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Among the many applications of Industry 4.0, predictive maintenance is one of the most 

frequently utilized examples. On the other hand, in order to improve failure categorization, 

the majority of contemporary machine-learning models require a substantial amount of 

data. In contrast to traditional maintenance, IIoT systems that perform real-time 

monitoring can be of tremendous service to the company. These systems can notify the 

necessary members of the factory's maintenance team in advance of a serious breakdown, 

which offers a significant advantage. It is of the utmost importance to detect any 

malfunctions in equipment while they are in operation before they become critical. The 

purpose of this work is to collect a substantial quantity of data from three AC motors, each 

of which is equipped with four different kinds of sensors. These sensors include a vibration 

sensor, a current sensor, a contactless temperature sensor, and an ambient temperature 

sensor. A variety of motor faults, including normal, vibration, stop, heavy load, and 

overcurrent, have been purposefully applied to the system in order to build the custom 

dataset. These motor’s faults have been categorized and labeled in accordance with their 

respective classification responsibilities. A deep neural network (DNN) model consisting 

of seven layers was utilized. A cloud server is used to train the model, and all of the data 

from the three AC motors are sent to the cloud server after they have been collected. The 

result demonstrates that it has good accuracy and loss in both the training and testing 

phases, with a loss of 0.0014 and an accuracy of 100% while the model has been tested for 

over and under fitting problems. 
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1. INTRODUCTION

In the present-day global economy, which is more 

globalized and devolving further to dematerialized markets, 

industries are driven to improve the productivity of their value 

chains, increasing their competitiveness and satisfying 

customers. Connectivity leads to data production or 

generation, the availability of new devices, the reduction in 

inventories, customization, and regulated manufacturing have 

given birth to Industry 4.0, which seems inevitable. This 

suggests that automation techniques must be used to 

incorporate all new technology in order to significantly boost 

production [1]. The Internet of Things (IoT) is a rapidly 

expanding network of devices, sensors, and ubiquitous 

communications that significantly impacts a wide range of 

fields. Smart industrial operations can be made possible by 

increasing the speed and volume of data generated by 

Industrial Internet of Things (IIoT) devices combined with 

advanced analytics capabilities, especially in the context of 

Industry 4.0.  IIoT represents a new vision of the IoT by 

automating smart objects to perceive, collect, analyze, and 

share events in real-time. The key benefits of IIoT are 

enhanced operational effectiveness, enhanced production rate, 

and management of industrial assets and processes involving 

product differentiation, smart monitoring apps, as well as 

machine health checks and preservation [2].  

There are four categories of machine maintenance: 

Predictive maintenance (PdM) detects potential issues prior to 

their manifestation to enhance equipment durability and avert 

unforeseen machine downtime. Proactive maintenance (PRM) 

targets the underlying causes of failures to avert their 

occurrence, whereas reactive maintenance (RM) concentrates 

on repairing machines just after they malfunction. This 

indicates that downtime could be considerable due to the 

uncertain duration of failures. Therefore, preventative 

maintenance (PM) is performed at regular intervals regardless 

of the machine's actual state. 

Unlike reactive, which is less expensive but causes 

unanticipated downtime and higher costs should an equipment 

break down. While preventative measures may lead to 

unnecessary maintenance, predictive measures reduce 

unscheduled downtime and allow planning. PdM involves 

condition monitoring, so it only happens when necessary. This 

should cut the demand for spare parts and help to reduce costs. 
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It also helps to avoid too much upkeep, which often causes 

issues. While PM may involve reevaluating systems to prevent 

breakdown, PdM is mostly focused on arranging repairs based 

on the actual state of the unit. Further advantages come from 

applying modern technologies such as IoT sensors and data 

analysis machine learning. Forecasts thus become more 

accurate. Early problem fixes can help to extend equipment 

life. 

PdM requires data storage and analysis in real time, taking 

into account the different aspects and effects of the collected 

signals. PdM uses a number of mathematical techniques, 

including machine learning, reliability analysis, time series 

analysis, statistical process, and failure mode and effects 

analysis [3]. The foundation of PdM is based on the use of data 

analytics tools to interpret operational data transmitted by 

sensors [4]. Condition monitoring systems typically use data 

generated by sensors directly connected to industrial 

machinery to identify anomalies and predict failures, thereby 

improving reliability and enabling cost-effective maintenance. 

Condition monitoring uses a wide range of sensor components, 

such as temperature and vibration sensors, to monitor various 

system attributes across multiple domains, simulate system 

behavior, and identify anomalies in the data that indicate 

damage or deterioration. This is particularly important because 

failures can have a significant and cascading impact on the 

overall process or industrial production cycle, potentially 

resulting in expensive maintenance costs and lost revenue [5]. 

Machine learning and deep learning, two recent developments 

in the AI area, have been shown to be successful methods for 

creating PdM models because of their capacity to carry out 

failure prediction tasks like calculating a machine's remaining 

usable life [6, 7]. Because of the vast system architectures of 

industrial equipment made of many elements, an advanced 

maintenance model is required. Even when the physical and 

digital systems become integrated within the manufacturing 

process, it becomes possible to gather large amounts of data. 

This is because of deep learning, which employs neural 

networks with several layers of processing units [8]. Deep 

learning is used in many disciplines today, including PdM. 

Deep learning models perform better than statistical and 

traditional machine learning models when sufficient historical 

data is available. Artificial neural networks (ANN), a machine 

learning technique inspired by brain activity, go beyond 

shallow networks with 1 and 2 hidden layers, which is referred 

to as deep learning [9]. Sensors are installed on machines to 

collect data about their condition on a continuous basis. The 

data from the machines is used to find trends that lead to early 

detection of faults by connecting the machines to the sensors 

through the IoT [10]. 

In this work, a PdM system based on a DNN has been 

proposed and implemented practically on three AC motor 

benchmarks, which are occupied with four types of sensors. A 

large amount of data has been collected offline to train the 

DNN model on the cloud server, while in the online phase, the 

data is collected and uploaded to the model to predict the 

failure type.  

The rest of this paper is as follows: section two shows the 

state of the art of the proposed system design. Section three 

introduces the premieres required to design the proposed 

system. The proposed system design is described in section 

four, while the results are discussed in section five. Finally, the 

conclusion is presented in section six. 

 

 

2. RELATED WORK 

 

A great deal of research has been done on artificial 

intelligence (AI) for PdM systems using various modeling 

techniques. Drakaki et al. [11] developed a deep learning and 

mathematical programming-based integrated PdM and 

production planning framework to reduce the total cost of 

manufacturing, setup, holding, maintenance, and backorder. 

The paper's usefulness is limited since it does not adequately 

address the integration issues of machine learning and deep 

learning techniques in current industrial systems. Gatta et al. 

[12] developed a deep learning model for diagnosing and 

prognosticating issues in offshore oil wells using the public 3 

W dataset. It employs a one-dimensional Convolutional 

Neural Network (1D CNN) as an encoder for feature 

extraction, comparing it with traditional statistical methods. 

Various machine learning algorithms, including Random 

Forest Classifiers, are utilized to evaluate the extracted feature.  

Es-Sakali et al. [13] introduced a prototype that would 

enable staff members to keep an eye on the machine's 

condition and anticipate any issues before the planned 

maintenance date, preventing unplanned malfunctions and a 

halt in production. Mohammed et al. [14] designed an 

electrical motor based on IoT and machine learning with the 

goal of increasing reliability and lowering maintenance 

expenses. PRM procedures are made possible by utilizing real-

time data. However, obstacles, including implementation 

difficulty, cybersecurity concerns, and reliance on data 

quality, might prevent wider use. The significant initial cost 

and possible problems with model interpretability are also 

significant disadvantages. Zainol and Burhani [15] introduced 

a feature selection and deep learning algorithms to forecasting 

motor bearing faults accurately. Three distinct classifiers were 

used: Radial Basis Network (RBN), Feedforward Neural 

Network (FFNN), and Convolutional Neural Network (CNN). 

In order to categorize motor performance and detect issues like 

inner and outer race problems, several classifiers were 

employed. Performance Results: In CNN testing, the 

suggested technique obtained maximum accuracy rates of 

95.4% and 97.7%, indicating the model's efficacy in 

classification. Karwa et al. [16] developed a machine learning 

algorithm to analyze the most influential factor of maintenance 

systems in a AC motor or induction motor. The aim of this 

work is to create an efficient machine learning algorithm for 

high voltage induction motor failure. Proposed model is an 

ANN and three sensors: power factor vibration, and 

temperature. The model was correlated with the sensors to 

improve the selected factor for maintenance. 

Al-Naggar et al. [17] proposed IoT technology for PdM and 

track the health of four CNC machines spread across multiple 

sites. Accelerometers collect vibration signals and transmit 

real-time data directly to a database. The results show that 

analysis of the acceleration signal in the time and frequency 

domains can successfully identify the status of each machine, 

enabling simultaneous monitoring across multiple sites. A 

potential limitation of the article is that it may not adequately 

address the privacy and data security issues associated with 

IoT deployments in industrial environments. Singh and Singh 

[18] presented identified a motor performance and forecast 

motor bearing problems using deep learning classifiers, such 

as CNN, FFNN, and RBN. The study highlights the value of 

feature selection strategies like chi-square and correlation to 

improve prediction accuracy, with tests showing up to 97.7% 

accuracy. Karthikeyan et al. [19] introduced a deep learning-
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based PdM system for industrial rotating machinery that 

estimates remaining usable life (RUL) without the need for 

labeled data by using a regression model and an LSTM 

autoencoder to identify abnormalities. Regression analysis and 

the LSTM autoencoder are used in this approach to improve 

flexibility and dependability in practical applications. 

Furthermore, operational data is gathered via a wireless 

condition monitoring system and sent for analysis. This 

strategy seeks to increase machine dependability in a variety 

of industrial contexts and decrease unplanned downtime. 

 

 

3. PRELIMINARIES 

 

In order to enable preventive maintenance, PdM makes use 

of IIoT and data analysis to track the health of equipment and 

anticipate problems. This work creates a PdM system based on 

deep learning and the IIoT. 

 

3.1 Sensors 

 

Four sensors have been used in the proposed PdM system. 

The ADXL345 is a perfect gadget for measuring motor 

vibrations as it is a 3-axis shake sensor that is 13-bit. It has 

nice properties such as a small form factor with low power 

consumption. The current in the motor is monitored using the 

ACS712 current sensor module. It is a completely integrated 

magnetically hysteresis-free current sensor. It uses the Hall 

phenomena effect to provide current sense for both DC and 

AC currents, and it runs on a single 5 V power source. It also 

makes use of an ADS1115 analog-to-digital converter and a 

low-resistance current conductor. Specific important features 

must be had by  the temperature sensor used for this 

investigation was the MLX90614 infrared thermometer. It was 

selected because of its wide range temperature, excellent 

precision, and contactless temperature monitoring ability. It 

also fits the needs of this research nicely because it is 

affordable and small in size. Temperature readings from the 

outside were also taken using an SHT21 digital humidity and 

temperature sensor [20]. 

 

3.2 Inter-integrated circuit (I2C protocol) 

 

Raspberry Pi is suitable platform for IoT applications due to 

its portability, parallelism, affordability, and low power 

consumption. IoT applications use raspberry for its low cost 

and low power computation that can perform many of the 

same tasks as a typical desktop computer. Raspberry is a quad-

core processor with parallel processing can be used to 

accelerate up operations and computations [19]. To connect 

sensors to Raspberry Pi, a 12IC Bus is used, which a two-wire 

interface is using a key design to facilitate communication 

between multiple integrated circuits (ICs). It connects sensors 

to Raspberry via only two wires (SCL and SDA). This makes 

it easy for Raspberry to control the data sent and received from 

the sensors [21]. 

 

3.3 Dataset implementation 

 

In this work, the sensory data was collected using sensors, 

which are the current sensor, non-contact temperature sensor, 

temperature and humidity sensor, and three-axis 

accelerometer sensor. When the vibration sensor generates 

three sets of data in three axes: X, Y, and Z. These results are 

in the same column of the dataset, and there'd be a fault 

condition every 1 second of sampling time. The data from the 

sensor is collected both online and offline, where offline, a 

dense amount of data is collected with fine classes of fault, 

namely: normal, overcurrent, stop rotation, misalignment, and 

heavy load. These classes were intently applied in the motor 

to obtain the required dataset according to the required fault. 

An unbalanced mass has been added along with the motor 

shaft to simulate the vibration in the three axes of the motor. 

A different size of the capacitor is used to simulate the increase 

and decrease of the motor's current. A mechanical braking 

system was used to simulate the stop and heavy load 

conditions. 

Table 1 displays the number and amount of data sets for 

each categorization. Table 2 shows examples of the data that 

were gathered. The deep learning model uses this dataset to 

create a prediction model which works on a cloud server for 

real time monitoring that anticipates any failures. 

The collected dataset is usually divided into four groups. 

The model is trained using the training dataset, which makes 

up about 60% of the total data gathered. The validation dataset 

is 10%, which is used to assess the model's performance and 

adjust its hyper parameters, and the test data (unseen data) 

makes up 30% of the data. 

 

Table 1. Classes counts and sizes 

 
Failure Class File Size (KB) Count Raws 

Normal 813 20059 

Over-current failure 202 4591 

Misalignment/vibration failure 301 6562 

Stop rotating failure 651 16566 

Havey load failure 140 2911 

 

 

Table 2. Samples for the collected dataset 
 

Accel_x Accel_y Accel_z Amb_Temperature Object_Temperature AC Current Label 

1.21875 -1.78125 8.3125 17.811 31.13 0.331 Normal 

1.78125 -1.15625 7.375 17.822 31.07 0.331 Normal 

0.53125 0.125 7.5 17.822 31.01 0.331 Normal 

-4.03125 5.28125 -16 35.175 36.17 0.426 Over current 

-1.343 0.34375 -16 35.164 36.17 0.416 Over current 

1.25 -0.875 7.0312 33.051 32.17 0.529 Stop 

1.5625 -0.9375 7.4375 33.051 32.09 0.558 Stop 

0.0404 -0.0269 -0.248 0.008 34.33 28.483 Misalignment 

0.0429 -0.0465 -0.262 0.00764 34.21 28.483 Misalignment 

-16 -16 -11.375 23.742 54.89 0.672 Heavy load 

-16 -16 3.0625 23.731 54.79 0.689 Heavy load 
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3.4 Deep learning neural networks 

 

The hyperparameters for the proposed DNN model are 

depicted in Table 3. The model consists of five layers. The 

input layer is equal to the input feature while the output layer 

is equal to the number of classes which are five too [22]. 

 

Table 3. Hyperparameter of proposed lightweight model 

 
Parameter Name Value 

Neurons per layer 50 

Batch_size 64 

Epochs 25 

Loss_function Categorical cross-entropy 

Activation_function ReLU and SoftMax 

Optimizer Adam 

Number of classes (output layer) 5 

 

 
 

Figure 1. Rectified linear unit [23] 

 

In a DNN, ReLU is typically employed as an activation 

function for the hidden layers. In order to do this, we utilize 

the neural network's penultimate layer activation to 

backpropagate the ReLU classification layer's weight 

parameters (Figure 1) [23]. ReLU formula is:  

 

f(x) = max (0, x) (1) 

 

 
 

Figure 2. SoftMax activation function generates [23] 

 

This function produces 0 when x is less than 0 and a linear 

function when x is greater than 0 (see Figure 2 for a visual 

illustration). Deep learning model for multiclass classification 

problems usually employ the SoftMax function as activation 

function (at the last layer). The SoftMax formula is as follows: 

 

𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ = 1𝑒
𝑥𝑗𝑛

𝑗

 (2) 

 

The SoftMax activation function converts a vector of K real 

values into a vector of real values that add up to 1. A 

probability score may be derived from the function's output, 

which is always in the range between 0 and 1. Due to its 

compatibility with the output format of SoftMax activation 

and one-hot encoding, categorical cross entropy (CCE) is 

frequently utilized as the loss function in multiclass 

classification applications. Each component fits together as 

follows: 

1. Activation of SoftMax: In multiclass classification, the 

output layer of the model usually has one neuron for each 

class. The output logits (raw scores) are converted into 

probabilities using SoftMax, where each value denotes the 

likelihood of a class, and the probabilities for all classes add 

up to 1.  

In categorical classification problems, when we want to 

select the single most likely class, SoftMax effectively 

emphasizes the class with the highest probability. 

2. Encoding One-Hot: Multiclass jobs often use one-hot 

encoding for labels. Each class is encoded as a vector in one-

hot encoding, with a `1` designating the proper class and a `0` 

designating all other classes. This facilitates the comparison 

between the real labels and the model's expected probability 

(SoftMax output) [24]. 

3. The concept of categorical cross entropy, or CCE. 

By contrasting the one-hot encoded true labels with the 

SoftMax-predicted probability, categorical cross entropy 

determines the loss [25, 26]. 

For a single example, CCE is calculated mathematically as 

follows: 

 

𝐶𝐶𝐸 = −∑𝑦𝑖 . 𝑙𝑜𝑔(𝑝𝑖)

𝐶

𝑖=1

 (3) 

 

where, 

yi is the one-hot encoded true label (1 for the correct class, 

0 otherwise). 

pi is the predicted probability for each class. 

The model is designed to generate higher-confidence 

predictions for the correct class because the loss reduces to the 

negative log of the predicted probability for the correct class 

since only the correct class contributes to the loss (because 

other (yi) values are zero). In conclusion, categorical cross 

entropy is favored because it works well with one-hot 

encoding and SoftMax outputs. It also encourages the model 

to improve its predictions for multiclass classification 

problems by penalizing it when it assigns a low probability to 

the right class. 

 

 

4. PROPOSED SYSTEM DESIGN 

 

The proposed system of PdM consists of three AC motors 

(220V, 0.5A). Four sensors are connected to each motor, 

which are current, vibration, contact-less object temperature, 

and ambient temperature. These sensors monitor the condition 

of the motor on flying. A Raspberry Pi 4 is used to collect the 

data from the sensor using the I2C bus communication 

protocol. The function of the Raspberry Pi is to collect and 

upload the data to the cloud server. Two phases of operation 
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were considered in this work: offline and online. Within the 

offline phase, as shown in Figure 3, data is collected from the 

sensor via the I2C protocol, and then this data is uploaded to 

the cloud server to generate a dataset from all the failure 

classes. In the cloud server, a deep neural learning DNN 

consists of seven layers of 50 neuron per layer; seven neuron 

at the input layer represent each column of the dataset, and five 

neuron at the output layer represent each class of the system. 

When the model is being trained, the online phase is started, 

where the sensor data is again collected from each motor and 

uploaded to the cloud server, where the DNN model predicts 

the failure type according to the uploaded pattern for each 

motor. Figure 4 shows the proposed schematic diagram for the 

I2C protocol to connect the sensors to the Raspberry Pi 4, 

SHT21, MLX90614, and ADXL345, which have a built-in 

I2C protocol, while ACS712 must be connected to an analog-

to-digital converter ADC0X48, which converts the current 

value (AC) to digital form. The ADC has a built-in I2C. The 

I2c protocol consists of two lines: serial data (SDA) and serial 

clock (SCL).  

 

 
 

Figure 3. The design and implantation of the proposed system design 

 

 
 

Figure 4. The proposed system architecture when uses the 12C bus protocol 
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Table 4. Specification of the sensors [20] 
 

Senso Definition Measurement Rang Accuracy Voltage Current Address 

ADXL345 Three-axis accelerometer ±2g, ±4g, ±8g, ±16g 0.004g 2.0V-3.6V 0.1mA 0x53 

ACS712 Current sensor ±5A, ±20A, ±30A 66mV/A (±5A) 5.0V 
10mA (at 

startup) 
Non 

MLX90614 
Non-contact temperature 

sensor 
-70℃ to 380℃ 0.02℃ 3.6V-5.5V 0.5mA 0x5A, 0x5B 

SHT21 
Temperature and humidity 

sensor 

0% to 100% humidity, 

-40℃ to 125℃ 

0.3℃ for temperature, 

2% for humidity 
3.3V-5.5V 0.1mA 0x40 

ADC 
Device that converts analog 

signals into digital values. 
0-5V ±1% to ±0.1% 0-10V 1 mA ADS1115 

 

All sensors have the same lines but with different addresses 

(as described in Table 4). The advantage of assigning a 

different address for each sensor is to avoid collisions between 

packets. When designing AC motors, reducing mechanical 

vibration is an essential consideration. Vibrations may result 

in adverse effects such as a shortened lifespan, elevated stress, 

exhaustion, and noise. Significant harm can occur to systems 

that are vibrating. Measuring mechanical vibrations in 

operational systems is, therefore, crucial. Obtaining vibration 

data from all three axes is necessary since these vibrations 

might appear in axial, radial, and torsional directions. 

Monitoring the AC motor's current is the second design 

requirement. The motor is in danger of producing excessive 

heat if the current rating listed on the nameplate is exceeded. 

It's imperative to deal with this heat right away to avoid 

damaging the motor. The third criterion focuses on the need 

for monitoring motor temperature within the operating ranges. 

A number of things, such as bushing failure or increased 

current, can cause temperature rises. Setting the motor's 

temperature alarm and shutdown limits is crucial to averting 

such issues. Ignoring this preventative step might cause 

serious problems for the motor. 

Sensor data was gathered every second under both normal 

and malfunctioning circumstances. An imbalance mass was 

employed to imitate the required vibration in the motor system 

brought on by uneven loading. There was an increase in 

temperature and current when a bigger capacitor was 

employed to mimic the rise in motor current. This distinction 

needs to be made at the start of a project by a data. 

 

 

5. RESULTS AND DISCUSSION 

 

In this work, a DNN model has been used to classify the 

different types of proposed system failure. Before applying the 

DNN algorithm, a dataset must be proposed such as 

normalizing and labeling the different classes as follows:  

i) Normalization: Dataset normalization is a curried 

preprocess step in machine learning. It involves transferring 

the feature at the dataset to common scales, typically between 

send 1 or -1. This ensures that no single feature 

disproportionately influences the model's learning process. By 

day, the model performance is improved, and the training 

process is sped up. Also, a fair feature contralto is achieved 

when features with large ranges are prevented from 

dominating those with  

 

𝑋scaled =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (4) 

 

ii) Dataset labeling: classes are preprocessed to convert 

categorical data into a numerical formal that machine learning 

algorithms can understand. It creates new binary columns 0 or 

1 for each unique category.  

iii) Dataset splitting: Dataset has been split into 70% 

training and 30% testing, where the training set is used to train 

the model, which is normally the largest pertain of data. 

Testing is used to assess the fined performance of the trained 

model and unseen data. This provides estimating of how well 

the model generalizes. Figure 5 shows the collected dataset 

distribution for five types of classes, namely normal, over 

current, heavy load, stop, and misalignment. As shown in this 

figure, the class is not uniformly distributed. Figure 6 shows 

the four types of performance metrics, which are accuracy, 

loss, precision, and recall. These metrics show the training 

phase performance based on a training set in the dataset. The 

training accuracy was 0.9957 while the testing accuracy was 

1.00, and the training loss was 0.0029 while the testing loss 

was 0.0014. 

 

 
 

Figure 5. The collected dataset distribution for five types of 

classes 

 

One performance-measuring method for assessing a 

classification model's accuracy is a confusion matrix. In 

supervised learning, where the actual values of the data are 

known, it is very helpful. Rather than being a 2×2 matrix, a 

multiclass confusion matrix is an NxN matrix, where N is the 

number of classes. This type of confusion matrix is an 

extension of the confusion matrix used to evaluate models that 

categorize examples into more than two classes. This is 

especially helpful for issues involving more than two classes. 

Every component in the matrix The number of times an 

instance of class i was assigned to class j is denoted by ci,j. A 

complete set of measures for the confusion matrix as a whole 

may. 
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Figure 6. The four types of performance matric 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃(𝐶𝑖)
𝑁
𝑖=1

∑ ∑ 𝐶𝑖,𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 (5) 

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝐶𝑖) =
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑁(𝐶𝑖)
 (6) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖) =
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑃(𝐶𝑖)
 (7) 

 

𝐹1(𝐶𝑖) =
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙(𝐶𝑖) ∗ 𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝐶𝑖)

𝑟𝑒𝑐𝑎𝑙(𝐶𝑖) + 𝑟𝑒𝑐𝑎𝑙(𝐶𝑖)
 (8) 

 

where, 

TP(Ci) is true positive for classi, FN(Ci) is false negative for 

classi. 

Figure 7 shows the multiclass confusion matrix, while Table 

5 shows the classification report for each class. 

 

Table 5. Classification report 

 
Class Precision Recall Fl-Score Support 

0 0.98 0.97 0.98 852 

1 0.99 0.99 0.99 1993 

2 1.00 1.00 1.00 6046 

3 1.00 1.00 1.00 1348 

4 1.00 1.00 1.00 4967 

Accuracy   1.00 15206 

Macro avg 0.99 0.99 0.99 15206 

Weighted avg 1.00 1.00 1.00 15206 

 
 

Figure 7. Confusion matrix  

 

 

6. CONCLUSION 

 

This work effectively built an IIoT-based PdM system to 

classify problems in industrial AC motors by use of a DNN. 

By combining three AC motors, four different kinds of 

sensors: vibration, current, temperature, and ambient 

temperature. A complete dataset was gathered under both 

normal and induced fault settings. With a minimum loss of 
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0.0014, the proposed DNN model showed remarkable 

performance and 100% accuracy in fault classification 

throughout testing. Important contributions include the 

development of a proprietary multiclass dataset, the pragmatic 

implementation of a cloud-based DNN model for real-time 

monitoring, and the validation of IIoT-driven PdM as a 

reliable approach to lower unplanned downtime and 

maintenance costs. 

The findings highlight how well deep learning performs in 

industrial uses, especially when high-quality sensor data is 

supporting it. Future research may investigate distributed 

learning models, including federated or split learning, to 

improve data privacy and scalability among several machines. 

Furthermore, improving the dependability and real-time 

responsiveness of the system might involve extending the 

dataset to incorporate more varied fault situations and 

including edge computing for distributed processing. In 

Industry 4.0 environments, our research opens the path for 

smarter, data-driven maintenance practices.  
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