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An aircraft's landing stage involves inherent hazards and problems associated with many 

factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible 

for selecting the proper landing procedure based on information provided by the landing 

console operator (LCO). Given the likelihood of human decisions due to errors and biases, 

creating an intelligent system becomes important to predict accurate decisions. This paper 

proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity 

inherent in the landing phase, providing intelligent decision support to the pilot while 

reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach 

in MATLAB software, considers critical inputs like wind speed, wind direction, visibility, 

and runway condition to determine the landing's feasibility. The connection between the 

fuzzy rules is shown in the plotted curves, which indicate the smoothness and absence of 

overlap of decision-making rules for various input scenarios. A study employing data from 

Baghdad International Airport found that the proposed fuzzy approach predicted landing 

feasibility with an outstanding more than 85% accuracy across 20 different real-world 

scenarios. This level of reliability demonstrates how well the system can assess varied 

weather and runway conditions and identify the best landing decisions. 
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1. INTRODUCTION

The landing of an aircraft is considered the most important 

and dangerous phase of flight due to the risks associated with 

the approach and landing phases. The safe landing necessitated 

high precision in the pilot's cognitive task performance, which 

was dependent on several factors. The factors were runway 

condition, weather, aircraft traffic, and visibility [1]. To 

achieve a safe and smooth landing, the pilot must have a high 

level of skill and instant response [2]. After analyzing the 

information provided by the landing console operator (LCO), 

the pilot makes a landing choice. This information was 

improved by using special instruments that collect data on 

weather and runway conditions [3, 4]. 

According to statistics on the causes of 1,805 aircraft 

accidents from 1950 to 2019, weather was responsible for 10% 

of these incidents, while pilot error accounted for 50% of them 

[5]. Several inherent uncertainties can influence the decision-

making process, including uncertainties in weather conditions 

such as unpredictable changes in wind speed and direction, 

uncertainties in instrument landing system (ILS) sensors that 

are subject to distortion, error, or delay, and runway conditions, 

which have a significant impact on the decision of an airplane 

landing to apply appropriate braking action. Due to the nature 

and complexity of landings, it is impossible to achieve human 

decision-making that combines high precision and speed. In 

situations where information about landing ability is vague or 

confusing, artificial intelligence plays a crucial role in tackling 

these challenges effectively [6].  

Fuzzy logic is an artificial intelligence method and a 

mathematical theory that distinguishes itself from binary logic, 

which relies on precise true or false values. In the fuzzy logic 

method, every input and output are classified into separate 

fuzzy sets. Each set is assigned membership values ranging 

from 0 to 1, which quantify the degree of relationship with a 

certain set [7, 8]. Fuzzy logic excels in handling uncertainty 

and imprecision by processing unclear or linguistic data, 

making it perfect for real-world applications. Unlike standard 

binary systems, it employs straightforward (if-then) logic, 

which improves clarity and trust. In contrast to machine 

learning, it requires less computer power and no big datasets, 

ensuring practicality and adaptability to new conditions 

without costly retraining. These characteristics make fuzzy 

logic a dependable option for uncertain and complex decision-

making engineering systems.  

Several studies used fuzzy logic approaches to handle the 

landing decision-making challenges of an aircraft. One of 

them, Zadeh [9] discussed the importance of uncertainty and 

ambiguity in the flight environment and established a Fuzzy 

Inference System (FIS) that uses visibility, pilot experience, 

and airspeed as input variables to calculate the landing success 

rate. The suggested fuzzy logic results are compared to flight 

simulation results to demonstrate that it can forecast landing 

success probability under the inputs used. The Adaptive 

Neuro-Fuzzy Inference System (ANFIS), which determines 

whether or not a touchdown will occur, is both effective and 

beneficial in model computations. 

Ramli et al. [10] offered a practical weather forecasting 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 2, February, 2025, pp. 329-336 

Journal homepage: http://iieta.org/journals/jesa 

329

https://orcid.org/0009-0001-8591-4607
https://orcid.org/0000-0001-5854-7357
https://orcid.org/0000-0002-3034-8783
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580213&domain=pdf


 

model for air traffic control systems based on a fuzzy 

hierarchical method. The model generates weather forecasts, 

for airports by combining factors and data from online sources 

with a structured knowledge model called Mamdani. The input 

factors include weather conditions, turbulence, and fog each 

of which is made up of components that work together to 

produce a result. Weather data takes into account factors such 

as visibility, wind speed, and barometric pressure. Turbulence 

is affected by sky conditions the presence of thunderstorms 

and the occurrence of precipitation. The fog component is dew 

point, temperature, and relative humidity. The study suggested 

that this prediction technique can generate accurate forecasts 

for air traffic controllers because it was based on online 

information. 

Wijaya et al. [11] conducted a fuzzy logic method to 

evaluate if an aircraft is suitable, for takeoff and landing. This 

approach considers various factors like visibility, wind speed, 

and wind direction to predict precipitation. The study utilized 

Mamdani fuzzy logic to classify the outcome as feasible, 

careful, or if it was not feasible. It highlights the importance of 

fuzzy logic in air traffic control, for supporting aircraft 

operations during bad weather conditions. 

Rahim [12] introduced a fuzzy logic method to anticipate if 

an airport's meteorological conditions are acceptable for 

aircraft takeoff or landing. The fuzzy approach employed is 

the Mamdani method, which requires three input parameters: 

wind velocity, wind direction, and visibility. The system's 

output determines whether the weather is appropriate, cautious, 

or impractical. The study's findings suggested that the 

technique is suitable for deciding whether to fly or land an 

airplane in various weather circumstances. 

In a separate study conducted by Pratiwi et al. [13], they 

utilized the Mamdani fuzzy logic technique to improve 

decision-making during airplane landings. They considered 

factors such as wind direction, wind speed, visibility, and pilot 

experience to assist pilots in making landing choices. By 

comparing the outcomes of the developed fuzzy logic system 

with decisions made at AirNav Ahmad Yani Airport Semarang, 

it was demonstrated that an intelligent system based on fuzzy 

logic can determine the suitable decision for airplanes to land. 

However, most studies frequently employ the same set of 

inputs without adequately explaining their findings, and they 

commonly do not account for all possible input scenarios. 

The Mamdani FIS possesses numerous properties that 

render it appropriate for this study. The Mamdani fuzzy 

inference approach is excellent for dealing with unsupervised 

data since it allows for the creation of linguistic rules based on 

human experience. Furthermore, it employs numerous 

techniques in the defuzzification process, such as the center of 

gravity (COG) and the mean of maximum, which improves its 

ability to deal with a confusing system [14]. The fuzzy 

inference procedure comprises five steps: fuzzification of 

input variables, application of fuzzy operators (AND or OR) 

in the antecedent, implication from the antecedent to the 

consequent, aggregation of consequences across rules, and 

defuzzification [7]. Figure 1 shows the main diagram of the 

Mamdani FIS [13, 15]. 

In this study, the Mamdani fuzzy technique is used to 

develop aircraft decision-making to aid in the assessment of 

landing feasibility under various weather and runway 

circumstances. It focuses on intelligent decision support for 

pilots rather than actively directing aircraft dynamics. The 

resulting system is tested by comparing it to data on landing 

Boeing 733-max provided by Baghdad International Airport. 

The data collected from the airport revealed that gust 

turbulence occurs at medium to high wind speeds with a 

dangerous wind direction. The gust speed is classified into 

three types: ’simple’ reach to 24 ft/sec,’ medium’ reach to 48 

ft/sec, and ‘high’ reach to 64 ft/sec [16]. The weather inputs 

used include wind speed, wind direction, visibility, and 

runway conditions. The runway condition is a new input in this 

study, and it has a significant impact on the decision of an 

airplane landing to apply appropriate braking action [17, 18].  

 

 
(A) 

 
(B) 

 

Figure 1. (A): The basic process of the fuzzy system. (B): 

The Mamdani fuzzy interface system block diagram 

 

Unlike prior studies that often focus on a limited set of input 

factors or do not address overlapping rules comprehensively, 

this study introduces several novel contributions, which 

include taking runway conditions as a new input factor in 

addition to traditional inputs like (wind speed, wind direction, 

and visibility), in addition to incorporating all input scenarios 

into the rules and plotting curves ensuring smooth transitions 

and non-overlapping scenarios, which enhances reliability and 

accuracy, and finally creating a graphical user interface (GUI), 

for easily entering weather and runway condition data and 

displaying the landing decision, which supports usability in 

real-world applications. 

 

 

2. MATHEMATICAL MODEL OF THE SYSTEM 

 

In the Mamdani inference method, often called the Min-

Max method, fuzzy rules are combined to produce a final 

decision. Here's how it works: 

In the fuzzification, each input is converted into fuzzy 

values using membership functions. Figures 2 and 3 represent 

the graph of the triangular curve's membership functions and 

the L-shape used in this study [19]. 

Eqs. (1) and (2) demonstrate the usage of the triangle and L-

membership functions for the fuzzification of this system, 

respectively [20, 21]. A membership function on X is any 

function that maps X to the real unit interval [0, 1]. The 

membership function for a fuzzy set A is typically denoted by 
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μA. The value μA(X) represents the x's membership degree in 

the fuzzy set A. The membership degree μA(X) measures an 

element's membership in the fuzzy set A. 

 

 
 

Figure 2. Tringale membership function 

 

 
 

Figure 3. L-shape membership function 

 

𝜇𝐴(𝑥) =

{
  
 

  
 

0             𝑖𝑓 𝑥 ≤ 𝑎    
(𝑥 − 𝑎)

(𝑏 − 𝑎)
         𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

 
(𝑐 − 𝑥)

(𝑐 − 𝑏)
         𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐

  0             𝑖𝑓  𝑥 ≥ 𝑏       

 (1) 

 

𝜇𝐴(𝑥) =  

{
 
 

 
 
1                   𝑖𝑓  𝑥 ≤ 𝑎                
(𝑏 − 𝑥)

(𝑏 − 𝑎)
           𝑖𝑓     𝑎 < 𝑥 ≤ 𝑏

0                  𝑖𝑓 𝑥 > 𝑏               
 

 (2) 

 

In rule evaluation (inference), each rule is assessed to 

determine how well the inputs match the conditions of the rule. 

The minimum value among the inputs (min) is used to 

represent the degree of truth (or activation level) for that rule. 

Eq. (3) represents the mathematical representation of the 

minimum operator.  

 

𝜇𝑟𝑢𝑙𝑒 = 𝑚𝑖𝑛(𝜇𝐴1(𝑋1), 𝜇𝐴2(𝑋2), … . , 𝜇𝐴𝑛(𝑋𝑛)) (3) 

 

After that, the result of all rules is aggregated using the 

maximum operator (max). This results in producing a single 

fuzzy set accounting for all the influences of all rules in the 

Fuzzy Control System. The mathematical representation of the 

aggregation step is represented in Eq. (4): 

 

𝜇𝐵(𝑦) = 𝑚𝑎𝑥(𝜇𝐵𝑖(𝑦)) (4) 

 

where, μBi(y) represents the membership function of each 

output individual rule. 

After that, the output variables are defuzzified using the 

center of gravity approach of Eq. (5) [22, 23]. The center of 

gravity technique is utilized in this decision-making system 

because it produces a balanced, steady, and intuitive result that 

takes into account the influence of all contributing fuzzy rules.  

 

𝑎 =
∑𝜇𝐴(𝑥𝑖). 𝑥𝑖

∑ 𝜇𝐴(𝑥𝑖)
 (5) 

3. FUZZY METHOD PROCEDURES 

 

This work uses four input parameters for the Mamdani 

fuzzy system: wind speed, wind direction, visibility, and 

runway condition. The linguistic values of each input can be 

classified using classification data based on the value of each 

variable.  

Table 1 displays the factors used in this investigation. The 

first three variable values were classified using a previous 

study with the same range [9-13], where these ranges were 

taken based on wind description in the study [24].  

 

Table 1. Range criteria of the linguistic input parameters 

 
Input Parameters Range Criteria and Its Name 

Wind Speed/ Knots 

0 - 5 

3 - 13 

10 - 30 

Low 

Moderate 

High 

Wind Direction/ Degree 

0 - 70 

60 - 90 

80 -180 

170 - 200 

190 - 360 

Danger1 

Relatively safe 1 

Safe 

Relatively safe 2 

Danger2 

Visibility/ Meters 

0 - 5000 

4500 - 8000 

7500 - 10000 

Close 

Medium 

Far 

Runway Condition 

0 - 4 

3 - 7 

6 - 10 

Slush 

Wet 

Dry 

 

 
 

Figure 4. Wind speed membership functions 

 

 
 

Figure 5. Wind direction membership functions 
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Figure 6. Visibility membership functions 

 

 
 

Figure 7. Runway condition membership functions 

 

 
 

Figure 8. System evaluation membership functions 

 

Figures 4 to 7 illustrate the representations of linguistic 

input parameters used in this study.  

Figure 8 displays the fuzzy output membership functions 

used in this study, each indicating a different level of landing 

feasibility. The output system's evaluation is divided into 

"Extremely not feasible to land," "Not feasible to land," 

"Extremely careful land," "Careful land," and "Safe land," 

respectively. 

4. EVALUATION RULE 

 

The rules utilized in this study were derived from human 

expertise and were structured using If-Then statements. Figure 

9 represents the flowchart of the fuzzy process: 

 

 
 

Figure 9. Flowchart of the decision-making 

 

Figures 10-18 illustrate the Mamdani fuzzy logic system's 

relationship between inputs and outputs. Curves are plotted to 

show smoothness and non-overlapping of the rules [25, 26].  

Figures 10-12 show the fuzzy system evaluation versus 

wind speed at each wind direction and different visibilities for 

various runway conditions. 

Figure 10 shows how the system performs in dangerous 

wind directions with varying visibility conditions on three 

runway types.  

Figure 11 illustrates the system's landing decision for 

different runways at various visibility levels with winds 

coming in "Re-safe" directions. This figure emphasizes the 

importance of runway conditions and visibility in the system's 

ability to tolerate greater winds, particularly under relatively 

safe wind directions. 
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Figure 10. System evaluation versus wind speed at danger 

1&2 direction for various visibility and runway conditions 

 

 
 

Figure 11. System evaluation versus wind speed at re-safe 

1&2 direction for various visibility and runway conditions 

 

Figure 12 illustrates how safe wind directions impact 

landing feasibility across different runway surfaces and 

visibility levels. 

 

 
 

Figure 12. System evaluation versus wind speed at a safe 

wind direction for various visibility and runway conditions 

 

Figures 13-15 show the fuzzy system evaluation versus 

wind speed at each runway condition and different visibilities 

for various wind directions. To explain the effect of each type 

of wind direction on the aircraft’s landing decision for each 

case of the runway with different degrees of visibility in the 

air.  

Figure 13 shows how different wind directions and visibility 

levels affect the safety of landing on a slushy runway. This 

analysis highlights how critical wind direction and visibility 

are for safe landings, especially on challenging surfaces like 

slush, where braking and steering control are compromised.  

Figure 14 provides insight into how varying visibility 

conditions and wind directions affect landing decisions on wet 

runways. This figure also shows how a rise in wind speed, 

visibility, and wind direction can impose a much greater threat 

to landing on wet runways, meaning that both pilots and 

systems will be making progressively more conservative 

decisions the worse the environment gets. 

 

 
 

Figure 13. System evaluation versus wind speed at slush 

runway conditions for various visibility and wind directions 

 

 
 

Figure 14. System evaluation versus wind speed at wet 

runway conditions for various visibility and wind directions  
 

 
 

Figure 15. System evaluation versus wind speed at dry 

runway conditions for various visibility and wind directions 

 

 
 

Figure 16. System evaluation versus wind speed at danger 

1&2 for various runway conditions and various visibility 
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Figure 17. System evaluation versus wind speed at re-safe 

1&2 for various runway conditions and various visibility 

 

 
 

Figure 18. System evaluation versus wind speed at a safe 

direction for various runway conditions and visibility 

 

Figure 15 displays the system evaluation for an airplane 

landing on a dry runway under varying visibility conditions. 

Figures 16-18 show the fuzzy system evaluation versus 

wind speed at each wind direction and different runway 

conditions for various visibility. To explain the effect of 

visibility type on the aircraft’s landing decision for each case 

of the wind direction with varying instances of runway 

condition.  

Figure 16 displays the plotting curves of visibility cases for 

each runway condition in a dangerous wind direction. As wind 

speeds rise, reduced visibility poses significant challenges for 

safe landings, especially on slushy and wet surfaces. 

Figure 17 demonstrates the plotting curves of visibility 

cases for each runway condition in relatively safe types of 

wind direction.  

Figure 18 shows the plotting curves of visibility scenarios 

for each runway condition in the safe wind direction. 

 

 

5. RESULTS AND DISCUSSION 

 

This section examines how well our fuzzy logic system 

aligns with real-world pilot decisions, using 20 data sets from 

Baghdad International Airport for Boeing 737 landings. The 

dataset employed in this study comprises Iraqi aircraft 

operations at multiple international airports, ensuring a more 

complete picture of landing conditions and increasing the 

possible generalizability of the findings to varied geographic 

contexts. Essentially, our goal was to see if the system could 

replicate the judgment of a human pilot under various 

conditions. In a previous work [13], researchers developed 

fuzzy rules using real data but did not evaluate all possible rule 

combinations. Despite this constraint, their findings 

demonstrated that the fuzzy logic system could accurately 

simulate pilot decision-making. In contrast, our study 

employed all available rules to analyze different weather and 

runway conditions, and curves were created to show the link 

between inputs and outputs in the Mamdani fuzzy logic system. 

These plots indicated that the rules transitioned smoothly with 

no overlap, indicating that the decision-making process is 

consistent and dependable. 

Table 2 demonstrates that the Mamdani fuzzy logic system 

predicted pilot decisions with more than 85% accuracy across 

20 landing scenarios for the Boeing 737. This excellent 

alignment emphasizes the system's dependability throughout 

various conditions, including clear weather with dry runways 

and more difficult scenarios such as restricted visibility and 

wet or slushy runways. The system's evaluations, such as 

"Land" and "Not feasible," closely matched pilot decisions. In 

certain cases (lines 6, 7, 8, 9, 14, and 18), the fuzzy technique 

was much more conservative, advocating prudence in 

ambiguous situations. These findings highlight the system's 

dependability and potential to assist pilots in making safe 

landing decisions by closely mimicking pilot judgment while 

prioritizing safety. 
 

Table 2. Comparison of the pilot decision to the Mamdani system landing evaluation 

 
No. Wind Speed/Knots Wind Direction/Degree Visibility/Meter Runway Condition Pilot Decision System Evaluation 

1 5 130 10000 dry Land Land 

2 8 240 3000 wet Not feasible Not feasible 

3 28 90 5000 dry Careful land Careful land 

4 2 100 600 slush Ex. careful Land Ex. careful Land 

5 10 10 450 slush Ex. Not feasible Ex. Not feasible 

6 3 100 2000 dry Land Careful land 

7 30 200 5000 wet Ex. careful land Not feasible 

8 15 170 1000 dry Careful land Ex. careful land 

9 18 30 800 wet Not feasible Ex. Not feasible 

10 1 130 950 slush Ex. careful land Ex. careful land 

11 13 280 1200 slush Ex. Not feasible Ex. Not feasible 

12 3 120 7000 dry Land Land 

13 8 120 550 dry Ex. careful land Ex. careful land 

14 23 50 4000 wet Not feasible Ex. Not feasible 

15 13 20 9000 dry Ex. careful land Ex. careful land 

16 1 90 1000 slush Ex. careful Land Ex. careful Land 

17 2 140 6000 dry Land Land 

18 16 220 4000 wet Not feasible Ex. Not feasible 

19 3 190 600 slush Ex. careful land Ex. careful land 

20 21 120 2000 dry Ex. careful land Ex. careful land 
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A graphical user interface (GUI) was created to improve the 

system's usability and enable real-world deployment (see 

Figure 19). The GUI allows users to enter real-time 

environmental and runway data, which the system then 

processes automatically using membership functions. The 

interface simplifies the decision-making process and gives a 

clear, intuitive approach to analyzing landing feasibility under 

different weather circumstances. Its user-friendly design 

makes it accessible to operators with minimum technical skill, 

and its adaptability allows for simple modification. These 

qualities make the GUI a useful tool for making real-time 

decisions and integrating with pilot training or airport 

operations systems. 
 

 
 

Figure 19. GUI for the landing decision process 

 

 

6. CONCLUSIONS 

 

This study aimed to examine the factors influencing landing 

decisions and to develop an intelligent fuzzy system that 

assists pilots while reducing the workload of the LCO. The 

system uses key inputs—wind speed, wind direction, visibility, 

and runway condition—to guide landing decisions. The 

decision-making output is divided into five stages: land, 

careful land, extremely careful land, not feasible, and 

extremely not feasible. When evaluated on 20 real landing 

scenarios at Baghdad International Airport, the fuzzy system 

demonstrated an impressive 85% accuracy in matching pilot 

decisions. This high reliability demonstrates the system's 

capacity to support safe landings in a wide range of conditions, 

with a minor bias toward caution. In addition, a graphical user 

interface (GUI) was developed to facilitate data entry and 

allow the system to display the final decision. These results 

highlight the potential of fuzzy logic to improve landing safety 

by reducing the role of human error and providing consistent, 

data-driven support in crucial decision-making scenarios. 

However, its application to other aircraft types is limited 

because it is focused on civil aircraft transport. Future studies 

could overcome this limitation using a wider range of datasets 

and operational considerations. Other approaches, including 

integrating hybrid methodologies like machine learning to 

continuously improve decision-making, or optimization 

algorithms to determine the safest landing paths and reduce the 

likelihood of strong wind or poor visibility risks, could also 

enhance landing safety. 
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