 base models were used. 

B). Stacking 

Stacking, also known as stacked generalizations, is an 

ensemble learning technique that combines predictions from 

several basic models with the help of meta-learner models. 

This approach aims to improve the accuracy of predictions and 

strengthen the model's ability to generalize new data [18, 19]. 

This approach usually consists of two layers. In the first layer, 

some basic models produce the initial prediction, whereas in 

the second layer, meta-models learn from the prediction to 

produce a more accurate final result [20]. The stacking process 

typically involves cross-validation of the training data, where 

some basic models are trained, and initial predictions are 

generated. The predictions from these models are then used as 

an additional feature to train meta-learners, who combine 

information to improve the accuracy of the final prediction 

[18]. The essential models used in this study were RF, K-NN, 

and SVR. Linear regression was chosen as the meta-learner. 

Predictions from each of the basic models (�̂�1, �̂�2,…… �̂�𝑘)

are combined and used as input for the meta-learner, who then 

learns it to produce the final prediction. This process is 

formulated using Eq. (2). 

�̂�𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑤1�̂�1 + 𝑤2�̂�2 +⋯+ 𝑤𝑘�̂�𝑘 (2) 

where, 

�̂�1, �̂�2, … , �̂�𝑘 are the predictions from the base model.

𝑤1, 𝑤2, …𝑤𝑘 does the meta-learner learn the weights.

The linear regression meta-learner determines the ideal 

blend of predictions from the base models to reduce the 

discrepancy between the actual and forecasted EMI values. 

2.2.3 Model selection criteria 

Once the hyperparameters were tuned, we evaluated each 

model based on several criteria to ensure it could be 

generalized effectively to new, unseen data. These criteria 

included the following: 

(1) Cross-validation performance: Cross-validation was

applied to check how well the model generalized across

different subsets of the training data, ensuring that it did

not overfit any specific portion of the dataset.

(2) Evaluation metrics: The performance of each model

was assessed using:

• MAE: To quantify the average magnitude of the

prediction errors.

• MSE: Measure the average squared differences

between predicted and actual values.

• R2: Assess the proportion of variance in the EMI

levels explained by the model.

The best hyperparameter set for each model was chosen 

based on the combination that achieved the lowest MSE, 

highest R2, and shortest training time, thereby ensuring that the 

model provided the most accurate predictions without 

unnecessary complexity. 

2.2.4 Model comparison and selection 

The performance of each model was compared based on 

evaluation metrics (MAE, MSE, and R²). The model with the 

highest R², lowest MAE, and lowest MSE was considered the 

best-performing model. The stability and generalization 

abilities were assessed by testing the models on the testing 

dataset. A comparative evaluation was conducted on the 

following machine-learning models: RF, K-NN, SVR, 

bagging (SVR), and stacking. 

2.2.5 Model visualization 

To further evaluate model performance, the following 

visualizations were employed: 

• Actual vs. predicted plots: Scatter plots of actual

versus predicted EMI values for each model to assess

the model's fit visually.

• Learning curves: Plots showing the training and

testing errors over time to understand how the model

learns and generalizes.

• Residual plots: Plots showing the spread of residuals

(errors between actual and forecasted values) used to

assess the bias and variance in the model predictions.

These visualizations provide critical insights into the 

strengths and weaknesses of each model, enabling a more 

thorough comparison and discussion of its performance. 

3. RESULT

The effectiveness of various ensemble learning models in 

predicting EMI levels was assessed using three key 

performance metrics: MAE, MSE, and R². These metrics 

comprehensively evaluate each model's accuracy, reliability, 

and generalization ability in handling EMI data. The results, 

summarized in Table 1, reveal that stacking and RF (bagging) 

outperform the other models, exhibiting the lowest MAE and 

MSE values and the highest R² scores (0.732741 and 0.732725, 

respectively). These findings indicate that both models are 

well-suited for EMI prediction, capturing complex 

relationships within the data with minimal bias and improved 

generalizability. 

Conversely, K-NN and SVR demonstrated significantly 

weaker performance, with R² values of 0.273503 and 

0.248959, respectively. The high prediction errors suggest that 

these models struggle to capture EMI's nonlinear and high-

dimensional nature, particularly in complex signal types such 

as LorenzModif. Furthermore, the bagging (SVR) model does 

not substantially improve the standalone SVR, as its R² score 

(0.249134) remains nearly identical, highlighting its limited 

effectiveness in EMI prediction. Although XGBoost and 

LightGBM have been recognized for their robustness in other 

domains, such as financial forecasting, their application to 

EMI prediction may require extensive hyperparameter tuning 

and feature engineering, as indicated by previously reported 

R² values of 0.626928 and 0.636082. 
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Table 1. Model evaluation results (MAE, MSE, R²) 

 

Model MAE MSE R2 

RF (Bagging) 3.981386 27.701451 0.732725 

KNN 6.728349 75.297072 0.273503 

SVR 6.788039 77.840978 0.248959 

Bagging (SVR) 6.789676 77.822789 0.249134 

Stacking 3.970231 27.699791 0.732741 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 2. Scatter plots for actual vs. predicted EMI 

 

Figure 2 illustrates scatter plots comparing actual vs. 

predicted EMI values across different models to validate these 

findings further. The RF (bagging) and stacking models 

exhibit tighter prediction groupings around the equality line (y 

= x), reinforcing their predictive superiority. In contrast, K-

NN demonstrates a broader dispersion, suggesting higher 

prediction variance and lower accuracy. Moreover, Figure 3 

presents EMI value vs. frequency line plots, providing insight 

into how each model captures frequency-dependent EMI 

variations. Here, RF (bagging) and stacking align closely with 

actual EMI trends, whereas bagging (K-NN) exhibits more 

pronounced deviations across specific frequency regions, 

further indicating prediction inconsistencies. 

While these visual analyses highlight the strengths and 

weaknesses of each model, a residual analysis is necessary to 

confirm error distribution and potential biases. Residual plots 

can provide deeper insights into model limitations, particularly 

in handling nonlinear EMI data. The results suggest that 

stacking and RF (bagging) are the most reliable models for 

EMI estimation, while K-NN and SVR require significant 

modifications or alternative approaches to achieve competitive 

performance. Given the critical role of EMI prediction in 

ensuring EMC and reducing interference risks, future research 

should focus on enhancing model interpretability, refining 

feature extraction techniques, and integrating hybrid learning 

frameworks to optimize prediction accuracy further. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3. EMI value vs. frequency line plots 

 

 

4. DISCUSSION 

 

4.1 Interpretation of results 

 

In this study, RF and Stacking showed outstanding 

performance, with high R² values (0.732725 for RF and 

0.732741 for stacking), proving their effectiveness in 

predicting EMI levels. Both models can handle complex, high-

dimensional, and noisy EMI data, with RF particularly 

excelling in modelling nonlinear relationships, so it works well 

on a wide range of signal types, including LorenzModif and 

other spread spectrum signals. 

However, the advantages of RF and Stacking are not always 

applicable to all machine-learning applications. Although 
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these models have shown strong performance in various 

domains [21-24], other studies have shown that alternative 

methods, such as Rotation Forest–RF [25] and XGBoost [26], 

could be more effective depending on the data type, signal 

characteristics, and problem-specific configuration. Therefore, 

while RF and Stacking hold promise for EMI prediction in 

LED drivers, their ability to generalize EMI conditions in the 

more complex real world still needs further validation. Further 

studies are needed to evaluate the model's effectiveness of the 

model in various operational environments and system 

configurations to ensure its resilience to diverse real-world 

scenarios. 

 

4.2 Ensemble learning: bagging and stacking 

 

Bagging and Stacking use an ensemble learning approach 

but with different success rates. Bagging (SVR) is expected to 

reduce variance and improve model performance, but the 

results do not significantly improve over the standard SVR. In 

contrast, Stacking, which incorporates several basic models 

such as RF, KNN, and SVR, provides a more significant 

improvement, achieving an R² value of 0.732741. These 

results show that Stacking is more effective in recognizing 

various patterns in data, producing more accurate and reliable 

predictions than individual models. 

 

4.3 Impact of spread spectrum techniques in EMI 

mitigation 

 

Spread spectrum techniques help improve the accuracy of 

EMI prediction by spreading the signal energy over a broader 

range of frequencies, making it easier to analyze using models 

such as RF and Stacking. Both models demonstrate high R² 

values and a reliable ability to track EMI on various signals, 

including spread spectrum signals [22, 27, 28]. This 

performance improvement allows the model to recognize EMI 

patterns more effectively and capture details that other 

methods may miss. However, validation under real-world 

conditions is still required to ensure the model can handle a 

wide range of environmental variables and operational 

conditions accurately. 

Although it often outperforms individual models in various 

prediction tasks, Stacking still has room for further 

optimization in EMI prediction, as indicated by recent research 

[29-31]. Innovations such as gradient boosting RF (GBRF) 

[27] and double RF (DRF) [32] have opened up opportunities 

to improve model performance, particularly in processing 

spread spectrum signals more efficiently. 

 

4.4 Implications for the LED driver industry 

 

Integrating an ensemble learning model into a real-time 

EMI prediction system for LED drivers presents several 

challenges. Models such as RF (Bagging) and Stacking require 

significant computing power, slowing the inference process 

and making them less suitable for resource-constrained 

environments. To overcome this challenge, researchers should 

explore lighter alternatives, such as RF optimized with more 

efficient feature selection or deep learning architectures 

designed for low-latency applications, to ensure real-time 

performance. 

In addition, real-time EMI prediction must be able to handle 

high-frequency data streams (150 kHz to 30 MHz), which 

presents challenges in acquisition, preprocessing, and 

inference that exceed the capabilities of standard 

microcontrollers. Real-world EMI conditions are also 

dynamic and affected by temperature fluctuations, power 

changes, and circuit ageing, so adaptive learning strategies, 

such as online learning and gradual updates, are required to 

maintain model accuracy in the long term. 

In addition to technical challenges, compliance with EMI 

regulations (e.g., CISPR 15, FCC Part 15, IEC 61000) is also 

an important factor in the practical implementation of the 

model. Cloud-based solutions offer scalability but can increase 

operational costs, making embedded AI models a more 

efficient and cost-effective alternative to real-time EMI 

mitigation. 

 

4.5 Limitations 

 

While ensemble learning models have great potential for 

predicting EMI in LED driver circuits, some limitations need 

to be considered to be more generalized and ready to be 

applied in the real world. One of the main challenges is data 

representation, as the study uses only limited types of EMI 

signals, such asLorenzModif, Gaussian, Noise, Triangle, and 

Square signals. Real-world EMI patterns can be significantly 

more complex and influenced by environmental noise, circuit 

configuration changes, and load fluctuations, which are not 

fully covered in the current dataset. Future studies should aim 

to improve the durability and accuracy of the model by 

expanding the scope of EMI signals, testing models on various 

LED driver topologies, and leveraging data from live testing 

data under operational conditions. With this step, the model 

can become more reliable, accurate, and ready to be 

implemented for EMI monitoring and mitigation in next-

generation LED drivers. 

Each model has limitations that can affect the accuracy of 

the predictions. For example, RF (bagging) is difficult to 

extrapolate, making it less effective in recognizing EMI 

patterns with never-encountered frequencies. The Stacking 

Ensemble, while powerful, relies heavily on the quality of its 

base model. If a suboptimal model, such as a K-NN in high-

dimensional space, is included, the overall performance can 

deteriorate. In addition, both models are susceptible to 

overfitting; they may work well on current datasets but have 

not been tested under various EMI conditions. Future research 

can enhance the model's reliability by applying more extensive 

regularization, data augmentation, and cross-validation, 

making it more stable, adaptive, and capable of handling 

diverse EMI scenarios. 

Upgrade-based models such as XGBoost and LightGBM 

have not been optimized in this context. With lower R² values 

0.63 and 0.64, and higher MAE 4.51 and 4.69. These results 

indicate that hyperparameter tuning has not been fully 

optimized for EMI data. Therefore, more sophisticated 

hyperparameter optimization techniques, such as Bayesian 

optimization or genetic algorithms, are required to improve the 

model's accuracy in predicting EMI more effectively. 

However, one of the main challenges in Stacking 

Ensembles is the considerable computing power requirement. 

Although this model can provide high accuracy, its heavy 

processing makes it less ideal for real-time EMI monitoring, 

especially for LED drivers with limited computing resources. 

Future research should explore more efficient alternatives to 

enhance practicality, such as optimizing RF with feature 

selection or using deep learning architectures explicitly 

designed for low-latency real-time applications. By addressing 
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these challenges, EMI prediction models will become more 

accurate, efficient, scalable, and ready to be implemented in 

the industry, particularly for next-generation LED drivers. 

 

4.6 Future research 

 

For future research looking to expand the scope of these 

studies, it is important to consider more variations in signal 

types and environmental factors that can affect EMI prediction. 

Currently, research has used signals such as LorenzModif and 

Gaussian signals, but there is still much potential to explore 

the impact of high-frequency signals, irregular switching 

patterns, and noise from the real environment on the accuracy 

of EMI prediction. Understanding how these factors affect the 

model performance is crucial for improving the resilience and 

reliability of EMI prediction systems. 

In addition, applying ensemble learning models in real-

world LED driver design still requires further development. 

Future research could focus on integrating these models into 

design tools or real-time monitoring systems to detect and 

mitigate EMI during device operation. Developing a dynamic 

EMI mitigation system capable of adapting to environmental 

changes and the operational conditions of LED drivers will be 

a significant step forward in real-time EMI management. 

However, adaptive learning strategies, such as online 

learning or gradual updates, can help the model evolve by 

learning from the latest EMI patterns. Using this approach, 

models can remain accurate and relevant even as 

environmental conditions change or LED driver 

configurations evolve, making them more flexible and reliable 

when deployed in the real world. 

However, the real-time implementation remains a 

significant challenge. Computing efficiency is critical in direct 

EMI monitoring; therefore, future research needs to develop 

lighter models, utilize edge computing, and apply hardware 

acceleration techniques such as TPUs or FPGAs to make the 

inference process faster without sacrificing accuracy. In 

addition, integrating AI-based EMI prediction into embedded 

systems or Edge AI solutions can improve scalability and 

accelerate the deployment of these models in real-world LED 

driver systems. This move not only helps to optimize the 

performance of devices but also encourages innovation in 

more sustainable energy efficiency in various industries. 

 

 

5. CONCLUSION 

 

This study presents a novel approach to predicting EMI in 

LED drivers using spread spectrum techniques to modify their 

switching mode. The ensemble learning methods-the RF and 

Stacking-achieved promising accuracy, with R² values of 

0.7327 and 0.7347, respectively. The results highlight the 

potential of artificial intelligence to address challenges related 

to EMC. This approach enhances LED driver design, ensures 

compliance with EMI regulations, and improves the reliability 

of the lighting system. In addition, it lays the foundation for 

more effective EMI mitigation strategies and further research 

under diverse system conditions. Future exploration of 

advanced ensemble learning techniques could improve EMI 

prediction accuracy and contribute to developing industry 

standards. 
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