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Designing cost-effective shuttle services for large-scale industrial companies presents a 

significant challenge in the transportation industry. This challenge arises from the need to 

balance high-quality service with cost-effectiveness while considering various practical 

constraints. In this context, we introduce a novel approach to help decision-makers address 

Employee Shuttle Bus Routing Problems (ESBRP). Our method combines the Memetic 

Algorithm (MA), a metaheuristic, with the Set Partitioning Problem (SPP) model, an exact 

algorithm. The proposed framework consists of two phases: (1) generating routes that 

adhere to the real-world constraints of the ESBRP using the MA, and (2) allocating these 

routes to a heterogeneous fleet of vehicles by optimally solving the SPP Model. A unique 

feature of our approach is the extension of the framework to enable the transition from 

addressing the single-load scenario of the ESBRP problem to solving the mixed-load 

scenario. This transition is achieved by implementing the Single to Mixed Loads Heuristic 

(SMH). This paper presents the results of thorough computational tests conducted on 

multiple data instances of varying sizes. Additionally, we develop a mixed-integer 

programming (MIP) model for the ESBRP to compare and evaluate the results of the 

proposed framework. By assessing solution quality and execution times on small and 

moderate-sized data instances, the experiments demonstrate that the proposed approach is 

efficient and often generates near-optimal solutions. 
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1. INTRODUCTION

Within the current economic context, the role of 

transportation systems emerges as decisive in the daily life of 

industrial societies, notably affecting their employees’ 

mobility. Businesses encounter the issue of developing and 

implementing a reliable transportation system to carry 

employees to and from their workplaces, daily. In particular, 

using conventional methods to provide shuttle services that 

balance cost-effectiveness and employee satisfaction remains 

challenging and unattainable. Hence, designing reliable 

algorithms that ensure the generation of the most optimal route 

planning is needed. 

In general, this class of problem is one of the Vehicle 

Routing Problem (VRP) variants. VRP is a well-studied NP-

hard combinatorial problem aiming to design the “best” routes 

for a fleet of vehicles to serve a specific group of clients as 

demonstrated by Kumar and Panneerselvam [1] and Luo and 

Fu [2]. This problem finds applications in numerous industries 

and has many variants, such as bus school routing, public 

transportation scheduling, and split delivery VRP [3]. 

This paper addresses the problem of employee 

transportation for a large industrial group. Our goal is to plan 

the most efficient routes for a heterogeneous fleet of buses to 

pick up employees from their respective bus stops and 

transport them to their workplaces, all while minimizing total 

costs. A route planning in our context involves generating 

routes, assigning them to buses, and determining which 

employees to pick up on each route/bus. The planned routes 

should satisfy several constraints such as seat capacity and 

arrival time requirements, while minimizing total cost and 

distance. This problem is referred to in the literature as the 

Employee Shuttle Bus Routing Problem (ESBRP) [4, 5].  

The ESBRP is classified as a School Bus Routing Problem 

(SBRP) [6]. SBRP comprises five sub-problems: data 

preparation, route scheduling, route generation, selection of 

bus stops, and adjustment of school bell time adjustment. For 

this study, we focus on generating and scheduling the routes 

based on predetermined arrival times. The data collection and 

selection of bus stops (pickup points) are managed by our data 

provider, a large Moroccan industrial group. The school bell 

time adjustment is not relevant to our current problem. 

Moreover, all buses start by leaving the depot and then visit 

at least one bus stop before proceeding to the workplace(s). 

Unlike a typical VRP, the buses in our problem do not 

necessarily return to the depot during their journey since they 

can have multiple tours throughout the day. However, for this 

research paper, we only permit single tours per vehicle, with 

each tour beginning at the depot and ending at a workplace. 

The routes whereby employees are transported from 
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workplaces to bus stops are generated by reversing the bus 

stops and workplaces. 

Additionally, the ESBRP we are addressing includes 

multiple workplaces. This presents two options: single load 

and mixed load. A single-load ESBRP means each bus can 

only transport employees from the same workplace. On the 

other hand, a mixed-load ESBRP allows a bus to transport 

employees from different workplaces. Adopting mixed load 

restrictions would be more advantageous by default. However, 

due to the social policies and regulations of the industrial 

company, certain groups of employees from different 

workplaces may not be allowed to be simultaneously 

transported on the same bus. In contrast, others may have this 

permission. This is where versatile load planning becomes 

essential. However, the ESBRP with versatile load planning is 

further complicated by the constraint on arrival time.  

Therefore, we proceed in two phases to resolve the ESBRP. 

In the first phase, we implement a MA to find the "best" routes 

in terms of minimum total distance for a single-load ESBRP 

with time arrival restrictions. The second phase involves 

passing the best solutions obtained by the MA through a Set 

Partitioning Problem (SPP) model, which aims to assign these 

routes to a fleet of heterogeneous buses while minimizing the 

total cost. To measure the generated solutions’ quality, we 

have developed a mixed integer programming model (MIP) 

for the single-load ESBRP with time restrictions. Since 

ESBRP is an NP-hard problem, we could not test our MIP on 

large-size instances. However, the proposed matheuristic 

provided a fast and accurate approximation of the optimal 

solution for small and medium-sized instances. Finally, to 

obtain mixed-load solutions, we have extended our framework 

by developing a heuristic that seamlessly allows for this 

transition. 

While the idea behind the proposed matheuristic is not 

entirely new, no studies have been conducted on integrating 

MA and SPP to solve the ESBRP with time constraints. For 

instance, Alvarenga et al. [7] have used a GA and SPP-based 

matheuristic to solve a VRP with time windows, but our 

current proposal introduces novel contributions. In the 

previously mentioned work [7], only one objective was 

considered. However, in our case, we have two 

complementary objectives. Firstly, we focus on reducing the 

total distance then minimizing the total cost. It is important to 

note that minimizing the total distance does not guarantee 

minimizing the total cost. This is because we have a 

heterogeneous fleet of buses with varying capacities and usage 

costs. If we randomly assign routes with the minimum total 

distance to buses, we may favor expensive buses. Therefore, 

the SPP model in this paper is not simply used for minor 

improvements but rather to make the best decision in terms of 

vehicle assignment. Additionally, it is widely acknowledged 

that parameterizing metaheuristics, such as MA, can be a 

challenging task. The solution quality and the time 

convergence time are directly influenced by the 

parameterization. Even with a suboptimal parameterization in 

the first phase of the MSP framework (the MA), we achieve 

superior solutions in terms of total costs and execution time 

compared to a basic MA. This improvement is due to 

enhancements made by the second phase of our proposed MSP 

framework, the SPP. Also, since this study is based on a real-

world problem, the solution approaches presented in this paper 

can serve as a useful guide for tackling similar practical issues. 

The rest of the paper is as follows: Section 2 presents the 

relevant literature on the ESBRP with time constraints. Section 

3 provides a comprehensive explanation of our ESBRP 

problem. Section 4 presents the mathematical model 

formulated for the ESBRP with arrival time restriction. 

Section 5 describes the matheuristic we propose to solve the 

ESBRP. Section 6 presents the results we obtained from 

conducting various tests and provides an overview of the data 

sets used. Finally, in Section 7, we present our concluding 

remarks, as well as the challenges and opportunities for future 

work. 

 

 

2. RELEVANT LITERATURE 

 

The ESBRP has undergone significant changes over the 

years to reflect the increasing complexity of transportation 

needs and the growing demand for efficient employee 

transportation solutions. Initially, the problem was closely 

associated with the SBRP, as both involve scheduling and 

routing of vehicles to pick up individuals from different 

locations. School bus routing originated in the 1960s [8], with 

initial studies focusing on improving student transportation. 

Subsequently, employee bus routing gained importance as 

companies sought to streamline their employees' commuting 

efficiency. However, the literature often combines information 

from both domains due to limited research exclusively 

dedicated to employee bus routing. The similarities in problem 

structure and objectives allow for the application of 

methodologies and the acquisition of valuable insights across 

both areas. 

As mentioned earlier, ESBRP is similar to SBRP. When it 

comes to the algorithms proposed for SBRP, a wide range of 

exact approaches, heuristics, and metaheuristics were explored. 

Various research studies in the SBRP field discuss the use of 

exact methods such as integer programming models (MIP), 

cutting plane techniques, and column generation procedures. 

For example, Li et al. [9] solved delivery problems using a 

branch-and-price-and-cut technique. Schittekat et al. [10] 

implemented an integer programming model for problems 

such as route generation and bus stop selection. Kumar and 

Jain [11] utilized a branch and bound algorithm to solve an 

assignment-based bus route generation problem.  

Even though these methods can solve routing problems 

optimally, the size and complexity of the SBRP significantly 

increase execution times. This complexity justifies 

researchers' preference for heuristics and metaheuristics to 

streamline the search for high-quality solutions. The most 

commonly used ones are Ant Colony Optimization (ACO) [12, 

13], Greedy Random Adaptive Search Procedure (GRASP) 

[10, 14, 15], and Genetic Algorithm (GA). Sghaier et al. [16] 

used a GA to solve a case study with capacity and riding time 

constraints. Oluwadare et al. [17] implemented a GA in a 

Nigerian school district to minimize the number of used buses. 

Díaz-Parra et al. [18] combined GA with a k-means algorithm 

to solve a bus route generation problem with 200 stops. 

Chalkia et al. [19] designed a GA to ensure the selection of 

safe routes for a capacitated SBRP with maximum riding time. 

For the multiple applications of the SBRP, the reviews of 

Ellegood et al. [20] and Park and Kim [21] are highly 

recommended. 

Similarly, the ESBRP focuses on providing efficient 

commuting services for employees within an industrial 

context, often considering challenging factors such as remote 

locations and work hours. One interesting approach in ESBRP 

was developed by Hart et al. [22], which involved the creation 
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of a hyper-heuristic method for handling scheduling and 

routing problems. Leksakul et al. [23] implemented Machine 

learning-based algorithms such as K-means and Competitive 

Learning to solve real instances of ESBRP. Purba et al. [24] 

compared their Tabu Search-based approach with previous 

methods used by the company. For readers interested in the 

ESBRP, the review by Peker and Eliiyi [25], which maps most 

of the interesting papers published in the last decade, is 

recommended. 

In Section 3, we thoroughly describe the ESBRP with time 

constraints.   

 

 

3. PROBLEM DESCRIPTION 

 

In this section, we provide a comprehensive overview of the 

ESBRP with time constraints. The ESBRP can be described as 

follows: Buses must navigate city streets, transport employees 

from designated bus stops to their respective workplaces, such 

as offices or factories, all while adhering to strict time and 

capacity limits. When several employees are gathered at the 

same stop and must arrive at their workplace at the same time, 

they are referred to as a "group of employees". These groups 

are characterized by three key elements: the workplace 

destination, the arrival time, and the number of people within 

the group. Moreover, a departure depot serves as the starting 

point for buses' daily journeys. After leaving the depot, the 

buses visit the planned bus stops before making their way to 

the workplace(s).  

As previously mentioned, there are various workplaces 

within the same industrial group. Due to social concerns from 

labor unions and complaints from employees, the company 

occasionally needs to refrain from transporting groups of 

employees who work in different locations on the same bus. 

Therefore, the industrial group must have the flexibility to 

decide whether to allow or prohibit the transportation of these 

groups based on its needs. If the company permits groups of 

employees from the same workplace to share a bus, then the 

scenario we address is the ESBRP with mixed loads. However, 

if this is not allowed, then we are dealing with the ESBRP with 

a single load. 

 

 
 

Figure 1. ESBRP with mixed loads 

 

In Figure 1, we present an example of the ESBRP with 

mixed loads scenario. The diagram illustrates the network of 

bus stops, the workplaces, and the groups of employees. 

Although bus1 can pick up all the employee groups, we had to 

create two routes. This is because a single route would not be 

feasible. 

In contrast, Figure 2 presents the scenario of the ESBRP 

with single load. In this scenario, buses only carry groups of 

employees with the same workplace destination and arrival 

time. 

 

 
 

Figure 2. ESBRP with single loads 

 

After describing the problem, we are addressing in this 

paper, the subsequent section provides a mathematical 

formulation of the ESBRP with arrival time constraints. 

 

 

4. MATHEMATICAL FORMULATION  

 

We formulate the ESBRP with arrival time constraints by 

adapting the model from our previous work [26] to incorporate 

and address the time requirements. We present this model in 

this section. 

 

4.1 Indices 

 

i and j: represent nodes that are either depots, bus stops, or 

workplaces. 

t: represents an arrival time.  

k: represents a bus. 

(m,n,t): employees waiting at stop m that should be 

transported from m to n, and who need to arrive to n at time t. 

0: represents the depot. 

 

4.2 Data parameters 

 

p: total stops.  

w: total work sites.  

b: total vehicles.  

s: total timeslots. 

qk: capacity of a bus k.  

ck: using cost of a bus k.  

dij: distance between i and j.  

emnt: the number of employees number waiting at stop m 

heading to workplace n with an arrival time of t.  

193



 

4.3 Data collections 

 

P = {1, 2, 3, 4, ..., p} selection of stops.  

W = {p+1, p+2, p+3, ..., p+w} selection of work sites.  

N = {0, 1, 2, ..., p, p+1, p+2, .., p+w} collection of nodes 

beginning with the depot, then stops and work sites.  

K = {1, 2, 3, 4, ..., b} selection of buses.  

T = {1, 2, ..., s} selection of times. 

E: selection of employees groups (m,n,t), m ∈ P, n ∈ W, t ∈ 

T. 

 

4.4 Variables 

 

xijk = 1 if a bus k goes from i to j, and 0 if not.  

ymntk = 1 if a bus k transports (m,n,t), and 0 if not. 

vik: it determines the visiting order of i by the bus k. 

 

4.5 Objective function  

 

Min: ∑     ∑     ∑       𝑥𝑖𝑗𝑘  × 𝑐𝑘 × 𝑑𝑖𝑗𝑘 ∈ 𝐾𝑗 ∈ 𝑁−{𝑖}𝑖 ∈ 𝑁  

In this paper, we aim to reduce total operational costs by 

calculating the cost per kilometer for each bus in operation. 

 

4.6 Constraints 

 

This model adheres to the constraints below: 

 

∑ 𝑦𝑚𝑛𝑡𝑘  ×  𝑒𝑚𝑛𝑡  ≤  𝑞𝑘          ∀ 𝑘 ∈  𝐾

(𝑚,𝑛,𝑡) ∈ 𝐸

 (1) 

 

∑ 𝑦𝑚𝑛𝑡𝑘 = 1         ∀(𝑚, 𝑛, 𝑡)  ∈  𝐸

𝑘 ∈ 𝐾

 (2) 

 

𝑦𝑚𝑛𝑡𝑘 ≤ ∑ 𝑥𝑚𝑗𝑘   ∀𝑘 ∈  𝐾     ∀(𝑚, 𝑛, 𝑡)  ∈  𝐸

𝑗 ∈ 𝑁−{0,𝑚}

 (3) 

 

𝑦𝑚𝑛𝑡𝑘 ≤ ∑ 𝑥𝑖𝑚𝑘 , ∀𝑘 ∈  𝐾, ∀(𝑚, 𝑛, 𝑡)  

𝑖 ∈(𝑃∪{0})−{𝑚}

∈  𝐸 

(4) 

 

𝑦𝑚𝑛𝑡𝑘 ≤ ∑ 𝑥𝑖𝑛𝑘 , ∀𝑘 ∈  𝐾 , ∀(𝑚, 𝑛, 𝑡)  ∈  𝐸

𝑖 ∈𝑁−{0,𝑛}

 (5) 

 

𝑥0𝑗𝑘 = ∑ 𝑥𝑗𝑟𝑘 , ∀𝑗 ∈  𝑃 , ∀𝑘 ∈  𝐾

𝑟 ∈𝑁−{0,𝑗}

 (6) 

 

∑  ∑ 𝑥𝑖𝑗𝑘 =  0 ∀𝑘 ∈  𝐾

𝑗 ∈ 𝑊−{𝑖} 𝑖 ∈ 𝑊

 (7) 

 

𝑣𝑗𝑘  ≥ 𝑣𝑖𝑘 +  1 −  𝑐𝑎𝑟𝑑(𝑁)  × (1 − 𝑥𝑖𝑗𝑘 ) ∀(𝑖, 𝑗) ∈ 

𝐴      ∀𝑘 ∈ 𝐾 
(8) 

 

∑  𝑥𝑖𝑗𝑘 ≤  1    ∀𝑖 ∈  𝑁 − {0} ∀𝑘 ∈  𝐾

𝑗 ∈ 𝑁−{0,𝑖}

 (9) 

 

∑ 𝑥𝑖𝑗𝑘 ≤ 1        ∀j ∈  𝑁 − {0} ∀𝑘 ∈  𝐾

𝑖 ∈ 𝑁−{𝑗}

 (10) 

 

𝑥𝑖𝑗𝑘 = ∑ 𝑥𝑟𝑖𝑘 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑃, ∀𝑗

𝑟 ∈ (𝑃∪{0})−{𝑖}

∈ 𝑁 − {0, 𝑖}  

(11) 

 

𝑥𝑖𝑗𝑘 = ∑ 𝑥𝑟𝑖𝑘  ∀𝑘 ∈  𝐾 , ∀𝑖 ∈  𝑃 , ∀𝑗 

𝑟 ∈ 𝑃−{𝑖}

∈  𝑊 − {𝑖} 

(12) 

 

∑ 𝑥0𝑗𝑘 ≤ 1           ∀𝑘 ∈  𝐾

𝑗 ∈ 𝑁−{0}

 (13) 

 

∑ 𝑥𝑚𝑗𝑘 ≤ ∑ 𝑦𝑚𝑛𝑡𝑘

𝑛 ∈ 𝑊

 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑃, ∀𝑡

𝑗 ∈ 𝑁−{0}

∈  𝑇 

(14) 

 

∑ 𝑥𝑗𝑚𝑘 ≤ ∑ 𝑦𝑚𝑛𝑡𝑘

𝑛 ∈ 𝑊

∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑃, ∀𝑡 ∈ 𝑇

𝑗 ∈ 𝑃∪{0}

 (15) 

 

∑ 𝑥𝑖𝑛𝑘 ≤ ∑ 𝑦𝑚𝑛𝑡𝑘

𝑚 ∈ 𝑃

  ∀𝑘 ∈ 𝐾  ∀𝑛 ∈ 𝑊 ∀𝑡 ∈ 𝑇

𝑖 ∈ 𝑁−{0}

 (16) 

 

∑ 𝑥𝑛𝑖𝑘 ≤ ∑ 𝑦𝑚𝑛𝑡𝑘

𝑚 ∈ 𝑃

    ∀𝑘 ∈ 𝐾  ∀𝑛 ∈  𝑊  ∀𝑡 

𝑖 ∈ 𝑊

∈  𝑇 

(17) 

 

∑ 𝑥𝑖𝑗𝑘 = ∑ 𝑥𝑗𝑟𝑘

𝑟 ∈ 𝑁

           ∀𝑘 ∈  𝐾  ∀𝑗 ∈  𝑁

𝑖 ∈ 𝑁

 (18) 

 

∑  ∑  ∑ 𝑦𝑚𝑛𝑡𝑘  ×  ∑ ∑ 𝑦𝑚𝑛𝑓𝑘 = 0

𝑛 ∈ 𝑊𝑚 ∈ 𝑃𝑡 ∈ 𝑇𝑛 ∈ 𝑊𝑚 ∈ 𝑃

   ∀𝑘

∈ 𝐾, ∀𝑓 ∈ 𝑇 − {𝑡} 

(19) 

 

Eq. (1) defines the capacity requirement for each vehicle k. 

Eq. (2) ensures that all employee groups are picked up, with 

each group being picked up only once by a single vehicle. Eqs. 

(3), (4), and (5) stipulate that if a bus k transports (m,n,t), it 

must visit both m and n then leave them. If a bus k visits the 

arc (0,j) then vehicle k should leave the node j (Eq. (6)). Eq. 

(7) restricts vehicle k from going from one workplace to 

another workplace. Eq. (8) introduces the concept of visit 

order to the model to prevent any potential sub-tours. 

Eqs. (9) and (10) specify that a vehicle k can visit a node i 

either once or not at all. If a bus k goes from i to j and i refers 

to a bus stop, it means that the previous node visited by the 

vehicle k should be a bus stop or the depot (Eq. (11)). Eq. (12) 

is to make sure that if a vehicle visits the arc (i,j) with i a 

workplace then the previous node visited by the vehicle should 

be a workplace or a bus stop. 

No multi-tours are allowed; only one route is assigned to a 

vehicle (Eq. (13)). If a bus does not transport a group (m,n,t), 

it is forbidden to go to m (Eqs. (14) and (15)). Furthermore, if 

a bus does not pick up a group (m,n,t) and has not picked up 

any other group going to n, then the vehicle k should not visit 

n (Eqs. (16) and (17)). Eq. (18) is for the flow conservation. 

Finally, if a bus k transports (m,n,t), it is not allowed to pick 

up any group with the same workplace and different arrival 

times (Eq. (19)). 

The following section presents the proposed MSP 

framework. 
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5. THE PROPOSED MATHEURISTIC 

 

To address the ESBRP with arrival time constraints, we 

propose a hybrid approach called MSP. MSP hybridizes a MA 

with a SPP formulation, considering capacity, time, and 

single/mixed loads. Although evolutionary-based 

metaheuristic algorithms are effective in optimizing complex 

combinatorial problems like the ESBRP, they have limitations. 

A significant concern is early convergence, where the 

algorithm settles on suboptimal solutions too soon in the 

search process. This can occur due to inadequate diversity 

maintenance, improper selection methods, or incorrect 

parameter settings. Similarly, while mathematical 

programming approaches can help find optimal solutions, they 

also have drawbacks. The computational complexity of 

solving large-scale instances with mathematical programming 

techniques can lead to long execution times and potentially 

infeasible solutions. Therefore, this paper suggests leveraging 

the benefits of mathematical programming to achieve optimal 

solutions while harnessing the efficacy and adaptability of 

metaheuristic algorithms. 

 

 
 

Figure 3. The MSP framework structure 

 

As shown in Figure 3, the MSP framework we use to solve 

the ESBRP with arrival time constraints consists of three 

phases:  

(1) The main objective of the initial phase is to generate 

routes that adhere to the real-life constraints of the 

ESBRP while minimizing the total distance. We obtain 

these routes using an efficient MA, which is a 

hybridization of a GA and Local Search operators [27]. 

Further details regarding the MA are provided later in 

this section. 

(2) The second phase involves assigning the generated 

routes to a fleet of heterogeneous buses using a SPP-

based formulation (SPP). Unlike the first phase, the 

goal here is to minimize the total cost. Minimizing the 

total travel distance does not necessarily reduce the cost 

since the vehicles fleet is heterogeneous. Detailed 

information concerning this phase is presented later in 

this section. 

(3) The third step is to expand the MSP framework to 

incorporate mixed loads by developing an efficient 

Single to Mixed loads Heuristic (SMH). Further details 

regarding this heuristic are provided later in this section.  

The following subsections present the three steps of the 

MSP framework. 

 

5.1 Memetic Algorithm 

 

A MA is a hybrid optimization technique that integrates 

evolutionary algorithms with local search methods to improve 

solution quality and convergence quality. In this paper, we 

combine a Genetic Algorithm (GA) with a Local Search 

method (LS), which we refer to as MA. 

 

 
 

Figure 4. The first phase of the MSP framework - the MA 

 

This section presents the initial step of our MSP framework. 

The primary goal is to generate solutions that minimize total 

travel distance while adhering to capacity and time constraints. 

In this stage, we only consider the single-load scenario. 

Initially, we implemented a traditional MA and conducted 

tests. Still, we quickly discovered that conventional selection 

operators, which we will discuss later, led to premature 

convergence as the algorithm settled into local optima in the 

first few iterations. Therefore, we developed a customized 

MA, drawing inspiration from the work of Malik and Wadhwa 

[28]. As shown in Figure 4, this personalized MA operates as 

follows: 

 Generate the initial population of candidate solutions 

(individuals). The initial population is generated using an 

advanced heuristic that we explain later in this paper.  

 Divide the population into clusters of equal size. The 

number of clusters is calculated using log2(n) and n is the 

population size. 

 Split each cluster into two equal parts.  

 Select the highest-performing chromosomes from the first 
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and second halves of each cluster. 

 Perform crossover between the selected chromosomes to 

generate two child chromosomes, based on the crossover 

probability. 

 Select the best chromosome from the first half, second 

half, and child chromosomes to retain it in the next generation. 

 Apply LS to the best chromosome and child chromosomes 

to improve their quality and incorporate them into the next 

generation. 

 Perform mutation on the child's chromosomes, depending 

on the mutation probability, and add them to the next 

generation. 

 Apply LS to the result of the mutation and add it to the 

next generation. 

 Repeat steps 2 to 9 for a determined number of iterations.  

The following subsections present the different operators of 

the MA. 

 

5.1.1 Chromosome encoding 

Before discussing our encoding approach, it is essential to 

note that in this paper: 

 A chromosome represents a complete and feasible 

solution. 

 A population is a collection of chromosomes.  

 A chromosome comprises a number of mini-

chromosomes. Each mini-chromosome is a route which is 

assigned to a bus.  

 A viable and complete solution must meet all constraints 

and ensure that all groups of employees are picked up and 

dropped off as required.  

As illustrated in Figure 5, a chromosome consists of 𝑣 mini-

chromosomes, where 𝑣 is the number of available buses. Each 

mini-chromosome represents the route assigned to a bus. The 

representation of the solution’s elements is real-coded and not 

binary to generate chromosomes that efficiently reflect the 

essential information deciders need. The components of the 

chromosomes are encoded as follows: 

 A bus stop is assigned a unique identifier i, ranging from 

1 to p, where p is the total number of bus stops. 

 A workplace is assigned a unique integer identifier j, 

ranging from p+1 to p + w, and 𝑤 represents the number of 

workplaces. 

 The five different types of buses are from type1 to type5, 

and each bus is assigned a unique identifier, k, ranging from 1 

to v, and v represents the number of vehicles. 

 The depot is represented by 0. 

 A group of employees’ representation is as follows: a 

tetrad (i, j, t, e), and i is the index of the bus stop where the 

group is waiting, j is the index of the workplace, t is the group's 

required arrival time at their workplace, and e represents the 

number of employees in that group. 

Furthermore, as shown in Figure 5, the encoding of each 

mini-chromosome consists of three layers:  

 A sequence of integers representing the bus stops and 

workplaces in the correct order of their visit, with the 

corresponding arrival time. 

 The index of the bus/vehicle associated with the mini-

chromosome. 

The groups of employees assigned to that mini-

chromosome/route. 

 

 
 

Figure 5. The chromosome encoding of the proposed MA 

 

5.1.2 Initial population 

 

Algorithm 1. Creating initial population 

Procedure CREATE CHROMOSOME 

  Groups: groups of employees 

  Mini-chromosome: route of a vehicle 

  Used groups: groups already picked up 

  Used stops: groups at stops already visited by a vehicle 

  Initialize capacity chromosome with 0 

  Initialize a chromosome with an empty list 

  Randomize the list of vehicles 

  For vehicle in list of vehicles do 

    Initialize a mini-chromosome with an empty list 

    Initialize capacity mini-chromosome with 0 

    While capacity mini-chromosome < capacity vehicle do 

       M = Groups excluding the Used groups and Used stops 

       If M is empty do  

          break 

       End if 

Choose a random group g from Groups 

Update capacity mini-chromosome with number of     

people in group g 

       If capacity mini-chromosome < capacity vehicle do 

Add group g to mini-chromosome 

Add group g to the Used groups 

Add groups with time and destination different than group 

g to Used stops 

       End if 

       Empty Used groups 

       Add all picked up groups to Used groups 

       Add the total number of people picked up so far to 

capacity chromosome 

       Add mini-chromosome to chromosome 

    End while 

  End for  

  Return chromosome 

End Procedure  

Repeat Procedure until the desired size of population is 

reached 

 

In evolutionary metaheuristics, the initial population is 

typically generated randomly or through established heuristic 

methods. In vehicle routing problems (VRP), researchers 

employ various common heuristics to create initial 

populations, such as the "Push Forward Insertion Heuristic" 

(PFIH) introduced by Solomon [29]. However, due to the 

intricate nature and expansive solution space of our ESBRP, 

most of these well-known heuristics are unsuitable for our 
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specific problem. Consequently, we have developed a 

customized heuristic to generate the initial population for our 

MA. This heuristic primarily relies on efficient insertion 

mechanisms that consider the diverse constraints of our 

ESBRP while incorporating a level of randomness during 

route generation. Algorithm 1 presents the pseudo-code 

outlining this heuristic.  

 

5.1.3 Selection operator 

There are several commonly used selection algorithms in 

MAs for selecting individuals for the mating pool. This study 

examines two selection operators: 

 K-way tournament: This method selects individuals from 

a population based on their fitness values. It randomly picks k 

individuals, evaluates their fitness, and selects the fittest 

individual as a parent.  

 Roulette wheel: This method calculates a probability of 

being selected for all the individuals in the solution. It is 

calculated based on the fitness value. This process guarantees 

that individuals with higher fitness values have more chances 

to be selected as parents, as their corresponding slices are 

proportionally larger. It also allows individuals with lower 

fitness values to be chosen, preserving diversity in the 

population and preventing premature convergence. 

Section 6 of this article provides detailed information about 

the tests conducted using these two selection operators and 

their efficiency in the context of our ESBRP. 

 

5.1.4 Elitism 

Elitism involves selecting a number of the highest-

performing individuals to keep them in the next generation. 

This approach prevents the loss of valuable solutions through 

the different iterations of the algorithm. In our MA, we retain 

the best individual from each cluster for the next generation 

during each iteration. 

 

5.1.5 Crossover 

Crossover is a genetic operator essential for the interchange 

of genetic material between parent chromosomes, producing 

offspring solutions. By recombining genetic material from 

various parent solutions, crossover can yield better offspring 

solutions with improved properties. Nevertheless, finding the 

optimal crossing points can be fairly challenging, especially in 

our ESBRP, where complex solution representations are used. 

Therefore, we devised a customized crossover mechanism to 

preserve the quality and viability of the final solutions. Figure 

6 illustrates an overview of our proposed crossover operator, 

which works as follows: 

 A random mask is applied to Parent1. This mask is an 

array of 0s and 1s, and its length is equal to the number of 

routes/mini-chromosomes in Parent1. 

 The routes/mini-chromosomes corresponding to 0 in 

Parent1 are removed, while those corresponding to 1 are 

retained. 

 The elements of the routes remaining in Parent1 are 

deleted from Parent2. 

 The new Parent1 and new Parent2 are then concatenated 

to produce Child1. 

 Verification of the capacity constraint is applied to Child1. 

The time constraint is, by default, respected. 

 If Child1 requires any modification, it undergoes a 

correction procedure, which we detail later in this section, to 

ensure it complies with capacity constraints. 

The same process is used to obtain Child 2. 

 
 

Figure 6. The crossover operator of the proposed MA 

 

5.1.6 Mutation 

Making small, haphazard mutations to the solutions helps 

maintain genetic diversity in the MA. Through mutation, 

specific genes or parameters are randomly selected and altered 

within an individual's chromosome representation based on a 

predetermined probability. However, identifying the 

appropriate mutation operator for our ESBRP is not 

straightforward. Therefore, we implemented a personalized 

method, as illustrated in Figure 7. 

 We randomly select a set of routes or mini-chromosomes 

from the chromosome. 

 We randomly choose two nodes and exchange them 

within each of the selected routes or mini-chromosomes. 

These nodes must be bus stops, as the workplace in a single-

load scenario is always the last node to be visited in a route. 

 

 
 

Figure 7. The mutation procedure of the MA 

 

5.1.7 Correction procedure 

After the crossover and mutation operators, a correction 

procedure is essential to address any violations of the ESBRP 

constraints. In our case, this correction procedure begins by 

identifying the problematic routes/mini-chromosomes in a 

solution and grouping the various sets that need to be 

reinserted into an array. Next, we attempt to insert these 

groups into existing routes based on the remaining capacity of 

each route, ensuring that the group aligns with the route's 

destination and arrival time. For any remaining groups that 

cannot be inserted into existing routes/mini-chromosomes, we 

create new routes. 
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5.1.8 Local search 

The local search used in our MA focuses on finding the best 

permutation of each route's nodes by iteratively exploring 

neighboring options. It starts with a random permutation and 

evaluates several neighboring permutations to select the one 

with the best fitness value. This process continues until no 

further improvements can be made. 

The following subsection presents the second step of the 

MSP framework. 

 

5.1.9 Mutation 

Making small, haphazard mutations to the solutions helps 

maintain genetic diversity in the MA. Through mutation, 

specific genes or parameters. 

 

5.2 Set partitioning 

 

After generating solutions with the minimum distance 

traveled using MA, the second step of our MSP framework 

involves assigning these solutions to the heterogeneous fleet. 

To accomplish this, we formulated the ESBRP as a SPP with 

the objective of minimizing the total cost. The formulation is 

as follows: 

Sets and Data 

R = {1, 2, ..., z} set of feasible solutions generated by the 

MA where z is the total number of possible solutions. 

G = {1, 2, ..., l} set of employees’ groups where l is the 

number of groups. 

K = {1, 2, ..., b} set of buses where b is the number of buses. 

r = is a route of the set of routes R. 

g = is a group of the set of employee groups G. 

dr = the total travel distance of a route r. 

eg = the number of people in a group g. 

qk = capacity of a vehicle k. 

ck = the cost of using a vehicle k.  

Variables 

xrk = 1 if the route r is considered in the solution and 

assigned to vehicle k, and 0 otherwise. 

ygr = 1 if a group g is in route r, and 0 otherwise. 

Objective 

Minimize  

∑   

𝑟 ∈ 𝑅

∑   

𝑘 ∈ 𝐾

𝑑𝑟  × 𝑐𝑘  × 𝑥𝑟𝑘  

Constraints 

 

∑  

𝑟 ∈ 𝑅

∑  

𝑘 ∈ 𝐾

𝑦𝑔𝑟 ×  𝑥𝑟𝑘 = 1        ∀𝑔 ∈  𝐺 (20) 

 

∑ (𝑦𝑔𝑟 × 𝑒𝑔) × 𝑥𝑟𝑘 ≤  𝑞𝑘       ∀𝑟 ∈  𝑅   ∀𝑘 ∈  𝐾

𝑔 ∈ 𝐺

 (21) 

 

∑ 𝑥𝑟𝑘 ≤  1           ∀𝑘 ∈  𝐾

𝑟 ∈ 𝑅

 (22) 

 

Constraint (20) specifies that each group of employees must 

covered by one route. Constraint (21) requires that the capacity 

of each vehicle k must be respected. Constraint (22) precises 

that it is forbidden to assign more than one route to a bus k. 

 

5.3 Single to mixed loads heuristic  

 

The SMH facilitates the transition from single-load routes, 

where each bus serves only one workplace, to a more efficient 

mixed-load configuration. In this scenario, buses can transport 

groups working in different workplaces. Compared to single-

load routes, this approach reduces the number of vehicles 

needed, thereby lowering operational costs. However, the 

challenges of transitioning from a single-load route to a mixed-

load route, while adhering to capacity and time constraints, is 

not straightforward and requires going through multiple steps. 

Algorithm 2 outlines the procedure for the SMH. This 

heuristic operates as follows: 

- In this section, ‘workplace/time’ refers to a workplace with 

its associated arrival time, and ‘SL solution’ means a solution 

generated in the single-load scenario. 

- The first step in SMH is to choose an SL solution and 

calculate the remaining capacity in each bus used in this 

solution. 

- The second step is to generate clusters of workplace/time 

that can be added to each bus route of the SL solution: 

 Why do we need to create clusters? Since we have 

capacity and arrival time constraints that need to be respected, 

we cannot randomly combine groups in one route. Therefore, 

based on the list of workplace/time, we need to define which 

ones can be combined.  

 To know how many workplace/time will be combined, we 

define the number of workplaces that a bus can visit. For 

example, if we choose to have buses visiting three workplaces, 

then the clusters we form are composed of three groups. If we 

want the bus to visit five workplaces, we create clusters of five 

groups.  

 As mentioned earlier, the clustering is based on the 

number of workplaces we want to have in a bus route and the 

feasibility concerning arrival times. For example, to cluster 

two workplace/time, the travel time between the two 

workplaces must be less than the absolute difference between 

the arrival times. For clusters containing more than two 

groups, this condition must be verified among all groups 

within the cluster. 

 Another important criterion in the clustering process is 

that it is not permissible to group workplace/time that have the 

same workplace but different arrival times, or workplace/time 

that have different workplaces but the same arrival time. 

 The third step is to generate the clusters of workplace/time 

for each route of the SL solution. Then, from the 

workplace/time clusters of the route, we determine all the 

possible employee groups that can be inserted into it. The 

output of this procedure is a set of new mixed-load routes. The 

insertion process is explained in Algorithm 2.  

 The fourth step is to repeat the second and third steps for 

each route of the SL solution. Then repeat the whole process 

for other SL solutions. 

 The final step is to input the set of new mixed-load routes 

(generated for all the routes in the SL solution) into the SPP 

presented earlier to obtain the final mixed-load solution. 

 One last point regarding the clustering is to justify the 

choice of having clusters of different sizes (grouping two 

workplace/time, three workplace/time or more). The variety in 

the size of clusters is essential to our framework, as the SPP 

will process the mixed-load solutions. Providing only clusters 

of a single size significantly increases the likelihood that the 

SPP will fail to find feasible solutions. 

The following section presents the results obtained for the 

proposed MSP framework compared to a simple MA and the 

MIP. 
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Algorithm 2. Single to Mixed Loads Heuristic 

Procedure Create Clusters - grouping two entities 

  Groups: groups of employees 

  g1 and g2: groups in Groups 

  Condition1: destination of g1 different than destination of 

g2 

  Condition2: arrival time of g1 different than arrival time of 

g2 

  Condition3: the difference between arrival time of g1 and 

arrival time of g2 superior than travel time between g1 and 

g2 

  For g in Groups do 

    If Condition1 and Condition2 and Condition3 are TRUE 

do 

      Create clusters of two groups for g  

    End if 

  End for 

End Procedure Create Clusters - grouping two entities 

 

Procedure Insertion of groups in a route 

  Groups: groups of employees 

  For g in Groups do 

    Create Clusters for group g 

    For element in clusters of g do 

      If number of people in route + number of people in 

element < capacity vehicle do 

        Insert element in route based on best distance 

      End if 

    End for 

    Return set of new mixed loads routes 

End Procedure Insertion of groups in a route 

Repeat Procedure Insertion of groups in a route for all 

routes in chromosome 

Pass the new generated routes into SPP for vehicle 

affectation 

 

 

6. COMPUTATIONAL RESULTS  

 

This section exhibits and analyzes the outcomes of various 

tests conducted using the proposed MSP framework. The first 

subsection provides insights into the dataset utilized for the 

tests. The second subsection outlines the comparative 

procedure employed to determine the near-optimal parameters 

for the MSP framework, including population size, crossover 

probability, and mutation rate. The third subsection 

thoroughly analyzes the results of the MSP framework 

compared to a simple MA and the MIP’s solution. We also 

examine the impact of single-load and mixed-load scenarios 

on riding time and cost efficiency. 

 

6.1 Data 

 

This study utilizes real-world data from a large Moroccan 

industrial group that is present in multiple geographical 

regions across Morocco. In this work, we solely focus on 

testing MSP in the largest region. The company shared with us 

data that comprises the following information: 

 As shown in Table 1, the vehicle fleet includes five types, 

distinguished by capacity, number of vehicles, and cost of 

using each type. 

 A matrix detailing the distances between different nodes 

(the depot, bus stops, and workplaces), along with their GPS 

locations. 

 A list of the various timeslots scheduled throughout the 

day. By "timeslot," we refer to a time interval designated for 

transporting specific groups of employees between their bus 

stops and workplaces.  

 A table outlining the groups of employees waiting at each 

bus stop, including their sizes, destinations, and arrival times. 

Table 2 displays an example of employee distribution within a 

one-hour timeslot. 

Furthermore, the bus stops where employees await pick-up 

are fixed and predefined. Most workplaces are located outside 

the city in rural areas. While the dataset is generally stable, 

changes may occur if employees modify their addresses, 

impacting bus stops. Other modifications may arise due to 

strikes or technical issues related to the vehicle fleet. 

For data manipulation, we processed the raw data using 

Python libraries to prepare it for input into our MSP 

framework and organized it into Excel files. 

 

Table 1. A presentation of the vehicle fleet of our ESBRP 

problem 

 
Types of Buses 1 2 3 4 5 

Number of Buses per Type 26 4 20 10 4 
Capacity of Each Bus Type 48 15 48 17 28 

Cost of Use per km 3.5 2.5 9.4 4.8 6.27 

 

 

Table 2. An example of the number of employees per stop in one of the company’s areas from 6 am to 7 am 

 

Bus Stops 1 2 3 4 5 6 7 8 9 10 11 

Number of 

Employees 
49 31 31 22 25 24 33 43 20 39 27 

6.2 Parameters and testing environment 

 

This subsection outlines the process we followed to 

determine the most suitable values for the parameters of the 

proposed MSP framework: the size of the population, the 

number of iterations, the crossover rate, and the mutation rate. 

Our first set of preliminary tests aimed to identify the 

optimal population size and number of iterations. In these 

tests, we fixed the values for crossover and mutation rates 

while systematically varying the population size and the 

number of iterations. We assessed the quality of the solution 

based on the total distance. We observed no significant 

improvements in solution quality with a population size 

exceeding 200. For the number of iterations, we chose the 

value at which the MA converged to the best solution among 

those already generated. Specifically, we found that 150 

iterations and a population size of 200 were sufficient to 

converge to a satisfactory solution in terms of total distance. 

Table 3 summarizes the results. 
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Table 3. The best results obtained in terms of total distance when testing the proposed MA based on the number of iterations and 

the population size 

 

Population Size 

Number of Iterations 
100 150 200 300 400 

50 906.50 884.42 884.02 884.04 884.01 

100 902.98 875.68 872.46 872.43 872.43 

150 895.49 870.19 865.31 865.31 865.31 

200 890.12 887.04 872.59 872.58 872.59 

 

Table 4. The results of the proposed MA in terms of total distance when varying the crossover and mutation rates 

 

Crossover Rate 

Mutation Rate 
0.01 0.04 0.08 0.1 0.3 0.4 

0.6 918.29 910.35 891.71 913.90 888.41 917.25 

0.7 922.36 886.39 891.18 916.67 927.09 903.77 

0.8 903.99 906.49 893.68 894.74 907.72 904.94 

0.85 915.57 872.75 901.72 895.46 923.37 874.58 

0.9 921.12 890.87 887.94 885.38 925.59 913.67 

0.95 911.79 886.52 878.74 881.46 888.63 886.16 

 

The second set of tests focused on determining the best 

combination of crossover and mutation rates. In this phase, we 

fixed the population size and the number of iterations while 

varying the crossover and mutation rates. Our decision was 

based on the quality of the solution obtained at the final 

iteration and the convergence of the framework with these 

values. The results are also highlighted in Table 4. 

Consequently, we adopted mutation and crossover rates of 

0.04 and 0.85, respectively. 

Additionally, our testing environment included a laptop 

with an Intel i7 12th generation processor and 32 GB of RAM, 

and we utilized Python as the programming language. 

 

6.3 Single load 

 

As previously mentioned, the ESBRP is an NP-hard 

problem, which makes it very complex to solve optimally. The 

difficulty arises from factors such as the number of nodes, the 

complexity of the problem, and the constraints involved. In 

this subsection, we highlight the results obtained from the 

MSP framework, comparing it to a simple MA and the MIP 

solved using CPLEX. In these tests, the goal is to minimize the 

operational cost in a Single Load scenario. We conducted 

experiments using the dataset provided by the company, as 

well as instances we created based on that data. These 

instances vary in size (number of nodes), the number of 

employees, and the number of buses. 

During our experimentation phase, we initially used the 

conventional k-tournament selection operator commonly 

employed in traditional evolutionary approaches. However, as 

shown in Figure 8, we observed that the MA converged too 

quickly after only a short period of iterations. To address this 

issue, we experimented with the roulette wheel selection 

technique, which showed some improvement but still tended 

toward premature convergence. 

 

 
 

Figure 8. Comparison of the convergence pace of a simple 

MA and the proposed MA, based on the selection operator 

used 

 

Recognizing the necessity of finding a solution to prevent 

premature convergence, we successfully adapted the approach 

proposed by Malik and Wadhwa [28]. This approach involved 

dividing the initial population into several clusters and 

applying the MA operators to each cluster. To analyze the 

efficiency of the proposed MA in this work, Figure 8 illustrates 

a comparison of the convergence pace for the following three 

approaches:  

• Simple MA - Tournament Selection: a MA that uses the 

tournament selection defined in section 5.1.3.  

• Simple MA - Roulette Wheel Selection: a MA that uses the 

roulette wheel selection defined in section 5.1.3.  

• Proposed MA - Special Selection: the MA explained in 

section 5.1. 
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Figure 8 shows no premature convergence issue in the 

Proposed MA - Special Selection Approach, while the other 

two algorithms converge prematurely to a local optimum.  

After deciding on the type of selection to adopt, we tested 

and compared three approaches—MIP, MSP, and MA—for 

the single load scenario, with the objective of minimizing total 

cost. As shown in Table 5, finding a solution using MIP 

becomes impossible for more than 25 nodes. For smaller 

instances, specifically between 6 and 14 nodes, the proposed 

MSP framework achieves the same optimal solution as MIP. 

For medium-sized instances, ranging from 18 to 25 nodes, we 

fixed a maximum execution time of 1 hour and a half for MIP. 

The results obtained by the MSP framework were superior to 

the feasible solutions obtained by MIP in significantly less 

time. For the final instance of 33 nodes, we could not compare 

the result of MSP with MIP, as no solution was found within 

that time. 

Compared to MA, the MSP framework consistently 

demonstrated greater efficiency and provided better solutions 

in very short periods. As mentioned earlier, the choice of 

MA’s parameters is crucial and significantly affects the 

algorithm's convergence. In our case, even if the MA does not 

converge to the optimal solution, we were able to utilize the 

pool of solutions it generated, which yielded better results in 

less time. This indicates that breaking down the decisions of 

the ESBRP problem into two distinct steps was more 

beneficial than treating it in one single phase. 

 

Table 5. Optimal and feasible solutions found for 10 instances 

 

Instances 

Size of Instances Exact Solution - Single Load MA - Single Load MSP - Single Load 

Number of 

Vehicles 

Number 

of Nodes 

Best Found 

Total Cost 

Execution 

Time in 

Second 

Best Found 

Total Cost 

Execution 

Time in 

Second 

Best Found 

Total Cost 

Execution 

Time in 

Second 

1 8 6 462.249 0.27 463.278 30 462.249 30.02 

2 8 10 1173.57 23.31 1182.94 62 1173.57 62.02 

3 9 11 1118.93 58.27 1165.58 87 1118.93 87.03 

4 12 12 849.873 72.14 972.18 149 849.873 149.02 

5 14 13 1045.36 429.84 1177.73 236 1045.36 236.03 

6 14 14 1031.72 2600 1343.29 876 1031.72 876.03 

7 19 18 1416.23 4001,17 1778.823 1249 1343.9 1249.02 

8 20 20 1614.42 5400 2053.47 1590 1538.31 1590.05 

9 25 25 1589.88 5400 1481.04 1873 1383.61 1873.05 

10 64 33 None 5400 3000.80 2460 2775.66 2460.11 

6.4 Mixed load 

 

In Figure 9, we present the results of the MSP framework in 

a scenario with mixed loads. One mixed-load solution can be 

generated from several single-load solutions. Therefore, the 

number of solutions in Figure 9 indicates how many single-

load solutions were used to create the mixed-load solution. As 

shown, using more single-load solutions to create mixed-load 

solutions improves the quality of the result. However, we 

could only test up to 20 single-load solutions, as the execution 

time of the SPP increased exponentially. 

 

 
 

Figure 9. The results obtained for the MSP mixed loads in 

terms of total cost 

 

In the single-load scenario, at least one bus per workplace 

is required, ultimately increasing the overall cost. Therefore, 

MSP ML is a more efficient approach than MSP SL regarding 

the total cost and the number of buses used. In contrast, after 

comparing the maximum riding time between MSP ML, MSP 

SL, and Simple MA SL, we determined that Simple MA SL is 

superior in this regard, despite being the least cost-efficient. 

The maximum riding-time is the amount of time a passenger 

spends on the bus before arriving at their workplace. 

If the decision-maker prioritizes optimizing riding time, 

MSP ML may not be suitable, even though it offers the best 

solution regarding total distance, cost, and number of buses 

used. Minimizing riding time typically results in fewer stops 

per bus, necessitating additional buses to pick up all employee 

groups. Consequently, the best trade-off between cost-

effectiveness and maximum riding time can be achieved using 

MSP SL. However, if enabling mixed loads is a requirement, 

an alternative approach should be considered. 

 

6.5 Results analysis 

 

Based on the earlier results for both SL and ML ESBRP, the 

proposed MSP framework achieved a significant cost 

reduction of approximately 4% for SL and 6% for ML 

compared to the traditional routing method used by the 

company. This improvement is primarily attributed to an 

average decrease of 5% in total travel distance for SL and a 6% 

reduction for ML, resulting in lower fuel consumption and 

reduced costs. Additionally, by optimizing route assignment 

to buses, we reduced the number of required buses by 3% for 

SL and 5% for ML, leading to substantial operational savings 

for the company. 

The MSP framework also considered arrival times at 

workplaces, ensuring that all employees arrived on time; a 

guarantee not provided by the company's used method. This 

adjustment allows employees to spend less time commuting 

and more time at work. Therefore, these efficiency 

improvements positively impact both operational performance 

and employee satisfaction. 
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The results demonstrate that hybridizing a MA with set 

partitioning is effective not only in optimizing employee 

shuttle routes but also as a practical decision-support tool for 

transportation managers. The reduced costs, decreased 

commuting time, and lower number of vehicles used translate 

into financial and environmental benefits while maintaining a 

high level of efficiency and employee satisfaction. 

 

 

7. CONCLUSIONS  

 

This paper presents a matheuristic MSP to solve the 

transportation problem of a large industrial company. The 

business requires solutions that enable cost reduction while 

maintaining flexibility in allowing or prohibiting mixed loads. 

Consequently, we introduce the MSP framework with the 

SMH heuristic, which allows the company to seamlessly 

switch between single and mixed loads based on their needs. 

In this context, we address the ESBRP problem for both single 

and mixed-load scenarios using the MSP framework. 

Therefore, this paper presents two main contributions:  

 To the best of our knowledge, no paper addressed the 

ESBRP with Time constraints using a matheuristic and in two 

steps, each with a different objective. 

 The results of the MSP framework compared to MIP 

proved the efficiency of our approach and reached optimal 

solutions within very short execution times. 

Our analysis and results indicate that dividing the ESBRP 

problem into two sub-problems and hybridizing a 

metaheuristic with an exact method is more efficient than 

treating the problem in a single phase (Simple MA). The two 

sub-problems we adopted are as follows: first, generating 

routes that minimize overall distance using the proposed 

metaheuristic; and second, allocating these routes to buses 

using the SPP to minimize overall costs. 

However, this study is limited in terms of the objectives 

considered. In practice, it is essential to reach a trade-off 

between transportation costs, vehicle fleet composition, and 

the riding time for passengers to reach their workplaces. 

Additionally, this work only considered data from a one-hour 

timeslot with one-way trips, whereas the real problem requires 

consideration of round trips and multi-tours per vehicle. These 

aspects will be addressed in our future work.  

To achieve this, the next step is to explore multi-objective 

optimization techniques that can help find the optimal trade-

off between costs and riding time. We also aim to optimize the 

company's vehicle fleet, which will necessitate a detailed 

analysis of the types of vehicles used and their associated 

costs. 

Furthermore, one challenging aspect encountered when 

implementing the proposed MSP framework was setting the 

parameters of the metaheuristic. Despite conducting numerous 

tests to determine suitable parameter values, many factors 

need consideration to establish a stable choice. Therefore, we 

seek to integrate machine learning algorithms to predict 

parameter values that would be appropriate for our problem. 

This integration would further enhance the overall efficiency 

of the company's employee transportation system, resulting in 

a more sustainable and reliable mode of transportation for all 

passengers. 

 

 

 

 

REFERENCES  

 

[1] Kumar, S.N., Panneerselvam, R. (2012). A survey on the 

vehicle routing problem and its variants. Intelligent 

Information Management, 4(3): 19355. 

https://doi.org/10.4236/iim.2012.43010 

[2] Luo, W., Fu, Z. (2010). A variable neighborhood tabu 

search algorithm for the heterogeneous fleet vehicle 

routing problem with time windows. In 2010 

International Conference on Logistics Engineering and 

Intelligent Transportation Systems, Wuhan, China, pp. 1-

4. https://doi.org/10.1109/LEITS.2010.5665040 

[3] Toth, P., Vigo, D. (2002). The Vehicle Routing Problem. 

Society for Industrial and Applied Mathematics. 

[4] Yüceer, Ü. (2013). An employee transporting problem. 

Journal of Industrial Engineering International, 9(1): 31. 

https://doi.org/10.1186/2251-712X-9-31 

[5] Peker, G., Eliiyi, D.T. (2023). Employee shuttle bus 

routing problem: A case study. Avrupa Bilim ve 

Teknoloji Dergisi, 46: 151-160. 

https://doi.org/10.31590/ejosat.1173057 

[6] Park, J., Kim, B.I. (2010). The school bus routing 

problem: A review. European Journal of Operational 

Research, 202(2): 311-319. 

https://doi.org/10.1016/j.ejor.2009.05.017 

[7] Alvarenga, G.B., Mateus, G.R., De Tomi, G. (2007). A 

genetic and set partitioning two-phase approach for the 

vehicle routing problem with time windows. Computers 

& Operations Research, 34(6): 1561-1584. 

https://doi.org/10.1016/j.cor.2005.07.025 

[8] Newton, R.M., Thomas, W.H. (1969). Design of school 

bus routes by computer. Socio-Economic Planning 

Sciences, 3(1): 75-85. https://doi.org/10.1016/0038-

0121(69)90051-2 

[9] Li, C., Gong, L., Luo, Z., Lim, A. (2019). A branch-and-

price-and-cut algorithm for a pickup and delivery 

problem in retailing. Omega, 89: 71-91. 

https://doi.org/10.1016/j.omega.2018.09.014 

[10] Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., 

Spieksma, F., Springael, J. (2013). A metaheuristic for 

the school bus routing problem with bus stop selection. 

European Journal of Operational Research, 229(2): 518-

528. https://doi.org/10.1016/j.ejor.2013.02.025 

[11] Kumar, Y., Jain, S. (2015). School bus routing based on 

branch and bound approach. In 2015 International 

Conference on Computer, Communication and Control 

(IC4), Indore, India, pp. 1-4. 

https://doi.org/10.1109/IC4.2015.7375684 

[12] Arias-Rojas, J.S., Jiménez, J.F., Montoya-Torres, J.R. 

(2012). Solving of school bus routing problem by ant 

colony optimization. Revista EIA, (17): 193-208. 

[13] Huo, L., Yan, G., Fan, B., Wang, H., Gao, W. (2014). 

School bus routing problem based on ant colony 

optimization algorithm. In 2014 IEEE Conference and 

Expo Transportation Electrification Asia-Pacific (ITEC 

Asia-Pacific), Beijing, China, pp. 1-5. 

https://doi.org/10.1109/ITEC-AP.2014.6940973 

[14] Euchi, J., Mraihi, R. (2012). The urban bus routing 

problem in the Tunisian case by the hybrid artificial ant 

colony algorithm. Swarm and Evolutionary 

Computation, 2: 15-24. 

https://doi.org/10.1016/j.swevo.2011.10.002 

[15] Faraj, M.F., Sarubbi, J.F., Silva, C.M., Porto, M.F., 

Nunes, N.T.R. (2014). A real geographical application 

202



 

for the school bus routing problem. In 17th International 

IEEE Conference on Intelligent Transportation Systems 

(ITSC), Qingdao, China, pp. 2762-2767. 

https://doi.org/10.1109/ITSC.2014.6958132 

[16] Sghaier, S.B., Guedria, N.B., Mraihi, R. (2013). Solving 

school bus routing problem with genetic algorithm. In 

2013 International Conference on Advanced Logistics 

and Transport, Sousse, Tunisia, pp. 7-12. 

https://doi.org/10.1109/ICAdLT.2013.6568426 

[17] Oluwadare, S.A., Oguntuyi, I.P., Nwaiwu, J.C. (2018). 

Solving school bus routing problem using genetic 

algorithm-based model. International Journal of 

Intelligent Systems and Applications, 12(3): 50. 

https://doi.org/10.5815/ijisa.2018.03.06 

[18] Díaz-Parra, O., Ruiz-Vanoye, J.A., de los Ángeles 

Buenabad-Arias, M., Saenz, A.C. (2013). Vertical 

transfer algorithm for the school bus routing problem. In 

Transactions on Computational Science XXI: Special 

Issue on Innovations in Nature-Inspired Computing and 

Applications, pp. 211-229. https://doi.org/10.1007/978-

3-642-45318-2_9 

[19] Chalkia, E., Salanova Grau, J.M., Bekiaris, E., 

Ayfandopoulou, G., Ferarini, C., Mitsakis, E. (2016). 

Safety bus routing for the transportation of pupils to 

school. Traffic Safety, 4: 283-299. 

[20] Ellegood, W.A., Solomon, S., North, J., Campbell, J.F. 

(2020). School bus routing problem: Contemporary 

trends and research directions. Omega, 95: 102056. 

https://doi.org/10.1016/j.omega.2019.03.014 

[21] Park, J., Kim, B.I. (2010). The school bus routing 

problem: A review. European Journal of Operational 

Research, 202(2): 311-319. 

https://doi.org/10.1016/j.ejor.2009.05.017 

[22] Hart, E., Sim, K., Urquhart, N. (2014). A real-world 

employee scheduling and routing application. In 

Proceedings of the Companion Publication of the 2014 

Annual Conference on Genetic and Evolutionary 

Computation, BC, Vancouver, Canada, pp. 1239-1242. 

https://doi.org/10.1145/2598394.260544 

[23] Leksakul, K., Smutkupt, U., Jintawiwat, R., Phongmoo, 

S. (2017). Heuristic approach for solving employee bus 

routes in a large-scale industrial factory. Advanced 

Engineering Informatics, 32: 176-187. 

https://doi.org/10.1016/j.aei.2017.02.006 

[24] Purba, A.P., Siswanto, N., Rusdiansyah, A. (2020). 

Routing and scheduling employee transportation using 

tabu search. AIP Conference Proceedings, 2217(1): 

030143. https://doi.org/10.1063/5.0000766 

[25] Peker, G., Eliiyi, D.T. (2022). Shuttle bus service routing: 

A systematic literature review. Pamukkale Üniversitesi 

Mühendislik Bilimleri Dergisi, 28(1): 160-172. 

[26] Bideq, H., Ouaddi, K., Gorge, A., Ellaia, R. (2022). A 

real-world employee bus routing problem application 

with mixed loads. In 2022 IEEE 6th International 

Conference on Logistics Operations Management (GOL), 

Strasbourg, France, pp. 1-7. 

https://doi.org/10.1109/GOL53975.2022.9820604 

[27] Neri, F., Cotta, C. (2012). Memetic algorithms and 

memetic computing optimization: A literature review. 

Swarm and Evolutionary Computation, 2: 1-14. 

https://doi.org/10.1016/j.swevo.2011.11.003 

[28] Malik, S., Wadhwa, S. (2014). Preventing premature 

convergence in genetic algorithm using DGCA and elitist 

technique. International Journal of Advanced Research 

in Computer Science and Software Engineering, 4(6): 

410-418. 

[29] Solomon, M.M. (1987). Algorithms for the vehicle 

routing and scheduling problems with time window 

constraints. Operations Research, 35(2): 254-266. 

https://doi.org/10.1287/opre.35.2.254  

203




