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Intelligent algorithms are among the most suitable methods for practical applications, 

as well as conjugate gradient algorithms (CGAs), which are very useful in solving 

multidimensional optimization problems. Therefore, combining optimization methods 

with heuristic algorithms is an exciting research idea to enhance the efficiency of 

solutions. This paper discusses the suitability of a new parameter in the conjugate 

gradient algorithm with the mayfly algorithm for various optimization problems. The 

proposed strategy is characterized by its high ability to reach the optimal point 

consistently, thanks to the careful choice of the step size resulting from the combination 

of the two methods. We also prove the global convergence of the algorithm based on 

basic assumptions, and finally the new method shows superior performance when 

compared with other algorithms in the same field. 
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1. INTRODUCTION

The difficulty is in tailoring optimization algorithms to the 

real-world applications that they find in several scientific and 

technological domains [1]. As a result, certain algorithms are 

only useful for solving complicated issues, which supports the 

idea that it's important to constantly adopt new techniques for 

improvement [1]. Meta-heuristic algorithms (MAs) are a class 

of optimization algorithms that are used to handle difficult 

issues that are beyond the scope of conventional techniques. 

These algorithms are used to search a wide search area in order 

to find the global optimum of a problem. They are inspired by 

natural processes such as evolution, swarm behavior, and 

genetics [2, 3]. Darwin's theory of evolution served as the basis 

for the development of the genetic algorithm (GA) recently 

[4]. GA and the differential evolution (DE) algorithm both 

employ the same operators, namely crossover and mutation. 

But DE uses a different approach [5]. The collective foraging 

activities of fish and bird species serve as an inspiration for 

particle swarm optimization (PSO) [6]. The ABC algorithm is 

a computer method that mimics honeybees' information-

sharing capacities and foraging strategies [7]. Utilizing the 

laws of motion and gravity, the gravity search algorithm 

(GSA) is a computer optimization method [8]. Numerous 

sophisticated algorithms, as demonstrated in references [9-14], 

base their depiction on the actions of real-world occurrences 

and biological entities. 

CGAs are classified as effective methods for reaching 

minimization points for optimization problems with the least 

possible iterations, but the solutions are considered local. 

Therefore, the process of linking these algorithms with MAs 

gives them greater efficiency in finding minimizations of the 

same problems globally as in references [15-20]. 

The difference between conjugate gradient methods and 

mayfly optimization algorithm lies in how they approach and 

optimize solutions to mathematical optimization problems, 

especially in terms of the mathematical mechanism and 

theoretical basis behind each. Let's review the main 

differences:  

Conjugate gradient methods are analytic algorithms that 

rely on gradients to optimize the objective function, and are 

commonly used in unconstrained optimization problems, 

especially when the objective function is a quadratic or linear 

function with derivative functions. They work by calculating 

gradient directions at each step, but instead of following the 

gradient directly, they use a technique that makes the direction 

at each step orthogonal (conjugate) to the previous directions, 

which makes them avoid excessive recompilation. As 

common applications of these algorithms, they are usually 

used in convex function optimization problems, such as least 

squares problems in machine learning, as well as in large 

vector optimization in machine learning. Their features are 

very effective in large problems where Hessian matrices are 

computationally expensive. They almost guarantee a local 

solution in quadratic function problems. The mayfly 

optimization algorithm is an evolutionary algorithm inspired 

by the natural behavior of mayflies in nature. It is a type of 

swarm intelligence algorithm, which uses the concept of 

attraction between individuals to update locations and 

minimize the value of the objective function. The algorithm's 
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working mechanism simulates the behavior of mayflies in 

terms of mating and movement, where groups of females and 

males form a "swarm", and each individual move towards 

other individuals according to rules based on their fitness, 

trying to minimize or optimize the value of the objective 

function. Applications of these algorithms are used in 

optimizing complex nonlinear functions, and in problems that 

require a broader exploration of the solution space, such as 

engineering system design, and multidimensional 

optimizations. Its features are suitable for highly complex and 

discontinuous optimization problems, and it can exit local 

solutions due to the mating and exploration mechanism. 

The paper's structure is as follows: in Section 2, we shall 

provide a different formulation of the CGAs. In Section 3, 

under specific assumptions, we examine the theoretical 

components and determine the global convergence properties 

of the Fletcher and Reeves conjugate gradient algorithm (FR)-

CGA. A detailed description of the original mayfly algorithm 

is provided in Section 4. To improve both algorithms' 

performance, we combined the FR-CGA and mayfly 

algorithms in Section 5. The sixth section of the research 

concentrates on the digital side. Seven unconstrained functions 

are treated with a unique combination algorithm mayfly 

optimization algorithm and conjugate gradient algorithm 

(MOA-CG), and the results are compared with the mayfly 

method. 
 

 

2. A NEW FORMULA  
 

Conjugate gradient is an analytic algorithm that relies on the 

properties of gradient and deliberateness to optimize a 

mathematical function (constrained by analyticity and 

differentiation), and fits linear or convex problems. The 

unconstrained minimization problem can be defined as 

follows: 

 

𝑚𝑖𝑛
∀𝑥

𝑓(𝑥) where 𝑓: 𝑅𝑛 → 𝑅 (1) 

 

Since x is a vector and the function f is a differentiable and 

continuous function, and according to these data we can use 

the CGA to find the solution to the formula (1) and express the 

current iteration as follows: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 ≥ 0 (2) 

 

Also denoted f at 𝑥𝑘(𝑓𝑘 = 𝑓(𝑥𝑘)). In addition, the gradient 

of the function is represented as 𝑔𝑘 = 𝑔(𝑥𝑘), while the second 

derivative of the function is denoted as 𝐺𝑘 = 𝐺(𝑥𝑘)  at 

iteration k, which corresponds to a Hessian matrix, 𝛼𝑘 is the 

step size of the iterative method in Eq. (2) and 𝑑𝑘 is the search 

direction. To find the value of the step 𝛼𝑘, which is used if the 

problems are general, through the powerful Wolfe-Powell 

(PWP) line search method to determine the appropriate 

dimension of the step as follows [21]: 

 

{
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘

𝑇𝑑𝑘 .            

|𝑑𝑘
𝑇𝑔𝑘+1| ≤ −𝜎𝑑𝑘

𝑇𝑔𝑘, 0 ≤ 𝛿 ≤ 𝜎 ≤ 1.
 (3) 

 

And the search direction 𝑑𝑘+1 in which it is: 

 

𝑑 𝑘+1 = {
𝑔 𝑘+1                          if    𝑘 = 0,
𝑔 𝑘+1 + 𝛽𝑘𝑑𝑘 ,            if    𝑘 > 0,  

 (4) 

 

One of the distinctive formulas for the parameter 𝛽𝑘 is the 

formula presented by Fletcher and Reeves [22], which is 

distinguished by its theoretical performance, but requires 

tuning of its properties when applied numerically, which is 

known as: 

 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 

 

In order for the iterative points to come close to reaching the 

smallest point during the algorithm, the distance between these 

points is measured through the Euclidean distance, i.e., ‖∙‖. 

Several authors modified the FR parameter by using retrieval 

based on the shrinkage effect 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘  and 𝑦𝑘 =
𝑔𝑘+1 − 𝑔𝑘  with a discussion of the global convergence of 

these methods as in references [23-30]. 

Now, using the general CGA direction, the scale FR search 

direction is given as: 

 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝜗𝑘𝛽𝑘
𝐹𝑅𝑠𝑘 (5) 

 

In order to take advantage of the Barzilai-Borwein strategy 

[31-33], we propose the following parameter 𝜗𝑘  as a 

parameter to adjust the standardization of the FR parameter 

𝛽𝑘
𝐹𝑅: 

 

𝜗𝑘 = (1 − 𝜇𝑘)
𝑑𝑘

𝑇𝑦𝑘

‖𝑑𝑘‖2‖𝑦𝑘‖2
 (6) 

 

We note that the division of a fraction is always positive 

because the numerator (𝑑𝑘
𝑇𝑦𝑘) is positive and the denominator 

(‖𝑑𝑘‖2‖𝑦𝑘‖2) is also positive, which leads to a positive value 

in relation to 𝜗𝑘 because the arc (1 − 𝜇𝑘) has a diminishing 

value.  The spectral scalars of the Barzilai-Borwein are the 

most popular ones, as they are:  

 

𝜇𝑘
1 =

𝑠𝑘
𝑇𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘

;  𝜇𝑘
2 =

𝑠𝑘
𝑇𝑦𝑘

𝑠𝑘
𝑇𝑠𝑘

 (7) 

 

And 𝜇𝑘 = 𝑚𝑎𝑥{𝜇𝑚𝑖𝑛 , 𝑚𝑖𝑛{𝜇𝑘
𝑖 , 𝜇𝑚𝑎𝑥}}, 𝑖 = 1,2, where, the 

0<𝜇𝑚𝑖𝑛<𝜇𝑚𝑎𝑥<∞. Furthermore, in order to obtain |𝜇𝑘| ≤ 1. 

 

 

3. GLOBAL CONVERGENCE  
 

When comparing the theoretical convergence properties of 

a particular conjugate gradient method, it depends on the 

properties (convergence rate, ensuring convergence towards 

the optimal solution (Global vs Local Convergence), 

reliability and stability, computational efficiency, scalability). 

These properties will be available if the functions are less 

complex and also if certain conditions are available to achieve 

them, such as the global convergence of the algorithm. In this 

section, we will show the advantages of the proposed 

algorithm from the theoretical side, relying on some necessary 

and important conditions such as the basic assumption. 

 

Assumption 3.1 

The existence of the value 𝑥1 , which is defined as the 

restricted level set  𝑆 = {𝑥: 𝑓(𝑥) ≤ 𝑓(𝑥1)}  indicates the 

existence of a number (𝐵 > 0) s. t. 

 
‖𝑥‖ ≤ 𝐵, ∀𝑥 ∈ 𝑆 (8) 
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If 𝑔  is Lipschitz continuous and 𝑓  is continuously 

differentiable in certain neighborhoods N of S, then there is a 

constant L ≥ 0 s. t. 

 

||𝑔(𝑥)-𝑔(𝑥𝑘)|| ≤  L||x -x𝑘||, ∀x,x𝑘 ∈ 𝑁 (9) 

 

Theorem 3.2 

If we assume that two new algorithms, Eqs. (5) and (6), 

produce 𝑥𝑘+1 and 𝑑𝑘+1, and we use PWP (3) to yield 𝛼𝑘, then 

the direction holds such that s. t. 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2, ∀𝑘 ≥ 1 (10) 

 

Proof: Multiply both sides of Eq. (5) from the right side by 

𝑔𝐾+1, we have:  

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + 𝜗𝑘𝛽𝑘

𝐹𝑅𝑠𝑘
𝑇𝑔𝑘+1 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + (1 − 𝜇𝑘)

𝑑𝑘
𝑇𝑦𝑘

‖𝑑𝑘‖2‖𝑦𝑘‖2
𝛽𝑘

𝐹𝑅𝑠𝑘
𝑇𝑔𝑘+1 

 

where, 𝑠𝑘
𝑇𝑔𝑘+1 = 𝑠𝑘

𝑇𝑦𝑘 + 𝑠𝑘
𝑇𝑔𝑘 > 𝑠𝑘

𝑇𝑦𝑘 , then  

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 + (1 − 𝜇𝑘)

𝑑𝑘
𝑇𝑦𝑘

‖𝑑𝑘‖2‖𝑦𝑘‖2
𝛽𝑘

𝐹𝑅𝑠𝑘
𝑇𝑦𝑘 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 + (1 − 𝜇𝑘)

𝛼𝑘(𝑑𝑘
𝑇𝑦𝑘)2

‖𝑑𝑘‖2‖𝑦𝑘‖2

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 + (1 − 𝜇𝑘)𝛼𝑘

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
 

 

Upon simplification, a satisfactory descent is obtained for 

this algorithm in the following manner: 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2 

 

where, 𝑐 = [1 + (1 − 𝜇𝑘)
𝛼𝑘

‖𝑔𝑘‖2] > 0. 

 

Theorem 3.3 

Assuming that Assumption (3.1) A is satisfied, let us 

consider any CGA (2)-(4), where 𝑑𝑘+1 satisfies condition (10) 

and 𝛼𝑘  is determined using Eq. (3). 

 

∑
1

‖𝑑𝑘‖2
< +∞

𝑘≥1

 (11) 

 

Then, we have 

 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 (12) 

 

In this discourse, we shall proceed to expound upon the 

theory of global convergence by drawing upon the conditions 

posited in preceding proof theories. 

 

Theorem 3.4 

Assuming that the conditions in Assumption 3.1, B are met. 

Assuming that |𝜇𝑘| ≤ 1, there exists a positive constant (i=1,2) 

for each k that is less than or equal to zero. These constants are 

designated as 𝛾1  and 𝛾2 , respectively, with 𝛾1 ≤ ‖𝑔𝑘‖ ≤ 𝛾2 . 

Then, the PWP search determines the updated CGA and 𝛼𝑘, 

where 𝑔𝑘 is equal to zero for a given k or 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

Proof: Due to the fulfilment of the descent state, we have 
‖𝑑𝑘‖ ≠ 0. This observation is made in conjunction with the 

Lipchitz condition.  

 
‖𝑦𝑘‖ = ‖𝑔𝑘+1 − 𝑔𝑘‖ ≤ 𝐿‖𝑠𝑘‖ 

 

‖𝑑𝑘+1 = −𝑔𝑘+1 + 𝜗𝑘𝛽𝑘
𝐹𝑅𝑠𝑘‖ 

 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |𝜗𝑘||𝛽𝑘
𝐹𝑅|‖𝑠𝑘‖ 

 

where, 

 

|𝜗𝑘| = |
𝑑𝑘

𝑇𝑦𝑘

‖𝑑𝑘‖2‖𝑦𝑘‖2
− 𝜇𝑘

𝑑𝑘
𝑇𝑦𝑘

‖𝑑𝑘‖2‖𝑦𝑘‖2
| 

=
2𝛼𝑘

‖𝑠𝑘‖‖𝑦𝑘‖
≤ 2𝛼𝑘𝐿 

 

Given the assumption that D known and |𝛽𝑘
𝐹𝑅| ≤

𝛾2
2

𝛾1
2 ≡ 𝐸, 

the updated search direction can be expressed: 

 
‖𝑑𝑘+1‖ ≤ 𝛾2 + 2𝛼𝑘𝐿𝐸 

 

This implies  0 < ∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
∞
𝑘=1 < ∞  when ∑

‖𝑔𝑘‖4

‖𝑑𝑘‖2
∞
𝑘=1 <

1

𝑐2

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2 < ∞. 

 

 

4. THE MAYFLY OPTIMIZATION ALGORITHM  

 

The mayflies within the MOA swarms exhibit sexual 

dimorphism, with distinct separation of male and female 

individuals. The male mayflies consistently exhibit 

robustness, leading to enhanced performance in optimization 

tasks. In a manner akin to the constituents of swarms within 

the PSO algorithm, the constituents within the multi-objective 

optimization algorithm would proceed to modify their 

positions based on their respective current positions 𝑝(𝑡) and 

velocities 𝑣(𝑡) during the ongoing iteration. 

 

𝑝𝑘  (𝑡 + 1) = 𝑝𝑘(𝑡) + 𝑣𝑘(𝑡 + 1) (13) 

 

Both male and female mayflies were to update their 

positions using the identifier (13). Nevertheless, the manner in 

which their velocity is updated would vary [34]. 

 

4.1 The locomotion patterns exhibited by male mayflies 

 

During iterations, male mayflies in swarms participated in 

either exploitation or exploration strategies. The velocity will 

be adjusted based on the current fitness values 𝑓(𝑥𝑘) and the 

prior best fitness values in the trajectories 𝑓(𝑥ℎ𝑘
) . When 

𝑓(𝑥𝑘) > 𝑓(𝑥ℎ𝑘
), the male mayflies will adjust their velocities 

based on their present velocities, the distance between their 

current location and the global best position, and their previous 

best trajectories: 

 

𝑣𝑘(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑘(𝑡) + 𝑎1𝑒−𝛽𝑟𝑝
2
[𝑥ℎ𝑘

− 𝑥𝑘(𝑡)]

+ 𝑎2𝑒−𝛽𝑟𝑔
2
[𝑥𝑔 − 𝑥𝑘(𝑡)] 

(14) 

 

The variable 𝑔 exhibits a linear fall from its maximum value 
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to a lesser value. The variables 𝑎1 , 𝑎2  and 𝛽  are utilized to 

equilibrate the values. The variables 𝑟𝑝
2 and 𝑟𝑔

2 are utilized to 

quantify the Euclidean distance between individuals and the 

associated historical best status, as well as the global best 

position among swarms. The Cartesian distance is a 

representation of the second norm of the distance array: 
 

‖𝑥𝑘 − 𝑥𝑗‖ = √∑(𝑥𝑘𝑖 − 𝑥𝑗𝑖)2

𝑛

𝑖=1

 (15) 

 

Conversely, in the event that 𝑓(𝑥𝑘) is less than 𝑓(𝑥ℎ𝑘
), the 

male mayflies would proceed to adjust their velocities from 

the present value using a random dance coefficient 𝑑.  
 

𝑣𝑘(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑘(𝑡) + 𝑑. 𝑟1 (16) 
 

where, r is a uniformly distributed random number in the range 

[-1, 1] [34]. 
 

4.2 The locomotion patterns exhibited by female mayflies 
 

The female mayflies would modify their velocities via an 

alternative approach. From a biological perspective, female 

mayflies possessing wings typically have a lifespan ranging 

from one to seven days. Consequently, these female mayflies 

exhibit a sense of urgency in locating male counterparts in 

order to engage in mating and facilitate their own reproductive 

processes. Consequently, the individuals would adjust their 

velocities in accordance with their desired male mayfly 

partners for mating purposes. According to the MOA, the 

highest-ranking female and male mayflies would assume the 

role of the primary mates, while the second-ranking female 

and male mayflies would assume the role of secondary mates, 

and so forth. For the female mayfly indexed by i, if 

the 𝑓(𝑦𝑘) < 𝑓(𝑥𝑘):  
 

𝑣𝑘(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑘(𝑡) + 𝑎3𝑒−𝛽𝑟𝑚𝑓
2

[𝑥𝑘(𝑡) − 𝑦𝑘(𝑡)] (17) 

 

where, 𝑎3  represents an additional constant that serves the 

purpose of equilibrating the velocities. The variable 𝑟𝑚 

denotes the Cartesian distance between the two entities. On the 

contrary, if 𝑓(𝑦𝑘) > 𝑓(𝑥𝑘), female mayflies have been shown 

to adjust their velocities by a random dance movement, so 

updating their current speed 𝑓𝑙: 
 

𝑣𝑘(𝑡) = 𝑔 ⋅ 𝑣𝑘(𝑡) + 𝑓𝑙. 𝑟2 (18) 

 

where, 𝑟2 is uniform distribution in the range [-1, 1]. 

 

4.3 Mating of mayflies 
 

Each female and male mayfly in the upper half of the 

population would be paired for mating and produce a pair of 

offspring for each individual. The progeny would exhibit 

random variations resulting from the evolutionary process 

inherited from their parental generation.  
 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = 𝐿 ∗ 𝑚𝑎𝑙𝑒 + (1 − 𝐿) ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 (19) 

 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝐿 ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 + (1 − 𝐿) ∗ 𝑚𝑎𝑙𝑒 (20) 
 

Here, 𝐿 will also take random numbers in Gauss distribution 

[34]. 

5. NEW MOA-CG ALGORITHM  

 

Within this segment of the paper, we present a novel 

algorithm (MOA-CG) that relies on the conjugate gradient 

algorithm put forth by Eqs. (5) and (6). We have demonstrated 

that this algorithm has adequate descent and convergence to 

the minimum point with the algorithm (MOA) in order to 

identify optimal solutions for the optimization functions. 

Combining the two algorithms gives us their advantages 

together, i.e., finding analytical solutions using algorithmic 

methods inspired by nature that are close to ideal within 

complex solution spaces. 

The suggested algorithm is available for viewing in the 

paragraph that follows: 

 

5.1 MOA-CG algorithm 

 

Step 1: Initialized mayfly algorithm parameter (nPop= 20, 

Max-Iter=2000, g=0.8, a1=1.0, a2=1.5, a3=1.5, β=2, d= 5, 

f1=1).  

Give initial CG parameter: variable 𝑥0 ∈ 𝑅𝑛 , 𝛿 ∈
[0,0.5] and 𝜎 ∈ [𝛿, 1]. Let k = 0, 𝑑0 = −𝑔0. 

Step 2: The best value of step to algorithm results: set 𝛼𝑘 

from (PWP) in formula (3) and compute the 𝜗𝑘 from Eq. (6). 

Step 3: Evaluate the parameters used by the new search 

direction (4)-(5). 

Step 4: Find the new point happened 𝑥𝑘+1 as formulas (2)-

(4).   

Step 5: Compute population based on f(x) and find the 

global best (gbest). 

Step 6: If the maximum iteration has not been achieved, 

compute the following: 

• The Eqs. (17)-(18) can be utilized to determine the speed 

and position of individual female mayflies. 

• The Eqs. (13)-(15) can be utilized to determine the speed 

and position of individual male mayflies. 

• Arrange the mayflies into categories and assign them a 

ranking based on the function f(x). 

• Produce male and female progeny, denoted as Eqs. (19)-

(20) respectively. 

• The process of offspring development involves the 

random division of offspring into male and female 

individuals. 

• Replace the least desirable elderly persons with the most 

exemplary fresh ones. 

• The pbest and gbest values are updated. 

Step 7: If the sum of duplicate values has reached its 

maximum, terminate the process and display the optimal value 

without any adjustments in the variable k. Proceed to Step (2). 

 

 

6. ARITHMETIC RESULTS  

 

This stage included testing the new algorithms on a set of 

seven test functions that were sourced from different sources 

[35, 36]. After being modified to conform to the new method, 

the application was run on a PC running an Intel Core i5 CPU 

using MATLAB R2018b. Three main categories apply to the 

findings. The new MOA-CG algorithm's results were 

contrasted with the mayfly algorithm's first results. MOA 

under the condition of n=25, as outlined below: 

1- Best cost. 

2- Standard deviation. 

3- Mean. 
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Table 1. The best cost of the new MOA-CG algorithm 

compared to the MOA algorithm 

 
Function Name MOA-CG MOA 

Sphere 1.3984e-19 1.9159e-18 

Alpine 1 3.6166e-12 3.3201e-09 

Chung Reynolds 9.9005e-38 2.0952e-35 

Cosine Mixture -4995 -4995 

Deflected Corrugated Spring -1 -1 

Styblinski-Tang -1703.8473 -1788.6677 

Rastrigin 15.9193 18.9042 

 

Table 2. The standard deviation of the new MOA-CG 

algorithm compared to the MOA algorithm 

 
Function Name MOA-CG MOA 

Sphere 24.5918 21.699 

Alpine 1 13.7991 12.9897 

Chung Reynolds 4354.4405 3346.6964 

Cosine Mixture 309.2886 399.5781 

Deflected Corrugated Spring 178.2457 175.3428 

Styblinski-Tang 137.2658 242.4148 

Rastrigin 53.321 58.3351 

 

Table 3. The mean of the new MOA-CG algorithm 

compared to the MOA algorithm 

 
Function Name MOA-CG MOA 

Sphere 1.7161 1.7112 

Alpine 1 1.1843 1.0693 

Chung Reynolds 150.144 125.9651 

Cosine Mixture -4940.0053 -4916.3963 

Deflected Corrugated Spring 15.9547 17.2023 

Styblinski-Tang -1688.6974 -1728.4473 

Rastrigin 40.4155 50.4466 

 

The objective is to determine the minimum value 𝒇𝒎𝒊𝒏 of 

the function that is associated with the tables illustrating the 

efficiency of the newly developed algorithms. 

Table 1 shows that the new technique performs significantly 

better in calculations to determine the smallest point of the 

seven functions. Table 2 compares the proposed algorithm to 

the original algorithm using the standard deviation as one of 

the measures of point dispersion. The proposed algorithm 

performs better than the original algorithm in this case. Table 

3 compares the proposed algorithm to the average and finds 

that the new algorithm has a higher point concentration than 

the original algorithm. This suggests to us that the original 

algorithm was not as accurate as we thought it was. Figures 1-

7 show the comparison between the suggested and original 

algorithms when used with the seven test functions used in the 

article. 

The preceding tables show that the new method performs 

best in achieving the least limit of the seven functions 

described, regardless of how diverse the functions and their 

dimensions are. 

Although the combination of conjugate gradient algorithm 

and maybug algorithm is effective, there are some drawbacks 

and challenges that may face this algorithm, including 

(sensitivity to parameter selection, high computational cost, 

convergence to local solutions, difficulty adapting to dynamic 

environments). These drawbacks make it necessary to conduct 

additional studies to improve the flexibility and efficiency of 

the algorithm in various applications. 

 

 
(a) MOA-CG 

 
(b) MOA 

 

Figure 1. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Sphere) 

 

 
(a) MOA-CG 

 
(b) MOA 

 

Figure 2. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Alpine 1) 
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(a) MOA-CG 

 
(b) MOA 

 

Figure 3. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Chung Reynolds) 

 

 
(a) MOA-CG 

 
(b) MOA 

 

Figure 4. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Cosine Mixture) 

 

 
(a) MOA-CG 

 
(b) MOA 

 

Figure 5. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Deflected Corrugated Spring) 

 

 
(a) MOA-CG 

 
(b) MOA 

 

Figure 6. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Styblinski-Tang) 
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(a) MOA-CG 

 
(b) MOA 

 

Figure 7. Comparison of the performance of the two 

algorithms (MOA-CG vs. MOA) with respect to the function 

(Rastrigin) 

 

In the field of optimization algorithms, there are several 

recent research trends that focus on improving the 

performance of traditional and nature-inspired algorithms and 

adapting them to the increasing challenges in complex 

applications. These trends include: 

1) Integrating machine learning with optimization 

algorithms (Machine learning-enhanced optimization) 

2) Automatic parameter tuning (automatic parameter 

tuning) 

3) Hybrid approaches 

4) Increasing efficiency in large and complex 

environments (Scalability and complexity handling) 

5) Multi-objective optimization (multi-objective 

optimization) 

6) Context-aware optimization (context-aware 

optimization) 

7) Practical applications in artificial intelligence and 

machine learning (AI and machine learning 

applications) 

8) Reliable and robust optimization (reliable and robust 

optimization) 

These trends reflect the increasing efforts to make 

optimization algorithms more intelligent and adaptable to 

modern complex applications, and to direct them to solve real 

and effective problems in various scientific and industrial 

fields. 

 

 

7. CONCLUSIONS 

 

Based on the data presented in the preceding section, we 

draw the conclusion that the new algorithm, MOA-CG, 

performs better than the traditional algorithms, MOA, when it 

comes to finding minimization points for known testing 

functions (i.e., in terms of the number of iterations and the time 

it takes to reach the optimal point). Furthermore, the traditional 

proposed CGA converged more strongly than when the FR 

parameter was used; however, when algorithms with 

comprehensive behavior were introduced to reach the 

minimization of functions, its efficiency increased in 

convergence and decreased the number of iterations. 

Traditional methods (such as conjugate gradient) provide local 

convergence, high computational speed and efficiency on 

specific problems such as quadratic or linear functions. 

Modern algorithms inspired by nature provide high flexibility 

in exploring global solutions and scalability, but they require 

more computations and may be less stable in terms of 

theoretical convergence. Therefore, the choice of algorithm 

often depends on the nature of the specific problem, whether 

it is convex, linear, or non-convex and complex. It is feasible 

to combine new conjugate gradient techniques with the mayfly 

method in future study. The conjugate gradient algorithm 

suggested in the paper can also be used with other clever 

algorithms. 
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