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This paper proposed an Adaptive Cruise Control (ACC) control algorithm in vehicles. The 

ACC aims to determine required acceleration based on the distance measured between cars 

and the speed of the vehicle itself. The objective of this control system is to follow the 

front vehicle with a safety distance between lead and ego vehicles. For this purpose, the 

proposed controller is based on the PI controller applied to a ACC system. The proposed 

control system consists of two parts: an upper and lower controller. The upper controller 

decided which mode would be active: distance or speed control. The lower part controller 

is the PI controller, which determines the appropriate control signal. The Slap Swarm 

Algorithm (SSA) optimization algorithm has been used for tuning the parameters of the 

proposed controller. The simulation results of the proposed algorithm show that it provides 

excellent performance.  
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1. INTRODUCTION

The focus on vehicle safety and driver assistance systems 

has expanded dramatically in recent years due to the rapid 

evolution of automotive technologies. The implementation of 

Advanced Driver Assistance Systems (ADAS) is important to 

enhance the safety of driving, mitigate human error, and 

optimize vehicle performance. To enhance driver comfort and 

safety, ADAS such as automatic emergency braking, adaptive 

cruise control, and lane keeping assist departure warning have 

become essential features of contemporary automobiles [1, 2]. 

The ability of Adaptive Cruise Control (ACC) to automatically 

adjust the vehicle's speed to stay a safe distance from other 

vehicles makes it stand out among these systems, improving 

driving convenience and safety on highways and congested 

routes [3, 4]. The primary purpose of ACC is to enable the car 

to stay at a pace that the driver has chosen while adapting to 

changing road conditions. This involves having the capacity to 

accelerate or decrease speed as necessary to maintain a safe 

gap from oncoming cars. The capacity of the ACC system to 

maintain a seamless transition between distance regulation and 

speed control is essential for enhancing driver comfort and 

safety [5]. To improve performance, ACC systems have been 

subjected to a variety of control techniques, the most popular 

of which is the Proportional-Integral-Derivative (PID) 

controller. PID controllers are useful for maintaining constant 

speeds or distances because they modify control inputs 

according to the proportional, integral, and derivative of the 

error between the desired and actual vehicle states [6, 7]. 

Nonetheless, the investigation of more sophisticated control 

techniques has been prompted by PID controllers' 

shortcomings in managing non-linear vehicle dynamics and 

shifting road circumstances [8]. Traditional PID controllers 

are designed for linear systems, while the vehicle dynamic is 

a nonlinear system, and its performance cannot be controlled 

by simple linear control methods. Model Predictive Control 

(MPC) is one such technique that maximizes control actions 

over a future time horizon by utilizing a predictive model of 

the vehicle's dynamics. This makes MPC a desirable 

alternative for ACC systems since it enables it to manage 

constraints more skillfully and adapt to changing traffic 

conditions [9]. Sliding Mode Control (SMC), known for its 

robustness, forces the system state to adhere to a 

predetermined surface, effectively managing disturbances and 

parameter variations. This method ensures that the ACC 

system can maintain performance under diverse and 

unpredictable road conditions [10]. Furthermore, fuzzy logic 

control (FLC), provides an alternative by addressing 

ambiguities and incomplete data, allowing for flexibility in 

handling intricate driving scenarios without necessitating an 

accurate mathematical model of the system [11, 12]. The 

capacity of neural network-based control techniques to learn 

from and adjust to intricate, non-linear vehicle dynamics has 

drawn attention in more recent times. Neural Network Control 

can boost the ACC system's reactivity to changing traffic 

patterns and its ability to maintain safe driving conditions by 

utilizing real-time traffic data [13, 14]. PID, MPC, FLC, SMC, 

and Neural Network Control are five control systems that each 

have advantages and disadvantages. The selection of a method 

is contingent upon the particular design requirements of the 

ACC system, which encompass elements like as robustness, 

flexibility, and performance under varying driving situations 

[15]. Current studies keep expanding the capabilities of ACC 

technology. In order to reconcile the predictability of MPC 

with the simplicity of PID, Chen et al. investigated a hybrid 

control approach that enhances vehicle stability and safety in 

dynamic traffic situations [16]. Similarly, Li et al. improved 

the system's capacity to handle uncertainties and adjust to real-
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time traffic fluctuations with a unique approach that combined 

fuzzy logic and neural networks [17]. Furthermore, Zhang et 

al. demonstrated the promise of artificial intelligence in 

upcoming autonomous driving applications by concentrating 

on deep learning techniques to enhance the adaptability and 

accuracy of ACC systems in urban driving conditions [18]. 

The suggested control method is important because it 

improves the efficiency of automobiles' ACC systems by 

responding quickly and precisely to variations in the speed and 

distance between cars. Compared to conventional techniques, 

the system provides greater stability and lowers tracking errors 

by using the Salp Swarm Algorithm (SSA) to adjust the 

controller's parameters. Additionally, by optimizing fuel usage, 

lowering the chance of accidents, and keeping a constant safe 

distance, the suggested control system increases efficiency. 

This study shows how to create novel solutions for intelligent 

vehicle control systems by fusing traditional control methods 

with cutting-edge optimization algorithms. 

Economic and Environmental Analysis of the ACC System 

The ACC system has significant economic and 

environmental considerations. Although the main objective of 

the ACC system is improving driving safety and comfort, it 

has many substantial economic benefits as well as 

environmental advantages. However, it must take into account 

the serval challenges and implementation cost. Optimizing the 

speed and manipulating the acceleration /braking system, can 

reduce the amount consumed fuel. Moreover, installing ACC 

with a vehicle may increase the sealing of these vehicles and 

also improve traffic flow. ACC can contribute to reducing CO2 

emissions by using fuel effectively with saving fuel and it can 

support global and regional environmental goals.  

 

 

2. VEHICLE DYNAMICS 
 

The longitudinal dynamics of the vehicle which is shown in 

Figure 1 is consists of two subsystems, The first one includes 

the engine, gearbox, and torque convertor while the second 

one related to external forces applied to the vehicle. In Figure 

1(a) and (b), the model of the engine and torque converter are 

shown respectively and are represented by the following 

equations: 

 

𝐼en𝜔̇en = 𝑇en(𝜃ne, 𝜔en) − 𝑇i (1) 

 

𝑇i = (
𝜔en

𝑘
)
2

 (2) 

 

𝑇t = 𝐶t𝑇i (3) 

 

where, Ten denotes the torque of the engine, Ine represents the 

total moments of inertia, ωen refers to the speed of the engine, 

θne represents the angle of throttle and Ti known as torque 

convertor which is related to the engine speed and Turbine 

torque Tt, and k is the torque ratio while Ct denotes capacity 

factor. 

The torque in the wheel can be determined as follows: 

 

𝑇w = 𝑅g𝑅fd𝑇t (4) 

 

where, Rg and Rfd in Eq. (4) refer to the gear ratio and drive 

ratio respectively. 

 
(a) 

 
(b) 

 

Figure 1. (a) Vehicle longitudinal dynamics; (b) Engine 

dynamics 

 

The forces of longitudinal that effect on the vehicle are: 

Force of traction (F), Force of aerodynamic (Faero), Rolling 

resistance force (Froll) and Gravitational force (Fgrav). 

These forces can be expressed as follows: 

 

𝐹 =
(𝑇w + 𝑇b)

𝑟
 (5) 

 

𝐹aero =
1

2
𝐶d𝐴𝜌𝑣

2 (6) 

 

𝐹roll = fmgcos(𝛽) (7) 

 

𝐹grav = mgsin(𝛽) (8) 

 

where, Tw refers to the powertrain torque, Tb represents the 

torque produced by the braking system, r is the radius of the 

wheel, Cd represents the aerodynamic drag coefficient, A 

denotes the cross area of vehicle, ρ is the density of air, f 

denotes is the resistance coefficient of rolling, β refers to the 

grade of road, g is the acceleration of gravitational and m is 

the mass total of vehicle. 

The dynamic model of the vehicle can be written based on 

Newton's second law as follows: 

 

𝑚𝑣̇ = 𝐹𝑥 − 𝐹aero − 𝐹roll − 𝐹grav ⇒ 𝑚𝑣̇

= 𝐹𝑥 −
1

2
𝐶dA𝜌𝑣

2 − 𝑓𝑚𝑔cos⁡(𝛽)

− 𝑚𝑔sin⁡(𝛽) 

(9) 

 

 

3. SSA OPTIMIZATION ALGORITHM 
 

The SSA is an optimization method presented by Mirjalili 

and colleagues [19] to imitate the behavior of the Salp chain 
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in searching about optimal food sources. SSA is unlike the 

Genetic algorithm which is suffering from high calculations 

such as mutation and crossover. SSA uses a simple 

mathematical model to update the position. With respect to the 

Ant Colony Optimization (ACO) algorithm, SSA is more 

general because ACO is designed at first for discrete problems 

while SSA is designed for continuous and discrete 

optimization problems. Moreover, SSA gives results with high 

accuracy for the Grey Wolf Optimizer (GWO). Finally, in 

comparison with Particle Swarm Optimization (PSO), SSA is 

more suitable for problems with high dimensional data or high 

nonlinearity. In this algorithm, the Salps are divided according 

to their positions in the chain into leaders and followers. The 

Salp chain, leader position, and follower position are 

expressed in the following: 

 

𝑋𝑖 = [
𝑥1
1 . . 𝑥𝑛

1

. . . .
𝑥1
𝑚 . . 𝑥𝑛

𝑚
] (10) 

 

A group leader and followers must be chosen to mimic the 

salp swarm mechanism. The individual salp is considered the 

leader who takes charge of the entire squadron, while the other 

salps are considered followers. With each subsequent 

movement, the leader of this formation is responsible for 

directing the group toward a safer location. The mathematical 

translation of the leader of the swarm of slaps is shown in Eq. 

(11) where x is the two-dimensional location of each slap and 

y is the target food [19]: 

 

𝑥𝑖
1 = {

𝑦𝑖 + 𝑟1(𝑢𝑏𝑖 − 𝑙𝑏𝑖) + 𝑟2 + 𝑙𝑏𝑖
𝑦𝑖 + 𝑟1(𝑢𝑏𝑖 − 𝑙𝑏𝑖) + 𝑟3 + 𝑙𝑏𝑖

 (11) 

 

𝑥𝑖
1  represents the leader position, yi represents the target 

food position in the ith dimension, ubi  represents the upper 

bound of the ith dimension, 𝑙𝑏𝑖  represents the lower bound of 

the jth dimension, and r1, r2, and r3 are random numbers. 

Although SSA is a long series of salps, this kind of method can 

avoid local maximum or minimum solutions. By equating its 

progress towards the target meal, Eq. (12) depicts the leading 

salp's food perusing procedure. This is a critical factor in SSA 

that directs subordinate salps to capture food sources 

efficiently. 

 

r1 = 2e2f/F (12) 

 

where, l/F is the ratio of the current iteration to the maximum 

number of salp swarm iterations that have been envisioned. 

Additionally, r2 and r3 are given random approximations 

between 0 and 1, which, depending on the step size, dictate the 

direction of the subsequent location of each ith dimension. Eq. 

(13) illustrates how Newton's equation of motion is used to 

determine the followers' following placements. 

 

xi
j
=
1

2
γt2 + γ0t (13) 

 

where, j ≥ 2 and xi
j
 represents the followers of the position. 

The ith dimension direction for every follower indicated by the 

superscript of x is represented by the expression above. t stands 

for time, and γ0 is the salp follower's initial velocity, which is 

taken to be zero. Since the number iteration in the optimization 

analysis often represents time, the time variable was chosen to 

have a step size of one. 

 

 
 

Figure 2. The flow chart of SSA 

 

γ =
γf
γ0

 (14) 

 

γ0 =
x − x0

t
 (15) 

 

Importantly keep in mind that the salp chain may move 

toward the ever-changing global optimum (food source) and 

use the allocated search area to find a finer answer. Several 

key features of SSA that distinguish it from traditional 

optimization techniques are as follows [19]: 
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1. The algorithm keeps the best result, after each iteration, 

and attributes it to the global optimal variable (food source). 

Thus, it will not be eliminated, even if the total population 

decreases. 

2. The leading salp is constantly searching and exploiting 

the area around him in search of the best solution because the 

SSA simply updates the salp's position regarding the food 

supply, which is one of the best solutions so far. 

3. To allow the salps strains to gradually approach the 

leading strains, SSA adjusts their relative positions. 

4. The salp follower movements keep the SSA from 

crashing quickly into the local optimum; 

5. We can explore the algorithmic search space at the 

beginning and exploit it at the end of the iteration process 

thanks to the adaptive decrement of the parameter r1. 

6. The SSA only has one primary regulating parameter (r1), 

which simplifies and makes implementation simple. 

The SSA's ability to handle optimization issues more 

effectively than traditional optimization techniques stems 

from the aforementioned advantages, which served as the 

impetus for the current study. Additionally, by consistently 

avoiding becoming stuck in local solutions, this adaptive 

algorithm enables SSA to find an accurate evaluation of the 

optimal solution. In Figure 2, the flow chart shows the 

performance of SSA in terms of optimizing the PID controller 

parameters of an ACC system. 

The SSA randomly deploys all search agents (salps) around 

the specified search space. It then evaluates the current salp set 

to determine the leader and forces others to follow. Eq. (12) is 

used in this step to update the variable r1. Eq. (11) provides 

the SSA with information about the leader's condition, and Eq. 

(13) adjusts the follower salps' location correspondingly. To 

improve the quality of the salps as much as feasible, all steps—

aside from the initialization phase will be repeated until the 

stopping condition is satisfied. 

 

 

4. MORE DETAILS ABOUT PAPER TITLE AND 

AUTHOR INFORMATION  

 

 
 

Figure 3. Proposed control 

 

The proposed controller consists of two sub controllers 

upper and lower sub controllers as shown in Figure 3. The 

upper controller which can be called adaptive cruise controller 

determine the desired speed and desired distance based on the 

relative distance between the host and leading vehicles and the 

speeds of the host and leading vehicles. The lower level 

controller attempts to track the leading vehicle with safety 

distance between vehicles. 

 

4.1 Adaptive cruise controller 

 

This controller regulates the speed of the host vehicle and 

the leading vehicles according to the distance between them. 

This controller algorithm of operates as follows: 

1) If the distance between vehicle is greater than safety 

distance, the vehicle will be accelerated to the desired speed 

2) If the distance between the two vehicles in the acceptable 

range of safety distance, the vehicle will be decelerated to the 

desired speed. 

 

4.2 Adaptive cruise control algorithm 

 

The inputs for the proposed adaptive cruise control 

algorithm are: Relative distance, and host vehicle and the 

output is: desired acceleration. 

 

𝐷𝑟𝑒𝑙 = 𝐷𝑜 + 𝑣𝑡 (16) 

 

Do default spacing 

Dsafe set by the designer 

If 

 

𝐷𝑟𝑒𝑙  > 𝐷𝑠𝑎𝑓𝑒  (17) 

 

Then accelerate vehicle according to the velocity set by the 

driver.  

If 

 

𝐷𝑟𝑒𝑙< 𝐷𝑠𝑎𝑓𝑒 (18) 

 

Then deaccelerate vehicle according to the velocity lead 

vehicle. 

This controller will decide which control mode will be 

applied speed control (acceleration) or distance control 

(deceleration). The output of this controller will be input to the 

2nd part of the proposed controller (lower level). 

 

4.3 PD controller tuning with multi objective function 

 

A PD controller has been used as a low-level controller to 

determine the required values for braking pressure and throttle 

angle. When the relative distance is less than safe distance the 

mode of control is distance control and the proposed control 

law used is: 

 

uspeed = kpDerr + kd
dDerr

dt
 (19) 

 

kp propositional gain 

kd derivative gain  

When the safe distance is less than the relative distance, the 

speed control is the control mode and the proposed control law 

used is: 

 

𝑢𝑑𝑖𝑠 = min⁡(𝑢𝑠𝑝𝑒𝑒𝑑 , 𝑘𝑣𝑒𝑟𝑟) (20) 

 

where, 

 

𝑣𝑒𝑟𝑟 = 𝑣𝑠𝑒𝑡 − 𝑣 (21) 
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𝑘𝑣𝑒𝑟𝑟  is proportional gain 

Due to importance of using optimization algorithm to tune 

the parameters of controllers [20], the following objective 

function used to tune the gain of the proposed controller. 

 

𝑜𝑏𝑗 = ∫ (𝑤1(𝑑𝑟𝑒𝑙 − 𝑑𝑠𝑎𝑓)
2
+𝑤2(𝑣 − 𝑣𝑠𝑒𝑡)

2)
𝑡𝑓

0

𝑑𝑡 (22) 

 

 

5. SIMULATION RESULTS 

 

In this part, the performance of the longitudinal dynamics 

of autonomous vehicles proposed control is discussed. Three 

cases are presented, in the first case; proposed Adaptive cruise 

system checked without disturbance; while in the second case; 

a pulse disturbance applied that change the acceleration of 

vehicle suddenly; in the last case a disturbance signal applied 

to change the required the softy distance. Table 1 lists the 

values of the dynamic parameters of the vehicle used in the 

simulation. 

 

Table 1. Dynamic model parameters [21] 

 
Parameter Value 

mo 1250 kg 

r 0.29 m 

Kb 540 Nm/mPa 

Iei 0.16 kg·m2 

Cd 0.800 N/V 

f 0.318 N/V 

 

 
 

Figure 4. Velocities in Case 1 

 

 
 

Figure 5. Distance in Case 1 

 

Case 1: The host and lead vehicles started with initial 

speeds 28 m/s and 36 m/s while the initial distance between 

vehicles is 8 m. When ACC system is active, the host vehicle 

tracks the lead vehicle instead of driver set velocity. 

When the required value of the distance between vehicles is 

reached, the control mode in ACC convert to distance control 

and the proposed controller in ACC system follows the lead 

vehicle with the same speed in order to keep the safe distance 

between vehicles as shown in Figure 4 and Figure 5 

respectively. 

The proposed controller still operates in distance control 

when the driver set speed is greater than speed of lead vehicle. 

It can be notice from fig, that the distance between host and 

lead vehicle reach the desired distance with host vehicle speed 

converges to the desired velocity set be the ACC system which 

equal to the deriver set velocity in speed control mode and lead 

vehicle speed in speed control while the desired velocity in 

distance control mode is equal to velocity of lead vehicle. 

Case 2: To check the performance of the proposed 

controller during a disturbance, at time t=100 sec, a pulse 

signal with amplitude equal to applied to change the 

acceleration. The velocities of vehicles and distance between 

vehicles are shown in Figures 6 and 7 respectively. It can be 

noticed the changes occur after 100 seconds and ability of the 

proposed controller to retain to tracking the lead vehicle with 

short time. 

Case 3: In this test, safety distance between vehicles 

changed suddenly at time t=60 second and increased the safety 

distance by 3 meter and then by 5 meters. The proposed 

controller shows its performance due to an increase of 3 meters 

in Figures 8 and 9 while Figures 10 and 11 show the proposed 

controller's performance due to an increase of 5 meters. From 

these figures, it can be noted that when the distance becomes 

less than the safe distance between vehicles, the controller tries 

to increase the distance with the lead vehicle, thus the velocity 

of the host vehicle decreased to increase the distance with the 

lead vehicle. When we review these results, we can see how 

strong the proposed controller is in facing external 

disturbances. 

 

 
 

Figure 6. Velocities in Case 2 

 

 
 

Figure 7. Distance in Case 2 
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Figure 8. Velocities in Case 3 

 

 
 

Figure 9. Distance in Case 3 

 

 
 

Figure 10. Velocities due to large disturbance in Case 3 

 

 
 

Figure 11. Distance due to large disturbance in Case 3 

 

 

6. CONCLUSION 

 

This paper presented an optimal control method for vehicle 

ACC systems to produce a safety distance between vehicles 

with speed tracking. The proposed controller consists of two 

parts upper and lower controllers. The upper controller decides 

the desired speed and selects control mode either control speed 

mode or control distance mode. The lower controller, 

determines the appropriate control signal required for the 

drivetrain torque, and braking torque by using a PD controller. 

The SSA optimization algorithm has been used to tune the 

gains of the PD controller taking into account the safety 

distance with another vehicle and tracking speed in the design 

objective function. Simulation results indicate a good 

performance for the proposed controller. It can improve the 

proposed controller by using a robust controller like SMC and 

it can use neural network to estimate the parameters of the 

vehicle dynamic. 
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