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This research paper deals with computation of Feasible command strategies to guide a 

four-wheeled autonomous vehicle to move from a specified initial state to an eventual final 

state while minimizing a running cost. The problem is solved as follows: The vehicle is 

mathematically modeled as a non-linear system of seven ODEs with seven state and four 

command variables. The commands represent the controls. A costate system of seven 

ODEs is generated. The control’s Feasibility conditions generate four constrained Feasible 

command strategies and each of them is defined as a function of states and costates. The 

state system and the costate system are rewritten accordingly. Such systems are then joined 

to give a nonlinear system of fourteen ODEs and an initial value problem. The results are 

the Feasible system response involving the robot path in the horizontal XY plane and the 

robot velocity, the costate functions, the command functions. Computational Simulations 

are developed and presented to summarize the results and to convince the readers on the 

accuracy. 
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1. INTRODUCTION

Nowadays, there exist several activities which are very difficult 

and dangerous for human to execute. This is the case for work in 

hazardous nuclear fields, mine fields, very narrow or confined fields, 

or fields requiring a lot of effort and attention for humans, etc. This 

inspired some researchers to focus their studies on robots and 

specifically autonomous vehicles. This increased interest from 

researchers, which can be noticed by the amount of papers on 

autonomous vehicles carried out over the last decades. 

An autonomous vehicle is a self-propelled vehicle which moves 

without a driver and without human intervention. For example, it may 

be automated that a vehicle moves from a point to another. The self- 

propelled vehicle may also be planned to move from any point and 

follow asymptotically a prescribed trajectory. It may also be set to 

move from a random point to another or from a fixed point to a 

possible final point. This paper deals specifically with a four-wheeled 

vehicle robot in which the front wheels are connected to an axle as 

well as the rear wheels. The wheels are assumed to roll without 

slipping. This implies the existence of nonholonomic constraints 

from which a system of three ordinary differential equation (ODE)s 

defining a part of the vehicle kinematics is constructed. The second 

assumption is that each wheel is regulated independently by a 

reference command which controls its angular velocity. The 

existence of four wheels leads to the existence of four desired and 

reference commands. The third assumption is that all the four-wheel 

instantaneous angular velocities are different. The combination of all 

the assumptions enables the construction of a state-space non-linear 

system of seven ODEs involving seven state variables and four 

command variables which are the control variables. In this case the 

above-mentioned desired commands and the state variables (SV)s 

constitute the input control variables and vehicle system response 

respectively. 

A numerical scheme is developed to compute Feasible Command 

strategies to instruct the autonomous vehicle to drive from a specified 

initial state to a desired final state in a given time slot such that a 

performance index is minimized. Such performance index is the 

running energy cost. Existing literature has a considerable and 

significant number of papers carried out over the past years 

investigating the mathematical modelling and computational 

simulations of autonomous vehicles and on the robot in general. 

Costa et al. [1] examined the robot competition which happens in an 

emulated factory plant, Zyada et al. [2] applied Fuzzy Logic 

technique to deal with manipulation control, Wang et al. [3] suggests 

a control policy for a robot fish. Grandi et al. [4] implemented the 

UniBot remote Lab, Schneider et al. [5] investigated on a surgical 

robot motion, Huang [6] dealt with one-wheeled vehicles for which 

he develops a self-balancing controller (SBC), Sayyaadi et al. [7] 

addressed a problem on car-like multi robots, Ata and Myo [8] 

controlled a riderless autonomous bicycle by using inverse dynamic 

control. Becerra [9] described an obstacle avoidance method for a 

nonholonomic vehicle, Chachuat [10] introduced the nonlinear 

programming problem. Magrab and Azarm [11] provided notes to 

develop to readers a grasp of MATLAB programming techniques. Gu 

and Hu [12] developed a receding horizon (RH) controller for 

tracking control of a nonholonomic mobile robot. Hussein and Bloch 

[13] used an affine connection formulation to analyze and solve an

optimal control problem for a class of nonholonomic, underactuated

mechanical systems. Kirk [14] introduces the three facets of optimal

control which are dynamic programming, Pontryagin’s Minimum

Principle and numerical techniques for trajectory optimization.

Masoud and Masoud [15] discussed the generation of a control signal

that would instruct the actuators of a robotics manipulator to drive

motion along a safe and well-behaved path to a desired target. Roberts

and Shipman [16] developed some shooting techniques to solve two-

point boundary value problems. Yang et al. [17] addressed the

problem of formation control and obstacle avoidance for a group of

nonholonomic mobile robots. Tsuji et al. [18] considered a new

trajectory generation method of the artificial potential field approach
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to a real-time motion planning problem. Klancarc and Skrjanc [19] 

presented a model-predictive trajectory-tracking control for the path 

planning of a mobile robot. Krotov [20] used a fireman method to 

solve optimal control problems. Kumar and Sukavanam [21] 

developed a trajectory tracking control based on the kinematics for a 

four wheeled mobile robot. Lamber [22] discussed numerical 

methods for solving initial value problems of ordinary differential 

equations. Moore [23] provided some notions to get readers master 

MATLAB programming. This paper uses Octave / MATLAB to 

solve the problem. Zhang et al. [24] investigated the optimization 

problem by using optimal control method. Tyatyushkin et al. [25] 

developed an algorithmic support for some classes of nonlinear 

optimal control problems. Buldaev [26] addressed a new procedure 

to optimization of nonlinear control systems. All the above-cited 

papers concern autonomous robots. To the best of my knowledge, 

none of those papers considered the control of a four-wheeled 

autonomous vehicle and applied optimal control theory methods. 

None of them performs the computation of feasible state functions of 

the system, the computation of the corresponding feasible costate 

functions and the computation of feasible speed. Generally, one can 

clearly see in most of papers dealing with a four-wheeled autonomous 

vehicle that, before applying optimal control theory, the system is 

primarily simplified to enable easily the computation of its variables 

and parameters. Most often, the state system is transformed, using a 

critical point, into a linear one. In those papers certain parameters and 

/ or are set to zeros. The simplifications are executed to enable the 

application of certain operations such as designing a quadratic 

regulator. However, when a nonlinear control system is simplied into 

a linear one, if no further operation is performed to prevent loss of 

information and alteration, then the final solution will not be 

significantly reliable. The approximate solution will be significantly 

different to the exact solution. As one can see, in this paper the control 

system is highly nonlinear and no simplification has been performed 

on it. No other paper has considered the problem in which each wheel 

has a reference command. No paper has considered the problem of 

running cost minimization. None of them has computed the 

optimality conditions. No paper has performed the derivation of a 

costate system of ODEs adjoining the state system. Also, in the 

literature, no paper reduces the impact of the size of the initial costate 

vector on the length of the robot trajectory. This paper uses optimal 

control theory to compute feasible control strategies of an 

autonomous vehicle and feasible state trajectories such that the 

vehicle running cost is minimized. 

This article relates to operations research, optimal control theory, 

robotics, signal and image processing and computer vision. It makes 

use of optimal control theory to solve a robotic problem. This paper 

develops mathematical models and computational simulations and 

most of the solved problems are formulated in terms of optimal 

control problems. 

This paper develops open-loop control strategies for a four-

wheeled autonomous vehicle. In most papers, the control vector is 

defined by the translational velocity and the angular velocity whereas 

in this paper each wheel’s angular velocity is independently regulated 

by a reference command variable which is a control variable. 

Conditions of optimality are derived and have generated an initial 

value problem. Different cases for the initial state vector are 

considered to predict and assess the trajectory of the vehicle. Since 

the system of ODEs joining the state and the costate system is highly 

nonlinear, the authors use a numerical method to solve it. This study 

developed Computer programs to produce computational simulations, 

which summarize the results and provide evidence about their 

reliability and effectiveness. 

The substantial contributions of this paper are the construction of 

mathematical models, the computation of four feasible control 

strategies, the computation of seven feasible state functions 

representing the feasible system responses to reference commands, 

and the computation of seven costate (adjoint) functions. All the 

computations are made possible by the underlying computer 

programs developed in Octave / Matlab. The way the four-wheeled 

autonomous vehicle is modelled can inspire the modelling of any 

other autonomous vehicle and in some ways and any autonomous 

system in general. In order to doublecheck and confirm the reliability 

and the effectiveness of my results obtained with Octave / MATLAB, 

some computer programs were developped with Scilab and results 

were computed and compared. For the gaps, the controls found in 

literature have some limitations in handling the state system. Most of 

time the system is simplified before computing those controls. But in 

my paper the controls can handle any size and any kind of state 

system nonlinearity. They can handle any state system as it is. There 

will be no need to simplify the system. The developed robust Octave 

/ MATLAB and Scilab Computer Program functions can handle any 

system nonlinearity or singularity. 

The advancement of science and technology led the universities to 

define new and multidisciplinary research areas. It also enabled 

automation industries to find new and optimal strategies to design and 

manage projects for their businesses such that profits are maximized 

and costs of operation are minimized. Depending on the economic 

and political world, each industrial research project can be associated 

to an optimization aspect. Further, it inspired the governments to 

update their regulations accordingly. This article seeks to contribute 

to the advancement of science and technology as it can be used by 

any academic and / or any industrial researcher working on robotics 

and / or optimal control theory. In the academic environment, 

depending on the specific research focus, this study provides several 

significant and considerable insights to define new research 

directions in robotics, in optimal control, in numerical and 

computational simulations. Also, it inspires studies of kinematics and 

dynamics of autonomous vehicles which are very critical in the 

manufacturing industries. Further, this article can also enable 

researchers and academics to predict the behaviour of self-propelled 

vehicles and to perform an optimal path planning based on the 

vehicle’s settings. The Mathematical Models and Computational 

Simulations developed in this study provide an unprecedented and 

unique approach for predicting the behaviour of autonomous vehicles. 

From the developed mathematical models, one can study the vehicle 

performance against uncertainties. In the industrial sector, this paper 

is useful to all staffs and practitioners working in the manufacturing 

of autonomous vehicles. It enables them to perform simulations in the 

path planning projects of autonomous vehicles. It enables the 

simulations of any other robots. The paper is structured as follows: 

After this introductory part, Section 2 outlines the mathematical 

models defined by the running cost to minimize, the state-space 

system from which is based this paper, Section 3 defines the 

methodology and designs a schematic to summarize the procedure for 

solving the problem. Section 4 focuses on computing the system 

Hamiltonian, which prepares the derivation of normal equations of 

optimality addressed in Section 4. Section 5 provides solutions to the 

normal equations of optimality as well as numerical and 

computational simulations for the results of the joined state-costate 

system of ODEs. To confirm the accuracies of the results, two 

versions of Scilab computer programs were developed for the same 

problems and one can see that the results are the same as the ones 

obtained by using Octave / MATLAB computer programs. All the 

computer programs are in the Appendix. 

 

 

2. MATHEMATICAL MODEL 

 

2.1 Kinematic model 

 

The nonholonomic constraints of the vehicle are defined as: 

 
𝑑𝑥

𝑑𝑡
= 𝑘1∑ ωi

4
i=1 cos(𝜃)  (1) 

 
𝑑𝑦

𝑑𝑡
= 𝑘1∑ ωi

4
i=1 sin(𝜃)  (2) 

 
𝑑𝜃

𝑑𝑡
= 𝑘2 ∑ ωi

4
i=1   (3) 

 

The wheels’ angular velocities are governed by a closed-
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loop system of separable ODEs given by: 

 
𝑑𝜔1

𝑑𝑡
= −𝑙1𝜔1 + 𝑙1𝑢1, −

2𝜋

3
𝑟𝑎𝑑/𝑠 ≤ 𝑢1 ≤

2𝜋

3
𝑟𝑎𝑑/𝑠 (4) 

 
𝑑𝜔2

𝑑𝑡
= −𝑙2𝜔2 + 𝑙2𝑢2, −

2𝜋

3
𝑟𝑎𝑑/𝑠 ≤ 𝑢2 ≤

2𝜋

3
𝑟𝑎𝑑/𝑠  (5) 

 
𝑑𝜔3

𝑑𝑡
= −𝑙3𝜔3 + 𝑙3𝑢3, −

2𝜋

3
𝑟𝑎𝑑/𝑠 ≤ 𝑢3 ≤

2𝜋

3
𝑟𝑎𝑑/𝑠  (6) 

 
𝑑𝜔4

𝑑𝑡
= −𝑙4𝜔4 + 𝑙4𝑢4, −

2𝜋

3
𝑟𝑎𝑑/𝑠 ≤ 𝑢4 ≤

2𝜋

3
𝑟𝑎𝑑/𝑠 (7) 

 

with, −
2𝜋

3
𝑟𝑎𝑑/𝑠 ≤ 𝑢𝑖 ≤

2𝜋

3
𝑟𝑎𝑑/𝑠, i=1, 2, 3, 4. 

The whole nonlinear state-space system determining the 

kinematics of the vehicle is given by: 

 

𝑑𝑥

𝑑𝑡
= 𝑘1∑ωi

4

i=1

cos(𝜃) (8) 

 
𝑑𝑦

𝑑𝑡
= 𝑘1∑ ωi

4
i=1 sin(𝜃)  (9) 

 
𝑑𝜃

𝑑𝑡
= 𝑘2 ∑ ωi

4
i=1   (10) 

 
𝑑𝜔1

𝑑𝑡
= −𝑙1𝜔1 + 𝑙1𝑢1  (11) 

 
𝑑𝜔2

𝑑𝑡
= −𝑙2𝜔2 + 𝑙2𝑢2  (12) 

 
𝑑𝜔3

𝑑𝑡
= −𝑙3𝜔3 + 𝑙3𝑢3  (13) 

 
𝑑𝜔4

𝑑𝑡
= −𝑙4𝜔4 + 𝑙4𝑢4  (14) 

 

where, (x, y) is the vehicle’s position on the horizontal plane, 

θ is the heading angle that the robot makes with the x axis, ωi 

is the angular velocity of wheel i, ui is the commanded angular 

velocity constituting the control variable, ki, i=1, 2 and li, i=1, 

2, 3, 4 are constant of proportionality. From what that precedes, 

notice that in general the four wheel angular velocities satisfy 

the following rules: 
𝑑𝜔𝑖

𝑑𝑡
= −𝑙𝑖𝜔𝑖 + 𝑙𝑖𝑢𝑖 for i=1, 2, 3, 4, where 

ui is the reference command to wheel i which is its control 

variable. 

 

 
 

Figure 1. Four-wheeled autonomous vehicle (DARPA) 
Note: DARPA: Defence Advanced Research Project Agency. It is a United 

States Agency 

 

The system defined by the Eqs. (8)-(14) constitutes the 

kinematic model of the vehicle. Such a vehicle is represented 

by Figure 1. In vector form, such a model can be rewritten as: 

𝑑𝑌

𝑑𝑡
= 𝑓(𝑡, 𝑌, 𝑢)  (15) 

 

where, t is the independent time variable, 𝑌 =
[x, y, 𝜃, 𝜔1, 𝜔2, 𝜔3, 𝜔4] ∈ ℝ7  is the state vector, 𝑢 =
[𝑢1, 𝑢2, 𝑢3, 𝑢4]  ∈ ℝ4  is the reference command (control) 

vector. 
 

2.2 Objective functional 

 

The total cost to minimize is given by: 

 

𝐽 = ∫ (
𝑇

0
∑ 𝑐𝑖𝑢𝑖

24
𝑖=1 )𝑑𝑡  (16) 

 

where, for each i=1, 2, 3, 4, ci is a constant of proportionality, 

ui is a reference command for the vehicle’s wheel i; ∑ 𝑐𝑖𝑢𝑖
24

𝑖=1  

is the cost rate. 𝐽 = ∫ (
𝑇

0
∑ 𝑐𝑖𝑢𝑖

24
𝑖=1 )𝑑𝑡 is the total running cost. 

Each unknown reference command ui is a control function. 

 

2.3 Problem formulation 

 

This paper’s problem is the following: Compute the feasible 

command strategies ui i=1, 2, 3, 4 and the corresponding 

feasible state functions x, y, θ, ω1, ω2, ω3, ω4, also called 

feasible robot system responses, to guide the four-wheeled 

vehicle from a specified initial state to a final state while 

minimizing the total running cost. 

 

 

3. METHODOLOGY 

 

Mathematical Modeling and Computational Simulations 

constitute the methodology used. As one can see above, the car 

is modeled as a system of ODEs. For computational 

simulations, Octave / MATLAB and Scilab Computer 

Programs are developed. The procedure for solving the 

problem is summarized in Figure 2. 

 

 
 

Figure 2. Problem solving procedure 
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4. COMPUTATION OF THE HAMILTONIAN 

 

The Hamiltonian is defined as follows: 

 

H(t, Y,u, α)=∑ ciui
24

i=1 +∑ αifi(t, Y, u)
7
i=1   (17) 

 

where, α = [α1, α2, α3, α4, α5, α6, α7]
T ∈ ℝ7  is the vector 

storing the costate variables. 
1

2
∑ ciui

24
i=1  is the rate at which 

the energy is spent by the vehicle. Each of the following 

function represents the right hand side of the state system, 

f1(t, Y, u) = k1∑ ωi
4
i=1 cos(θ)  is the rate of change of the 

robot position along x direction, f2(t, Y, u) =
k1∑ ωi

4
i=1 sin(θ) is the rate of change of the robot position 

along 𝑦  direction, f3(t, Y, u) = 𝑘2(ω1 − ω2)  is the rate of 

change of the heading angle, 

f4(t, Y, u) = −l1ω1 + l1u1,  

f5(t, Y, u) = −l2ω2 + l2u2, 

f6(t, Y, u) = −l3ω3 + l3u3,  

f7(t, Y, u) = −l4ω4 + l4u4. 

In general we have, fi(t, Y, u) = −li−3ωi−3 + li−3ui−3 is the 

rate of change of the wheel 𝑖 angular velocity. 
 

 

5. CONDITIONS FOR OPTIMALITY 

 

5.1 Normal conditions of optimality 

 

Principle of optimality is going to be considered in this 

paper. Such a principle will generate a set of equations leading 

to the computation of feasible commands from which can be 

obtained the feasible system response and additional 

derivations.  

The normal equations (for the controls) for optimality are 

given by: 

 
∂H

∂u1
= 2c1u1 + α4l1 = 0  (18) 

 
∂H

∂u2
= 2c2u2 + α5l2 = 0  (19) 

 
∂H

∂u3
= 2c3u3 + α6l3 = 0  (20) 

 
∂H

∂u4
= 2c4u4 + α7l4 = 0  (21) 

 

which can be written in general as: 

 
𝜕𝐻

𝜕𝑢𝑖
= 2𝑐𝑖𝑢𝑖 + 𝑙𝑖𝛼𝑖+3 = 0 for 𝑖 = 1,2,3,4 (22) 

 

which solved for the control functions, give: 

 

𝑢1 = −0.5(𝑙1/𝑐1)𝛼4 (23) 

 

𝑢2 = −0.5(𝑙2/𝑐2)𝛼5 (24) 

 

𝑢3 = −0.5(𝑙3/𝑐3)𝛼6 (25) 

 

𝑢4 = −0.5(𝑙4/𝑐4)𝛼7 (26) 

 

and can be expressed in general as 𝑢𝑖 = −(𝑙𝑖/𝑐𝑖)𝛼𝑖+3 where 

𝑢𝑚𝑖𝑛 ≤ −(𝑙𝑖/𝑐𝑖)𝛼𝑖+3 ≤ 𝑢𝑚𝑎𝑥  for 𝑖 = 1,2,3,4. 

 

5.2 Costate equations 

 

The costate system is given by: 

 
𝑑𝜶1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦1
= −

𝜕𝐻

𝜕𝑥
= 0  (27) 

 
𝑑𝜶2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦1
= −

𝜕𝐻

𝜕𝑦
= 0  (28) 

 
𝑑𝜶3

𝑑𝑡
= −

𝜕𝐻

𝜕𝜃
= 𝑘1∑ ωi

4
i=1 (𝛼1 sin(𝜃) − 𝛼2 cos(𝜃))  (29) 

 
𝑑𝛼4
𝑑𝑡

= −
𝜕𝐻

𝜕𝜔1

= −𝑘1(𝛼1 cos(𝜃)

+ 𝛼2sin(𝜃)) − (𝑘2𝛼3 − 𝑙1𝛼4)  

(30) 

 
𝑑𝜶5

𝑑𝑡
= −

𝜕𝐻

𝜕𝜔2
= −𝑘1(𝛼1 cos(𝜃) + 𝛼2sin(𝜃)) −

(𝑘2𝛼3 − 𝑙2𝛼5)   
(31) 

 
𝑑𝜶6

𝑑𝑡
= −

𝜕𝐻

𝜕𝜔3
= −𝑘1(𝛼1 cos(𝜃) + 𝛼2sin(𝜃)) −

(𝑘2𝛼3 − 𝑙3𝛼6)   
(32) 

 
𝑑𝜶7

𝑑𝑡
= −

𝜕𝐻

𝜕𝜔4
= −𝑘1(𝛼1 cos(𝜃) + 𝛼2sin(𝜃)) −

(𝑘2𝛼3 − 𝑙4𝛼7)   
(33) 

 

 

6. STATE-COSTATE SYSTEM 

 

The first-order necessary conditions of optimality are 

derived and then yield a system of ODEs containing the 

feasible state and the feasible costate equations. Initial 

conditions are associated to the system from which are 

obtained the feasible solution. 

Define z=[Y, α]. The combined state system and costate 

system can be defined in general as: 

 

z=[z1, …, z14] (34) 

 

where, 𝑧 ∈ ℝ14 is the vector storing the state variables and the 

costate variablhes in which we have z1=x; z2=y; z3=θ; z4=ω1; 

z5=ω2; z6=ω3; z7=ω4; z8=α1; z9=α2; z10=α3; z11=α4; z12=α5; 

z13=α6; z14=α7, 𝑢 ∈ ℝ4  is the vector storing the control 

variables. Then, the combination of the state and costate 

systems gives the following: 
 

𝑑𝑧1

𝑑𝑡
= 𝑘1 ∑ zi

7
i=4 cos(𝑧3)  (35) 

 
𝑑𝑧2

𝑑𝑡
= 𝑘1 ∑ zi

7
i=4 sin(𝑧3)  (36) 

 
𝑑𝑧3

𝑑𝑡
= 𝑘2∑ zi

7
i=4   (37) 

 
𝑑𝑧4

𝑑𝑡
= −𝑙1𝑧4 + 𝑙1𝑢1  (38) 

 
𝑑𝑧5

𝑑𝑡
= −𝑙2𝑧5 + 𝑙2𝑢2  (39) 

 
𝑑𝑧6

𝑑𝑡
= −𝑙3𝑧6 + 𝑙3𝑢3  (40) 

 
𝑑𝑧7

𝑑𝑡
= −𝑙4𝑧7 + 𝑙4𝑢4  (41) 
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𝑑𝑧8

𝑑𝑡
= 0  (42) 

 
𝑑𝑧9

𝑑𝑡
= 0  (43) 

 
𝑑𝑧10

𝑑𝑡
= 𝑘1∑ zi

7
i=4 (𝑧8 sin(𝑧3) − 𝑧9 cos(𝑧3))  (44) 

 
𝑑𝑧11

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙1𝑧11)   
(45) 

 
𝑑𝑧12

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙2𝑧12)   
(46) 

 
𝑑𝑧13

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙3𝑧13)   
(47) 

 
𝑑𝑧14

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙4𝑧14)   
(48) 

 

In order to get the control functions vanished in the control 

system and remain with only the state variables and the costate 

variables, substitute the expressions of the control functions 

defined by Eqs. (23)-(26) into the combined state and costate 

system. We then obtain the following system: 

 
𝑑𝑧1

𝑑𝑡
= 𝑘1 ∑ zi

7
i=4 cos(𝑧3)  (49) 

 
𝑑𝑧2

𝑑𝑡
= 𝑘1 ∑ zi

7
i=4 sin(𝑧3)  (50) 

 
𝑑𝑧3

𝑑𝑡
= 𝑘2∑ zi

7
i=4   (51) 

 
𝑑𝑧4

𝑑𝑡
= −𝑙1𝑧4 −

0.5𝑙1
2𝑧11

𝑐1
  (52) 

 
𝑑𝑧5

𝑑𝑡
= −𝑙2𝑧5 −

0.5𝑙2
2𝑧12

𝑐2
  (53) 

 
𝑑𝑧6

𝑑𝑡
= −𝑙3𝑧6 −

0.5𝑙3
2𝑧13

𝑐3
  (54) 

 
𝑑𝑧7

𝑑𝑡
= −𝑙4𝑧7 −

0.5𝑙4
2𝑧14

𝑐4
  (55) 

 
𝑑𝑧8

𝑑𝑡
= 0  (56) 

 
𝑑𝑧9

𝑑𝑡
= 0  (57) 

 
𝑑𝑧10

𝑑𝑡
= 𝑘1∑ zi

7
i=4 (𝑧8 sin(𝑧3) − 𝑧9 cos(𝑧3))  (58) 

 
𝑑𝑧11

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙1𝑧11)   
(59) 

 
𝑑𝑧12

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙2𝑧12)   
(60) 

 
𝑑𝑧13

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙3𝑧13)   
(61) 

 

𝑑𝑧14

𝑑𝑡
= −𝑘1(𝑧8 cos(𝑧3) + 𝑧9sin(𝑧3)) − (𝑘2𝑧10 −

𝑙4𝑧14)   
(62) 

 

subject to the following initial conditions: 

 

𝑧𝑘(𝑡0) = 𝑧0𝑘 for 1 ≤ 𝑘 ≤ 14  (63) 

 

where, t0 is the initial time and tf is the final time for the robot 

motion. 

 

 

7. NUMERICAL AND COMPUTATIONAL 

SIMULATIONS 

 

The following numerical constants are used: a = 0.4; Radius 

of each wheel. L=1; Length of each axle. k1=2; Constant of 

proportionality. k2=0.5*k1; Constant of proportionality. 

k1=a/2; k2=a/L; l1=0.6; l2=0.6; l3=0.48; l4=0.48; c1=1; c2=1; 

c3=1; c4=1; t0=0; tf=15; n=501; umin=-2*pi/3; umax=2*pi/3; 

The aim is to first apply a 4th order R-K method to solve the 

associated initial value problem: 

 

 
𝑑𝑍

𝑑𝑡
= 𝑔(𝑡, 𝑍, 𝑢), 𝑍(𝑡0) = 𝑍0 (64) 

 

The discrete points of each component Zi, i=1, 2, …, 14 of 

Z are obtained as: 

 

Zi,j=Zi (tj) (65) 

 

where, we have: 

 

𝑍𝑖,0 = 𝑍𝑖(𝑡0) (66) 

 

In other words, for each feasible state function or costate 

function Zi, Zi,0=Zi(t0) is the initial condition. The set of ODEs 

(49)-(63) is coded into an Octave / MATLAB function and 

called “four_wheel_robot(t,z)”. Such a system is solved using 

the function called “runge(fs, t0, tf, N, z0)”. 

Such a function is called by an Octave / MATLAB function 

which is the main function called function main_four_wheel. 

For the set ODEs’ initial conditions, 4 cases of z0 are 

considered, as shown below: 

Case1: 

[zeros(7,1);0.96;0.83;0.17;0.56;0.24;0.70;0.29] 

Case2: 

[0;0;pi/2;zeros(4,1);0.38;0.91;0.35;0.21;0.34;0.32;0.46] 

Case3: 

[zeros(7,1);0.01;0.84;0.01;0.40;0.16;0.89;0.33] 

Case4: 

[0;0;pi/2;zeros(4,1);0.68;0.08;0.54;0.45;0.02;0.17;0.83] 

 

For each given initial condition, the first seven components 

represent the initial state vector and the last seven components 

represent the initial costate vector. The order in which they are 

processed to give the below computational simulations 

depends on the order in which the above matrix elements z0 

are stored.  

Figure 3 gives the controls1 defined by u1(t). u1(t) regulates 

the angular velocity ω1(t) of wheel1. Each u1(t) is associated 

to a given initial condition. Since we have 4 initial conditions 

then we have 4 computational simulations for u1(t). 

Figure 4 gives the controls2 defined by u2(t). u2(t) regulates 

the angular velocity ω2(t) of wheel2. Each u2(t) is associated 
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to a given initial condition. Since we have 4 initial conditions 

then we have 4 computational simulations for u2(t). 

Figure 5 gives the controls3 defined by u3(t). u3(t) regulates 

the angular velocity ω3(t) of wheel1. Each u3(t) is associated 

to a given initial condition. Since we have 4 initial conditions 

then we have 4 computational simulations for u3(t). 

 

 
 

Figure 3. Feasible control strategy 1 

 

 
 

Figure 4. Feasible control strategy 2 
 

 
 

Figure 5. Feasible control strategy 3 

 

Figure 6 gives the controls4 defined by u4(t). u4(t) regulates 

the angular velocity ω4(t) of wheel4. Each u4(t) is associated 

to a given initial condition. Since we have 4 initial conditions 

then we have 4 computational simulations for u4(t). u1(t), u2(t), 

u3(t) and u4(t) are the feasible controls that regulate 

respectively the angular velocities ω1(t), ω2(t), ω3(t) and ω4(t) 

of the four wheels.  

Figure 7 gives the trajectories travelled by the autonomous 

vehicle robot. (0.0) is the starting point for each trajectory. 

Each trajectory is associated to a given initial condition. Since 

we have 4 initial conditions then we have 4 computational 

simulations. The robot trajectory depends on the initial 

condition. The starting point is the origine. For each point on 

the robot trajectory, the direction of the corresponding tangent 

vector to the curve at the point depends on the initial condition 

of the state-costate system of ODEs. Figure 8 represents the 

robot speed function. At each point of the curve defining the 

robot speed function, the direction of the corresponding 

tangent vector depends on the initial condition. The above 

plotted computational simulations are the speeds of the robot. 

Each speed function is associated to a given initial condition. 

Since we have 4 initial conditions then we have 4 speed 

computational simulations.  

Figure 9 gives the first state, the x position of the robot. 

Each graph of state1 function is associated to a given initial 

condition. Since we have 4 initial conditions then we have 4 

state1 computational simulations. 
 

 
 

Figure 6. Feasible control strategy 4 
 

 
 

Figure 7. Feasible trajectories of the vehicle robot 
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Figure 8. Feasible robot speeds 

 

 
 

Figure 9. Feasible state1 (x position) of the vehicle robot 

 

Figure 10 gives the second state, the y position of the robot. 

Each graph of state2 function is associated to a given initial 

condition. Since we have 4 initial conditions then we have 4 

state2 computational simulations. 

 

 
 

Figure 10. Feasible state2 (y position) of the vehicle robot 

 

Figure 11 gives the third state, the heading angle of the robot. 

Each graph of state3 function is associated to a given initial 

condition. Since we have 4 initial conditions then we have 4 

state3 computational simulations. 

 

 
 

Figure 11. Feasible state3 (heading angle) of the vehicle 

robot 

 

 
 

Figure 12. Feasible state4 of the vehicle robot 

 

 
 

Figure 13. Feasible state5 of the vehicle robot 

 

Figure 12 gives the fourth state of the robot. Such a state 

function represents the angular velocity of Wheel1. Each 

graph of state4 function is associated to a given initial 
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condition. Since we have 4 initial conditions then we have 4 

state4 computational simulations. 

Figure 13 gives the fifth state of the robot. Such a state 

function represents the angular velocity of Wheel2. Each 

graph of state5 function is associated to a given initial 

condition. Since we have 4 initial conditions then we have 4 

state5 computational simulations. 

Figure 14 gives the sixth state of the robot. Such a state 

function represents the angular velocity of Wheel3. Each 

graph of state6 function is associated to a given initial 

condition. Since we have 4 initial conditions then we have 4 

state6 computational simulations. 

 

 
 

Figure 14. Feasible state6 of the vehicle robot 

 

Figure 15 gives the seventh state of the robot. Such a state 

function represents the angular velocity of Wheel4. Each 

graph of state7 function is associated to a given initial 

condition. Since we have 4 initial conditions then we have 4 

state7 computational simulations. The plots all the seven 

feasible states in the same coordinate systems, where each 

coordinate system is associated to an initial condition is the 

following.  

 

 
 

Figure 15. Feasible state7 of the vehicle robot 

 

Figure 16 gives the computational simulations of the 

combined 7 states of the robot. Each coordinate system graphs 

are associated to a given initial condition. Since we have 4 

initial conditions then we have 4 states computational 

simulations. In order to confirm the accuracy of the results 

obtained by using Octave / MATLAB program, additional 

computer programs are developed in Scilab. From those 

computer programs, the following are obtained: Figures 17-22 

correspond respectively to Figures 3-8. They are plotted to 

verify and confirm the reliabilities and accuracies of Figures 

3-8. 

 

 
 

Figure 16. Feasible states of the vehicle robot 

 

 
 

Figure 17. Feasible control strategy 1 

 

 
 

Figure 18. Feasible control strategy 2 
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Figure 19. Feasible control strategy 3 

 

 
 

Figure 20. Feasible control strategy 4 

 

 
 

Figure 21. Feasible trajectories of the vehicle robot 

 

To confirm the computational simulations for the states 

and the costate functions, the reader can follow the same 

procedure as previously. 

 
 

Figure 22. Feasible vehicle robot speeds 

 

 

8. CONCLUSIONS 

 

The application of Principle of Optimality to solve the 

Optimal Control Problem of a Four-Wheeled Autonomous 

Vehicle led to a Nonlinear System of fourteen ODEs involving 

seven state variables, seven costate variables and four control 

variables. The substitution of the Feasible Control expressions 

into the system gave a combined control-free system of state 

and costate differential equations. An Octave / MATLAB 

computer program based on the above described fourth-order 

Runge-Kutta method is developed to solve numerically the 

system. To confirm the results accuracies, additional computer 

programs written in scilab are used. The written computer 

programs are useful to any reader or any researcher who is 

familiar with programming so that he can replicate or learn 

more. The results are the Feasible Control Strategies, the 

Feasible State and Costate functions from which are extracted 

the Feasible Trajectories and the Feasible Speeds of the 

autonomous four-wheeled vehicle robot. 
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APPENDIX 

 

The combined state and costate nonlinear system of ODEs 

(49)-(63) is coded by the following Octave / MATLAB 

function: 

 

function dzdt= four_wheel_robot(t,u) 

dzdt = zeros(14,1); % Vector Initialization. c1=R;c2=R/L; 

a=0.4; L=1; k1=a/2; k2=a/L; l1=0.6; l2=0.6; l3=0.48; 

l4=0.48; c1=1; c2=1; c3=1; c4=1;   

dudt(1)=k1*(u(4)+u(5)+u(6)+u(7))*cos(u(3)); % Eq. (49) 

dudt(2)=k1*(u(4)+u(5)+u(6)+u(7))*sin(u(3)); % Eq. (50) 

dudt(3)=k2*(u(4)-u(5)); % Eq. (51) 

dudt(4)=-l1*u(4)+l1*(-(l1/c1)*u(11)); % Eq. (52)  

dudt(5)=-l2*u(5)+l2*(-(l2/c2)*u(12)); % Eq. (53) 

dudt(6)=-l3*u(6)+l3*(-(l3/c3)*u(13)); % Eq. (54) 

dudt(7)=-l4*u(7)+l4*(-(l4/c4)*u(14)); % Eq. (55) 

dudt(8)=0; % Eq. (56) 

dudt(9)=0; % Eq. (57) 

dudt(10)=k1*(u(4)+u(5)+u(6)+u(7))*(u(8)*sin(u(3))-

u(9)*cos(u(3))); % Eq. (58) 

dudt(11)=-k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))-

k2*u(10)+l1*u(11); % Eq. (59) 

dudt(12)=-

k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+k2*u(10)+l2*u(12);% 

Eq. (60) 

dudt(13)=-

k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l3*u(13); % Eq. (61) 

dudt(14)=-

k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l4*u(14); % Eq. (62) 

 

The above function can be written in a compact form 

 

function dudt= four_wheel_robot(t,u) 

dudt = zeros(14,1); % Vector Initialization.  

a=0.4; L=1; k1=a/2; k2=a/L; l1=0.07; l2=0.65; l3=0.58; 

l4=0.87; c1=1; c2=1; c3=1; c4=1;  

dudt=[k1*(u(4)+u(5)+u(6)+u(7))*cos(u(3));    

          k1*(u(4)+u(5)+u(6)+u(7))*sin(u(3));  
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          k2*(u(4)+u(5)+u(6)+u(7));  

          -l1*u(4)+l1*(-0.5*(l1/c1)*u(11));   

          -l2*u(5)+l2*(-0.5*(l2/c2)*u(12));  

          -l3*u(6)+l3*(-0.5*(l3/c3)*u(13));  

          -l4*u(7)+l4*(-0.5*(l4/c4)*u(14));  

          0;  

          0;  

          k1*(u(4)+u(5)+u(6)+u(7))*(u(8)*sin(u(3))-

u(9)*cos(u(3)));  

          -k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))-

k2*u(10)+l1*u(11); 

   -

k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+k2*u(10)+l2*u(12); 

          -k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l3*u(13); 

          -k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l4*u(14))]; 
 

 

Such a system is solved by using a fourth-order Runge-

Kutta numerical method coded by the following Octave / 

MATLAB function: 

 

function [t,u] = runge(fs,t0,tf,N,u0) 

%Implementation of a fourth-order Runge-Kutta 

numerical method; 

h=(tf-t0)./(N-1);%The step size 

s=t0:h:tf;%subdivision of the time interval into discrete 

subintervals  

t=s';% column vector t; u0 is the initial vector solution 

u = zeros(N,length(u0));%Each column is a discrete 

function;   

u(1,:) = u0.'; % The first row of the solution matrix is 

given; 

for n = 2:N 

k1 = feval(fs,t(n-1),u(n-1,:)); 

k2 = feval(fs,t(n-1)+(h/2),u(n-1,:)+(h/2)*k1'); 

k3 = feval(fs,t(n-1)+(h/2),u(n-1,:)+(h/2)*k2'); 

k4 = feval(fs,t(n-1)+h,u(n-1,:)+h*k3'); 

u(n,:) = u(n-1,:)+(h/6)*(k1'+2*k2'+2*k3'+k4'); 

end 

 

To solve the system of ODEs (defined by the function 

dudt=four_wheel_robot(t,u)) and then obtain all the state and 

costate functions, the function [t,u] = runge(fs,t0,tf,N,u0) is 

called by the following Octave / MATLAB function. 

 

function main_four_wheel 

 

clear all 

clc 

format short 

a=0.4; L=1; k1=a/2; k2=a/L; l1=0.6; l2=0.6; l3=0.48; 

l4=0.48; c1=1; c2=1; c3=1; c4=1;  

%These are Constants of proportionality c1=R;c2=R/L; 

t0=0; tf=5; N=501; h=(tf-t0)/(N-1); t=t0:h:tf;  

u=zeros(N,14); 
u01 =[zeros(7,1);0.96;0.83;0.17;0.56;0.24;0.70;0.29]; 
u02 =[zeros(2,1);pi/2;zeros(4,1);0.38;0.91;0.35;0.21;0.34;0.32;0.46]; 

u03 =[zeros(7,1);0.01;0.84;0.01;0.40;0.16;0.89;0.33]; 
u04 =[zeros(2,1);pi/2;zeros(4,1);0.68;0.08;0.54;0.45;0.02;0.17;0.83]; 

M=[u01,u02,u03,u04]; 

t=t'; 

for k=1:4 

  u0=M(:,k);  

[t,u]=runge_v2('four_wheel_robot',t0,tf,N,u0); 

control1=-(l1/c1)*u(:,11); control2=-(l2/c2)*u(:,12); 

control3=-(l3/c3)*u(:,13); control4=-(l4/c4)*u(:,14);  

control=[control1,control2,control3,control4]; 

end 

for k=1:4 

subplot(2,2,k); plot(t,control(:,1),'r', t,control(:,2),'r', 

t,control(:,3),'r', t,control(:,4),'r'); 

xlabel('t');ylabel('Controls'); 

end 

print 

C:\Users\Guest\Documents\8october2024\fourWheel_Rob

ot_Controlss1.png 

for k=1:4 

subplot(2,2,k);plot(u(:,1),u(:,2),'r-.'); 

xlabel('x');ylabel('y=f(x)'); title('Feasible Path')% Robot 

trajectory 

end 

print 

C:\Users\Guest\Documents\8october2024\fourWheel_Traj

ectory.png 

dx= k1*(u(:,4)+u(:,5)+u(:,6)+u(:,7)).*cos(u(:,3)); % x 

velocity; 

dy= k1*(u(:,4)+u(:,5)+u(:,6)+u(:,7)).*sin(u(:,3)); % y 

velocity; 

speed=(dx.^2 + dy.^2).^(0.5); 

for k=1:4 

subplot(2,2,k);plot(t,speed,'r'); xlabel('t');ylabel('speed'); 

end 

print 

C:\Users\Guest\Documents\8october2024\fourWheel_Rob

ot_speed.png 

for k=1:4 

subplot(2,2,k);plot(t,u(:,1),'r-.',t,u(:,2),'r-.',t,u(:,3),'r-.',t,u(:,

4),'r-.',t,u(:,5),'r-.',t,u(:,6),'r-.', t,u(:,7),'r-.'); 

xlabel('t');ylabel('States'); 

end 

print 

C:\Users\Guest\Documents\8october2024\fourWheel_Rob

ot_States.png 

for k=1:4  

subplot(2,2,k);plot(t,u(:,8),'r-.',t,u(:,9),'r-.',t,u(:,10),'r-.',t,u(:

,11),'r-.',t,u(:,12),'r-.',t,u(:,13),'r-.', 

t,u(:,14),'r-.');xlabel('t');ylabel('Costates'); 

end 

print 

C:\Users\Guest\Documents\8october2024\fourWheel_Rob

ot_Costates.png 

 
 

In order to confirm the results (obtained by using Octave / 

MATLAB program) and convince the reader on their  reliability, 

additional computer programs are developped in Scilab.  

The following set of codes can also yield the same above 

results. Such a set of codes is called four_wheel_Robot1. 

 

363



 

function dudt= four_wheel_robot1(t,u) 

dudt = zeros(14,1); // Vector Initialization.  

a=0.4; L=1; k1=a/2; k2=a/L; l1=0.6; l2=0.6; l3=0.48; 

l4=0.48; c1=1; c2=1; c3=1; c4=1;  

dudt(1)=k1*(u(4)+u(5)+u(6)+u(7))*cos(u(3)); 

dudt(2)=k1*(u(4)+u(5)+u(6)+u(7))*sin(u(3)); 

dudt(3)=k2*(u(4)-u(5)); 

dudt(4)=-l1*u(4)+l1*(-(l1/c1)*u(11));   

dudt(5)=-l2*u(5)+l2*(-(l2/c2)*u(12));  

dudt(6)=-l3*u(6)+l3*(-(l3/c3)*u(13));  

dudt(7)=-l4*u(7)+l4*(-(l4/c4)*u(14));  

dudt(8)=0;  

dudt(9)=0;  

dudt(10)=k1*(u(4)+u(5)+u(6)+u(7))*(u(8)*sin(u(3))-

u(9)*cos(u(3)));  

dudt(11)=-k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))-

k2*u(10)+l1*u(11);  

dudt(12)=-

k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+k2*u(10)+l2*u(12); 

dudt(13)=-k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l3*u(13);  

dudt(14)=-k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l4*u(14); 

endfunction 

// u1, u2, u3, u4, u5, u6 and u7 are the state variables,  

// u8, u9, u10, u11, u12, u13 and u14 are the costate 

variables, 

t0=0; tN=5; N=501; h=(tN-t0)/(N-1); t=t0:h:tN;  

u=zeros(N,14); 
u01 =[zeros(7,1);0.96;0.83;0.17;0.56;0.24;0.70;0.29]; 

u02 =[zeros(2,1);%pi/2;zeros(4,1);0.38;0.91;0.35;0.21;0.34;0.32;0.46]; 

u03 =[zeros(7,1);0.01;0.84;0.01;0.40;0.16;0.89;0.33]; 
u04 =[zeros(2,1);%pi/2;zeros(4,1);0.68;0.08;0.54;0.45;0.02;0.17;0.83]; 

M=[u01,u02,u03,u04]; 

t=t'; 

for k=1:4 

u0=M(:,k);  

u = ode(u0,t0,t,four_wheel_robot1); t=t '; u=u '; 

//subplot(2,2,k);plot(u(:,1),u(:,2), 'r-.'); 

//xlabel('x');ylabel('y=f(x)'); title('Path') 

//end 

//xs2png(0,'C:\Users\Guest\Documents\8october2024\ 

//fourWheel_Trajectory2.png') 

a=0.4; L=1; k1=a/2; k2=a/L; l1=0.6; l2=0.6; l3=0.48; 

l4=0.48; c1=1; c2=1; c3=1; c4=1; 

dx= k1*(u(:,4)+u(:,5)+u(:,6)+u(:,7)).*cos(u(:,3));  

dy= k1*(u(:,4)+u(:,5)+u(:,6)+u(:,7)).*sin(u(:,3));  

speed=(dx.^2 + dy.^2).^(0.5); 

control1=-(l1/c1)*u(:,11); control2=-(l2/c2)*u(:,12); 

control3=-(l3/c3)*u(:,13); control4=-(l4/c4)*u(:,14);  

control=[control1,control2,control3,control4]; 

subplot(2,2,k);plot(t,speed, 'r-.'); xlabel('t');ylabel('Speed'); 

title('Speed') 

end 

//xs2png(0,'C:\Users\Guest\Documents\8october2024\ 

//fourWheel_Trajectory2.png') 

 

subplot(2,2,k); plot(t,control(:,1),'r-.'); 

xlabel('t');ylabel('Control1'); xtitle('Feasible Control1') 

end 

xs2png(0,'C:\Users\Guest\Documents\8october2024\ 

fourWheel_Controlss4.png') 

 

//for k=1:4 

subplot(2,2,k); plot(t,control(:,1),'r', t,control(:,2),'r', 

t,control(:,3),'r', t,control(:,4),'r'); 

xlabel('t');ylabel('Controls'); 

end 

xs2png(0,'C:\Users\Guest\Documents\8october2024\ 

fourWheel_Robot_Controlss2.png') 

// All the other functions can be plotted similarly as in 

Octave / MATLAB. The reader can execise on that. 

 

four_wheel_Robot1 

clear all 

clc 

a=0.4; L=1; k1=a/2; k2=a/L; l1=0.07; l2=0.65; l3=0.58; 

l4=0.87; c1=1; c2=1; c3=1; c4=1; //These are Constants of 

proportionality c1=R;c2=R/L; 

deff('[w]=four_wheel_robot2(x,u)', 

['u1 = k1*(u(4)+u(5)+u(6)+u(7))*cos(u(3))', 

'u2 = k1*(u(4)+u(5)+u(6)+u(7))*sin(u(3))',  

'u3 = k2*(u(4)+u(5)+u(6)+u(7))', 

'u4 =-l1*u(4)+l1*(-0.5*(l1/c1)*u(11))',  

'u5 = -l2*u(5)+l2*(-0.5*(l2/c2)*u(12))', 

'u6 = -l3*u(6)+l3*(-0.5*(l3/c3)*u(13))',  

'u7 = -l4*u(7)+l4*(-0.5*(l4/c4)*u(14))', 

'u8 = 0',  

'u9 = 0', 

'u10 = -k1*(u(4)+u(5)+u(6)+u(7))*(u(8)*sin(u(3))-   

u(9)*cos(u(3)))',  

'u11 =-(k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+k2*u(10)-

l1*u(11))', 

'u12 =-(k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+k2*u(10)-

l2*u(12))', 

'u13= -(k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+k2*u(10)-

l3*u(13))', 

'u14=-(k1*(u(8)*cos(u(3))+u(9)*sin(u(3)))+l4*u(14))', 

'w=[u1;u2;u3;u4;u5;u6;u7;u8;u9;u10;u11;u12;u13;u14]']); 

 t0=0; tN=5; N=501;h=(tN-t0)/(N-1);t=t0:h:tN;  

u=zeros(N,14); 
u01 =[zeros(7,1);0.96;0.83;0.17;0.56;0.24;0.70;0.29]; 

u02 =[zeros(2,1);%pi/2;zeros(4,1);0.38;0.91;0.35;0.21;0.34;0.32;0.46]; 

u03 =[zeros(7,1);0.01;0.84;0.01;0.40;0.16;0.89;0.33]; 

u04 =[zeros(2,1);%pi/2;zeros(4,1);0.68;0.08;0.54;0.45;0.02;0.17;0.83]; 

M=[u01,u02,u03,u04]; 

t=t'; 

for k=1:4 

    u0=M(:,k);  

u = ode(u0,t0,t,four_wheel_robot2); t=t '; u=u '; 

control1=-0.5*(l1/c1)*u(:,11); control2=-

0.5*(l2/c2)*u(:,12); control3=-0.5*(l3/c3)*u(:,13); 

control4=-0.5*(l4/c4)*u(:,14);  

control=[control1,control2,control3,control4]; 

dx= k1*(u(:,4)+u(:,5)+u(:,6)+u(:,7)).*cos(u(:,3));  x 

velocity; 

dy= k1*(u(:,4)+u(:,5)+u(:,6)+u(:,7)).*sin(u(:,3));  y 

velocity; 

dtheta=k2*(u(:,4)+u(:,5)+u(:,6)+u(:,7));   Heading angular 

velocity; 

dDelta=-l1*u(:,4)+l1*(-0.5*(l1/c1)*u(:,11));  Steering 

angular %velocity;  

dOmega =-l2*u(:,5)+l2*(-0.5*(l2/c2)*u(:,12));  Rate of 

change of the heading angular velocity; 

dPhi=-l3*u(:,6)+l3*(-0.5*(l3/c3)*u(:,13));  Rate of change 

of the steering angular velocity 

dudt7=-l4*u(:,7)+l4*(-0.5*(l4/c4)*u(:,14)); 

speed=(dx.^2 + dy.^2).^(0.5); 

end 
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